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A General Framework for MABs

• Known family of densities F
• Controller faces N unknown ‘bandits’:

f = {f1, f2, . . . , fN} ⊂ F

• May sample i.i.d. from any bandit: Xi
1, X

i
2, . . . ∼ fi

• Given t samples of i, may construct estimator f̂ it
• Sequential sampling policy π, π(n) = i samples i at time n

• T iπ(n): # of samples of i at global time n (global n vs local T iπ(n))

• Score functional s : F 7→ R.

• Optimal bandits: s(fi∗) = s∗ = maxj s(fj).

General Goal:

• A policy π that samples optimal bandits as often as possible

• Efficiently balance exploration vs exploitation



What is Good?

Let O(f) = {i : s(fi) = s∗(f)}, B(f) = {i : s(fi) < s∗(f)}
be the set of optimal, sub-optimal bandits

Basic Principle: Activations of optimal bandits cannot be regretted.

Definition (Uniformly Fast Policies).

A policy π is Uniformly Fast if,for all f = (fi), fi ∈ F , α > 0∑
i∈B(f)

E f

[
T iπ(n)

]
= o(nα),

• Regret:

Rπ(n) = Rπ(n; f)
∑

i∈B(f)

(s∗(f)− s(fi))E f

[
T iπ(n)

]
• Robbins (1952), Lai and Robbins (1985), Katehakis and Robbins (1995),

Burnetas and Katehakis (1996), Honda and Takemura (2010), Honda and
Takemura (2011), Honda and Takemura (2013)



Structure of Bandit Space

• KL-Divergence as ‘distance/similarity’ in F :

I(f, g) = Ef
[
ln

(
f(X)

g(X)

)]
.

• I(f, g) = 0 implies f = g (a.e.)

• I(f, g) <∞ implies g supports f (w.p. 1)

• Note: not a true metric - that’s okay!

• F characterized by

Kf (ρ) = inf
g∈F
{I(f, g) : s(g) > ρ}.

• Kf (ρ): Distance to nearest ρ-better g



So Good, No Better

Assume the following conditions hold, for any f ∈ F , and all ε, δ > 0.

� Condition B1: ∀ f ∈ F , ρ ∈ s(F), ∃f̃ ∈ F : s(f̃) > ρ and I(f, f̃) <∞.

� Condition B2: s is continuous at each f ∈ F , with respect to I.

Theorem (Lower Bound on Sub-Optimal Activations).

For any (F , s) that satisfy: B1 & B2.
Then, ∀π UF and all f , the following holds for each sub-optimal i:

lim inf
n

E f

[
T iπ(n)

]
lnn

≥ 1

Kfi(s∗)
.

Are there policies (‘asymptotically optimal’) that achieve this lower bound?



Realizing the Bound

Goal: construct policies π, based on knowledge of F and s, that achieve this lower
bound, that is for all sub-optimal i:

lim
n

E[T iπ(n)]/ lnn = 1/Kfi(s∗)

Let ν be a (context-specific) measure of similarity of F .
Assume the following conditions hold, for any f ∈ F , and all ε, δ > 0.

� Condition R1: Kf (ρ) is continuous w.r.t ρ, and w.r.t f under ν.

� Condition R2: Pf (ν(f̂t, f) > δ) ≤ o(1/t).

� Condition R3: For some sequence dt = o(t) (independent of ε, δ, f),

Pf (δ < Kf̂t(s(f)− ε)) ≤ e−Ω(t)e−(t−dt)δ,

where the dependence on ε and f are suppressed into the Ω(t) term.

Standard notation: o(n), O(n) and Ω(n) denote a function h(n) with the following properties respectively. i)
limn h(n)/n = 0. ii) ∃ c > 0 and n0 ≥ 1 such that h(n) ≤ c n, for all n > n0. iii) ∃ c > 0 and n0 ≥ 1 such that
h(n) ≥ c n, for all n > n0.



Discussion

� Condition R1: Kf (ρ) is continuous w.r.t ρ, and w.r.t f under ν.
It characterizes, in some sense, the structure of F as smooth.
To the extent that Kf (ρ) can be thought of as a Hausdorff distance on F ,
Condition R1 restricts the “shape” of F relative to s.

� Condition R2: Pf (ν(f̂t, f) > δ) ≤ o(1/t).

The estimators f̂t are “honest” and converge to f sufficiently quickly with t.

� Condition R3: For some sequence dt = o(t) (independent of ε, δ, f),

Pf (δ < Kf̂t(s(f)− ε)) ≤ e−Ω(t)e−(t−dt)δ,

It often seems to be satisfied by f̂t converging to f sufficiently quickly, as well as
f̂t being “useful”, in that s(f̂t) converges sufficiently quickly to s(f).
The form of the above bound, while specific in its dependence on t and δ, can be relaxed

somewhat, but such a bound frequently seems to exist in practice, for natural choices of f̂t.



Policy UCB-(F , s, f̂t, d̃)

• Let f̂ it be an estimator of fi given t i.i.d. samples.
• Let d̃(t) > 0 be a non-decreasing function with d̃(t) = o(t).
• Define, for any t such that t > d̃(t), the following index function:

ui(n, t) = sup
g∈F

{
s(g) : I(f̂ it , g) ≤ lnn

t− d̃

}
,

Policy π∗ (UCB-(F , s, d̃)):

i) For n = 1, 2, . . . , n0 ×N , sample each bandit n0 times, and

ii) for n ≥ n0 ×N , sample from bandit

π∗(n+ 1) = arg maxiui
(
n, T iπ∗(n)

)
,

breaking ties uniformly at random

Intuition: Activate according to best score within plausible distance of best bandit
estimate.
Related: (Burnetas and Katehakis 1996): (Auer and Ortner 2010), (Cappé, Garivier,
Maillard, Munos, and Stoltz 2013)



Finite Horizon Bound for Activations under Policy π∗

Theorem.

For any sub-optimal i and any optimal i∗, and
� ∀ε > 0 such that s∗ − ε > s(fi),
� ∀δ > 0 such that infg∈F{Kg(s

∗ − ε) : ν(g, fi) ≤ δ} > 0:

E
[
T iπ∗(n)

]
≤ lnn

infg∈F{Kg(s∗ − ε) : ν(g, fi) ≤ δ}
+ o(lnn)

+

n∑
t=n0N

P
(
ν(f̂ it , fi) > δ

)

+

n∑
t=n0N

t∑
k=n0

P (ui∗(t, k) ≤ s∗ − ε) .



Asymptotic Optimality

Theorems 1 and 2 lead to the following theorem:

Theorem.

Let (F , s, f̂t, ν) satisfy Conditions B1, B2 & R1 - R3.
Let d = {dt} be as in Condition R3 and
d̃(t)− dt ≥ ∆ > 0 for some ∆, for all t, then

lim
n

E
[
T iπ∗(n)

]
lnn

=
1

Kfi(s
∗)
, ∀ f ∈ F , and ∀i suboptimal.



Applications: Separable Pareto Models

F` =

{
fα,β(x) =

αβα

xα+1
for x ≥ β : ` < α <∞, β > 0

}
X ∼ Pareto(α, β), X is distributed over [β,∞),
with E[X] = αβ/(α− 1) if α > 1, and E[X] as infinite or undefined if α ≤ 1.
We are interested in F0, the family of unrestricted Pareto distributions, and F1, the
family of Pareto distributions with finite means.

A score function s(α, β) = s(fα,β) of interest should be an increasing function of β, and
a decreasing function of α.

We consider score functions:

s(f) = s(α, β) = a(α)b(β)

where we take a to be a positive, continuous, decreasing, invertible function of α for
α > `, and b to be a positive, continuous, non-decreasing function of β∗.

∗ When the goal is to obtain large rewards from the bandits activated, there are two effects of interest: rewards from a given

bandit will be biased towards larger values for decreasing α and increasing β.



Applications: Separable Pareto Models - Continued

This general Pareto model of s(α, β) = a(α)b(β), includes several natural score
functions of interest, in particular:

i) In the case of the restricted Pareto distributions with finite mean, we may
take s as the expected value, and

s(α, β) = αβ/(α− 1),

with a(α) = α/(α− 1) and b(β) = β.

ii) For unrestricted Pareto distributions, the score function

s(α, β) = 1/α,

leads to the controller’s goal to be to find the bandit with minimal α. In this
case, a(α) = 1/α and b(β) = 1. Can be used in comparing the asymptotic
tail distributions of bandits, P(X ≥ k) as k →∞, or the conditional
restricted expected values, E[X|X ≤ k] as k →∞.

iii) A third score function
s(α, β) = β21/α,

with a(α) = 21/α, b(β) = β, can be used for the median, defined over
unrestricted Pareto distributions.



Applications: Separable Pareto Models - Continued

� Assume: a(α)→∞ as α→ `.
This guarantees that Condition B1 is satisfied by s.
� For f = fα,β ∈ F`, and a sample of size t of i.i.d. samples under f , take

the estimator f̂t = fα̂t,β̂t where

β̂t = min
n=1,...,t

Xk,

α̂t =
t− 1∑t

k=1 ln
(
Xk
β̂t

) . (1)

Define the following functions, L+(δ), L−(δ), as the smallest and largest
positive solutions to L− lnL− 1 = δ for δ ≥ 0, respectively.
L−(δ) may be expressed in terms of the Lambert-W function, L−(δ) = −W (e−1−δ), taking
W (x) be the principal solution to WeW = x for x ∈ [−1/e,∞). An important property will be
that L±(δ) is continuous as a function of δ, and L±(δ)→ 1 as δ → 0.



Policy π∗
P,s (UCB-PARETO)

i) For n = 1, 2, . . . 3N , sample each bandit 3 times, and

ii) for n ≥ 3N , sample from bandit π∗P,s(n+ 1) = arg maxiui

(
n, T iπ∗P,s

(n)
)

breaking ties uniformly at random, where

ui(n, t) =

∞ if α̂itL
−
(

lnn
t−2

)
≤ `,

b
(
β̂it

)
a
(
α̂itL

−
(

lnn
t−2

))
else.

Theorem.

Policy π∗P,s as defined above is asymptotically optimal: for each sub-optimal bandit
i the following holds:

lim
n

E
[
T iπ∗P,s

(n)
]

lnn
=

1

1
αi
a−1

(
s∗

b(βi)

)
− ln

(
1
αi
a−1

(
s∗

b(βi)

))
− 1

.



Applications: General Uniform Models

F =

{
fa,b(x) =

1

b− a
for a ≤ x ≤ b : −∞ < a < b <∞

}
• General Model of Interest: s(f) = s(a, b).

• s(a, b): continuous, increasing function of a
• s(a, b): continuous, increasing function of b

Contains standard case of interest:

sµ(a, b) = (a+ b)/2.



Applications: General Uniform Models - Continued

F =

{
fa,b(x) =

1

b− a
for a ≤ x ≤ b : −∞ < a < b <∞

}

• Estimators of f = fa,b as f̂t = fât,b̂t where

ât = min
n=1,...,t

Xn b̂t = max
n=1,...,t

Xn.

• Index of Optimal Policy π∗, d̃ = 2:

ui(n, t) = s(âit, â
i
t + n

1
t−2 (b̂it − âit)).

with the particular case for sµ:

ui(n, t) = âit +
1

2
n

1
t−2 (b̂it − âit).



Applications: General Uniform Models - Continued

Policy π∗ is asymptotically optimal, and for all {fi = fai,bi} ⊂ F , for all
sub-optimal i:

lim
n

E
[
T iπ∗(n)

]
lnn

=
1

minbi≤b {ln(b− ai) : s(ai, b) ≥ s∗} − ln(bi − ai)
.

with the particular case for sµ:

lim
n

E
[
T iπ∗(n)

]
lnn

=
1

ln
(

2s∗−2ai
bi−ai

) .



Applications: Normal, Unknown µi, σi, Maximize Mean

F =

{
fµ,σ(x) =

1

σ
√

2π
e−

(x−µ)2

2σ2 : −∞ < µ <∞, 0 < σ <∞
}

• Score functional: s(fµ,σ) = Ef [X] = µ.

• Standard Estimators: µ̂t and σ̂2
t .

• Index of Optimal Policy π∗ = πCHK, d̃ = 2:

ui(n, t) = µ̂it + σ̂it

√
n

2
t−2 − 1.

• Asymptotic Optimality: For all {fi = fµi,σi} ⊂ F , for sub-optimal i:

lim
n

E
[
T iπCHK

(n)
]

lnn
=

2

ln
(

1 + (µ∗−µi)2

σ2
i

) .
(Cowan, Honda, and Katehakis 2015)



Normal, Minimize Variance, known µi,

FM =

{
fσ(x) =

1

σ
√

2π
e−

(x−M)2

2σ2 : 0 < σ <∞
}

• Score functional: s(fσ) = 1/Varf (X) = 1/σ2.

• Standard Estimators: σ̂2
t .

• Index of Optimal Policy π∗, d̃ = 2:

ui(n, t) = L+

(
2 lnn

t− 2

)
/(σ̂it)

2

with L+(δ) largest positive solution: L− lnL− 1 = δ.

• Asymptotic Optimality: For all {fi = fσi} ⊂ FM , for sub-optimal i:

lim
n

E
[
T iπ∗(n)

]
lnn

=
2

σ2
i
σ2
∗
− ln

(
σ2
i
σ2
∗

)
− 1

.



Normal κ-Threshold Probability, known σi

Fi =

{
fµ,σi(x) =

1

σi
√

2π
e
− (x−µ)2

2σ2
i : −∞ < µ <∞

}

• Score functional: s(fµ,σ) = Pf (X > κ) = 1− Φ((κ− µ)/σ).

• Standard Estimators: µ̂t.

• Index of Optimal Policy π∗, d̃ = 1:

ui(n, t) = 1− Φ

(
κ− µ̂it
σi

−
√

2 lnn

t− 1

)
.

• Asymptotic Optimality: For all {fi = fµi,σi ∈ Fi}, for sub-optimal i:

lim
n

E
[
T iπ∗(n)

]
lnn

=
2(

κ−µi
σi
− Φ−1 (1− p∗)

)2 .



Final Comments: Past and Current Work

Lai - Robbins 1985: f(x; θi) unknown 1-dim (scalar) θi ∈ Θ

s(fi) = µ(θi), µ(θ∗) = maxi{µ(θi)}

KLR
i (θ∗) = I(θi, θ∗)

Burnetas - Katehakis 1996: f(x; θi) unknown multi-dim (vector) θi ∈ Θ

s(fi) = µ(θi), µ(θ∗) = maxi{µ(θi)} θ = (θ1, . . . , θN )

KBK
i (θ∗) = inf

θ′i∈Θi

{I(θi, θ
′
i) : µ(θ′i) > µ(θ∗)}

Cowan - Katehakis 2015: fi ∈ Fi

s∗ = maxj{ s(fj) }
KCK
i (s∗) = inf

g∈Fi
{I(fi, g) : s(g) > s∗}

For all the above, under conditions analogous to B1, B2, ∀ f ∈ F , and ∀i suboptimal

lim inf
n

E
[
T iπ(n)

]
lnn

≥ 1

Ki(s∗)
, ∀ UF π



Asymptotically Optimal (Efficient) Policies of Lai - Robbins 1985

LR-UM Policies φ∗ conditions 3.1-3.3 of L-R (1985)
At time n define: πLR(n)

• Take {ani} positive sequences of constants that satisfy regularity conditions in L-R(1985)

• at n = 1, . . . , N sample form Πn (initial sampling)

• sample mean estimates: µ̂i(n) = µ(θ̂i)

• First UCBs: gin(θ̂i)(= uLRi (θ̂i)) = infλ{λ > µ(θ̂i) : I(θ̂i, λ) ≥ ani}
• Take a δ ∈ (0, 1/N)

• for n+ 1 > N compute: j: n+ 1 = mN + j and j∗n:

µ̂j∗n = max{µ̂i(n) : T i
πLR

(n) > δn}

and

• πLR(n+ 1) =

{
j if µ̂j∗n < gjn(θ̂i))

j∗n otherwise

• Then

lim
n

E
[
T i
πLR

(n)
]

lnn
=

1

Ki(µ∗)
, ∀ non− optimal i



Asymptotically Optimal (Efficient) Policies of Burnetas Katehakis 1996

BK-UM Policies π∗ under conditions A1, A2, A3 of B-K (1996)
At time n define: πBK(n)

• Take some initial samples from each population, so that at round n so that T iπ∗ (n) > 0 for

all i. Initial estimates θ̂i(n) = θ̂i(T
i
π∗ (n))

• 2-nd UCBs:

uBKi (n, t) = supθ ′i∈Θi

{
µ(θ ′i) : I(θ̂ i, θ ′i) <

lnn

t

}

• 2-nd UCB index based Efficient Policies:

πBK(n+ 1) = arg maxi

{
uBKi

(
n, T iπ∗ (n)

)}
breaking ties uniformly at random

• Then

lim
n

E
[
T i
πBK

(n)
]

lnn
=

1

Ki(µ(θ∗))
, ∀ non− optimal i

π∗ is a pure index policy



Asymptotically Optimal Policies of Cowan and Katehakis 2015

Policy UCB-(F , s, f̂t, d̃, ν) π∗ under conditions B1-B2 & R1-R3 of C+K (2015)

• Let d̃(t) > 0 be a non-decreasing function with d̃(t) = o(t)
• For n = 1, 2, . . . , n0 ×N , sample each bandit n0 times

Let f̂ it be an estimator of fi given t i.i.d. samples.

• 3-rd UCBs: Define, for any t such that t > d̃(t), the following index function:

ui(n, t) = sup
g∈F

{
s(g) : I(f̂ it , g) ≤

lnn

t− d̃

}

• For n ≥ n0 ×N , sample from bandit

π∗(n+ 1) = arg maxi

{
uCKi

(
n, T iπ∗ (n)

)}
breaking ties uniformly at random

• Then

lim
n

E
[
T i
πCK

(n)
]

lnn
=

1

Ki(s∗)
, ∀ non− optimal i

π∗ is a pure index policy



Final Comments: Past and Current Work - Regret

Asympt. Optimal UCB Policies for Normal Populations: Xi
k are iid N(µi, σ

2
i )

Lai and Robbins (1985): Let ank > 0 (n = 1, 2, . . ., k = 1, . . . , n) be
sequences constants such that:

• for every fixed i such that ank is non-decreasing in n ≥ k
• and there exist εn → 0 such that

|ank − lnn/k| ≤ εn(lnn/k)1/2 ∀ k ≤ n

Estimates µ̂i(k) = θ̂i(k) =
∑k
m=1X

i
m/k define

gink = gink(µ̂i(k), ank) = µ̂i(k) + σ(2ank)1/2

For n+ 1 > N compute: j: n+ 1 = mN + j and j∗n:

µ̂j∗n = max{µ̂i(n) : T i
πLR

(n) > δn}

πLR(n+ 1) =

{
j if µ̂j∗n < gink(µ̂i(k), ank)

j∗n otherwise

where k = T iπ(n) in the above.
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Final Comments: Past and Current Work - Regret
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Final Comments: Past and Current Work Continued

Asympt. Optimal UCB Policies for Normal Populations: Xi
k are iid N(µi, σ

2
i )

Katehakis and Robbins (1995): µi unknown and σ2
i known

A policy πg that first samples each bandit once, then for n ≥ N + 1,

uKRi (µ̂i(n), n) = X
i
T iπ(n) + σi( 2 log n/T i(n))1/2

Burnetas and Katehakis (1996): both µi and σ2
i unknown

A policy πg that first samples each bandit once, then for t ≥ N + 1,

uBKi (θ̂i(n), n) = X
i
T iπ(n) + σ̂i(T

i(n) )(n2/(T i(n))− 1)1/2

O(ln(n)) regret open problem in 1996

Cowan, Honda and Katehakis (2015): both µi and σ2
i unknown

A policy πg that first samples each bandit once, then for t ≥ N + 1,

uCHKi (θ̂i(n), n) = X
i
T iπ(n) + σ̂i(T

i(n) )(n2/(T i(n)−2)− 1)1/2



Normal Populations: UF Policies - unknown µi and σ2
i Auer et al (2002)

Existence of UF policy πACF:

Policy πACF (UCB1-NORMAL). At each n = 1, 2, . . .:

i) Sample from any bandit i for which T iπACF
(n) < d8 lnne .

ii) If T iπACF
(n) > d8 lnne, for all i = 1, . . . , N, sample from bandit

πACF(n+ 1) with

πACF(n+ 1) = arg maxi

{
X̄i
T iπ(n) + σ̂i(T

i(n) )( 16 log n/T i(n))1/2
}
.

And the bound
RπACF

(n) ≤ MACF(µ, σ
2
) lnn + CACF(µ), ∀n and ∀(µ, σ2

)

with

MACF(µ, σ
2
) = 256

∑
i:µi 6=µ∗

σ2
i

∆i
+ 8

N∑
i=1

∆i,

CACF(µ) = (1 +
π2

2
)
N∑
i=1

∆i.

RπACF
(n) ≤ MACF(µ, σ2) lnn + o(lnn). lnn = o(nα) for all α > 0 and RπACF

(n) ≥ 0,

i.e., πACF is uniformly fast convergent.
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πACF(n+ 1) = arg maxi

{
X̄i
T iπ(n) + σ̂i(T

i(n) )( 16 log n/T i(n))1/2
}
.

And the bound
RπACF

(n) ≤ MACF(µ, σ
2
) lnn + CACF(µ), ∀n and ∀(µ, σ2

)

with

MACF(µ, σ
2
) = 256

∑
i:µi 6=µ∗

σ2
i

∆i
+ 8

N∑
i=1

∆i,

CACF(µ) = (1 +
π2

2
)
N∑
i=1

∆i.

RπACF
(n) ≤ MACF(µ, σ2) lnn + o(lnn). lnn = o(nα) for all α > 0 and RπACF

(n) ≥ 0,

i.e., πACF is uniformly fast convergent.



Regret Comparison

Π1 : X11, X12, . . . iid N(8.1, 1)

Π2 : X21, X22, . . . iid N(8.1, 4)

Π3 : X31, X32, . . . iid N(7.9, 0.5)

Π4 : X41, X42, . . . iid N(7, 3)

Π5 : X51, X52, . . . iid N(−1, 1)

Π6 : X61, X62, . . . iid N(0, 4)

*: Cowan et al (2015)



Regret Comparison - Continued



Recent Results Cowan, Honda & Katehakis 2015

• Unknown Variance: π∗ an index policy based on uCHKi (n)

uCHKi (n) = X̄i
T i(n)

+ σ̂i
T i(n)

√
n

2
Ti(n)−2 − 1

Cowan et al (2015)

uBKi (n) = X̄i
T i(n)

+ σ̂i
T i(n)

√
n

2
Ti(n) − 1

Burnetas and Katehakis (1996)

Results:

lim
n

RπCHK (n)

lnn
= MBK(µ, σ2)

RπCHK (n) ≤
∑

i:µi 6=µ∗

 2 lnn

ln

(
1 +

∆2
i

σ2
i

(1−ε)2
(1+ε)

) +

√
π

2e

8σ3
i

∆3
i ε

3
ln lnn+

8

ε2
+

8σ2
i

∆2
i ε

2
+ 4

∆i.



Numerical Regret Comparison: Normal Bandits Cowan, Honda & Katehakis 2015

Figures 1 & 2 show the results of a small simulation study, implementing policies πCHK, πACF, and
πG a ‘greedy’ policy that always activates the bandit with the current highest average.
Simulation was done with six populations, with means and variances given in the table below.

µi 8 8 7.9 7 -1 0

σ2
i 1 1.4 0.5 3 1 4

Each policy was implemented over a horizon of 10,000 and 100,000 activations, each replicated
10,000 times to produce a good estimate of the average regret Rπ(n) over the times indicated.

RπCHK (n) = MBK(θ) lnn+ o(lnn)

MBK( θ ) =
∑
i∈B(θ) 1/ infθ′

i
∈Θi
{I(θi, θ

′
i) : µ(θ′i) > µ(θ∗)}



Numerical Regret Comparison - Continued Cowan, Honda & Katehakis 2015

Bounds and Limits:

Figure: Left: Plots of BπACF
(n) and BπCHK

(n). Right: Convergence of RπCHK
(n)/ ln(n) to MBK(µ, σ2)

Figure 2 shows first (left) a comparison of the theoretical bounds on the regret, BπACF (n) and
BπCHK (n) representing their theoretical regret bounds respectively, for the means and variances
indicated in the table below. Additionally, Figure 2 (right) shows the convergence of
RπCHK (n)/ lnn to the theoretical lower bound MBK(µ, σ2).
To produce a good estimate of the average regret Rπ(n) over the times indicated, each policy
was implemented over a horizon of 100,000 activations, each replicated 10,000 times.



Thompson Sampling for Normal Populations - unknown µi & σ2
i Honda and Takemura 2013

Policy πTS (TS-NORMALα)

i) Initially, sample each bandit ñ ≥ max(2, 3− b2αc) times.

ii) For n ≥ ñ : For each i generate a random sample

U in from a posterior distribution for µi, given
(
X̄i
T iπ(n), σ̂

2
i (T iπ(n))

)
, and a prior for(

µi, σ
2
i

)
∝
(
σ2
i

)−1−α
.

iii) Then, take
πTS(n+ 1) = arg maxi U

i
n.

lim
n

RπTS (n)

lnn
= MBK(µ, σ2), ∀(µ, σ2) !



Thompson Sampling - Normal with unknown µi & σ2
i Cowan, Honda and Katehakis 2015

Numerical Regret Comparison of πCHK and πTS

RπCHK (n) and RπTS (n) for the parameters, of Table 1, left and Table 2, right.



Uniform Populations Cowan and Katehakis 2015b

For each i, fi ∈ F Uniform on [ai, bi]

µ(fi) = (ai + bi)/2

âit = min
t′≤t

Xi
t′ & b̂it = max

t′≤t
Xi
t′

uiCK(n, t, f̂ it ) = âit +
1

2

(
b̂it − âit

)
n

1
t−2 asymptotically optimal!

πCK(n+ 1) = arg maxi u
i
CK(n, t, f̂ it )

MBK({(ai, bi)}) =
∑

i:µi 6=µ∗

∆i

ln
(

1 + 2∆i
bi−ai

)

uiBK(n, t, f̂ it ) = âit +
1

2

(
b̂it − âit

)
n1/t asymptotically optimal?



Uniform Populations Cowan and Katehakis 2015b

For each i, fi ∈ F Uniform on [ai, bi]

µ(fi) = (ai + bi)/2

âit = min
t′≤t

Xi
t′ & b̂it = max

t′≤t
Xi
t′

uiCK(n, t, f̂ it ) = âit +
1

2

(
b̂it − âit

)
n

1
t−2 asymptotically optimal!

πCK(n+ 1) = arg maxi u
i
CK(n, t, f̂ it )

MBK({(ai, bi)}) =
∑

i:µi 6=µ∗

∆i

ln
(

1 + 2∆i
bi−ai

)

uiBK(n, t, f̂ it ) = âit +
1

2

(
b̂it − âit

)
n1/t asymptotically optimal?



Uniform Populations - Continued Nummerical Comparisons

Short Time Horizon: Numerical regret comparison of πCK, πKR, and πCHK, for the 6 bandits with parameters given in Table 1.

Average values over 20, 000 repetitions.

i 1 2 3 4 5 6
ai 0 0 0 1 1 1
bi 10 9 8 9.5 10 5



Uniform Populations Nummerical Comparisons

Longer Time Horizon: Numerical regret comparison of πCK, πKR, and πCHK, for the 6 bandits with parameters given in Table 1.

Average values over 10, 000 repetitions.

πKR uiKR(n, t) = X̄it + σ̂i(t)
√

2 lnn
t

πCHK uiCHK(n, t) = X̄it + σ̂i(t)

√
n

2
t−2 − 1

πCK uiCK(n, t, f̂it ) = âit + 1
2

(
b̂it − â

i
t

)
n

1
t−2



References

• Auer, P.; Cesa-Bianchi, N. and P. Fischer (2002). Finite-time analysis of the multiarmed bandit problem. Machine
learning, 47(2-3):235 ? 256, .

• Burnetas, A. N., and Katehakis, M. N. (1996). Optimal adaptive policies for sequential allocation problems. Advances in
Applied Mathematics 17(2):122-142.
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