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Jennifer L. Wadsworth

I congratulate the authors on an excellent paper, which is both rich in new ideas and elegant mathematical
detail.

The setting of the paper is multivariate regular variation (MRV), a broadly applicable regularity assumption
on the extremal dependence structure of a random vector X = (X1, . . . , Xd). Assuming standard Pareto margins,
MRV implies convergence of normalized “threshold exceedances” to a multivariate Pareto distribution, with support
L, as in equation (6). It is further assumed that

(a) the d-dimensional joint density λ(y)/Λ(1) > 0, and

(b) the full support is on the interior of L, i.e., no mass lies on regions of the form {x ∈ L : min(x1, . . . , xd) = 0}.

A loosely-described consequence of these settings is that all variables will tend to take their largest values simulta-
neously, with no possibility that some groups of variables will tend to be large whilst others are small.

Assumptions (a) and (b) are reasonably common in the literature, and in this case facilitate the vast progress
achieved on the notions of conditional independence and graphical structure for extremes. In particular, Proposi-
tion 1 and Theorem 1 expose very neatly how ideas from the world of graphical modelling pass through to extreme-
value theory via the density of the exponent measure, λ(y). For decomposable graphs, and more particularly block
graphs, this leads to new ideas for high-dimensional model construction, and inference on coherent high-dimensional
models via lower-dimensional subgroups. Several interesting results are obtained for the Hüsler–Reiss model, and
its parameterization shown to reveal extremal conditional independence properties in a very natural way.

The new properties are explored via classical notions of conditional independence for the multivariate Pareto
random vector Y with support restricted to Lk, i.e., Y k = Y |Yk > 1. This presents an intriguing connection with
the last RSS discussion paper on extremes, namely the so-called conditional model introduced by Heffernan and
Tawn (2004) and Heffernan and Resnick (2007). In the setting of the paper with X standard Pareto,

X/u | ‖X‖∞ > u
d→ Y , X/u | Xk > u = X/u | {‖X‖∞ > u,Xk > u} d→ Y k, u→∞,

and

X/Xk | Xk > u = X/Xk | {‖X‖∞ > u,Xk > u} d→ Y k/Y k
k = Uk, u→∞, (1)

with Uk the extremal function relative to coordinate k. Working in exponential-tailed margins, Heffernan and
Tawn (2004) made the assumption1 that there exist ak : R → Rd, bk : R → (0,∞)d with akk(logXk) = logXk,
bkk(logXk) = 1 such that

logX − ak(logXk)

bk(logXk)

∣∣ logXk > u
d→ Zk, (2)

where Zk
\k is non degenerate with no mass at +∞, and logXk − u| logXk > u

d→ E ∼ Exp(1) is independent of

Zk
\k. Convergence (1) is recovered from (2) with ak(logXk) = logXk1, bk(logXk) = 1, and Zk = logUk.

Under assumptions (a) and (b), the exponent measure density λ(y) provides the “glue” linking the extremal
functions together: λ(y) yields the distribution of each Uk via equation (41). As a key example, the extremal
functions for the Hüsler–Reiss model are log-Gaussian, and the paper shows how the conditional independence
patterns in these log-Gaussians yield the overall graphical structure of Y .

The conditional model viewpoint seems to provide a possibility for alternative methodology to that outlined in
the paper, as well as a first suggestion of how one might approach extending these ideas to cases where (a) and/or (b)

1The formulation with random normalization came later with Heffernan and Resnick (2007), but is equivalent to the Heffernan and
Tawn (2004) case under the existence of densities.
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may not hold. The latter becomes more likely as d grows, yielding a natural tension between the beautiful theory
of this work and the messy reality of data.

Firstly, assuming a Hüsler–Reiss model, logX\k − logXk| logXk > u
d
≈ Zk

\k ∼ N(−diag(Σ(k))/2),Σ(k)) for a

high threshold u (Engelke et al., 2015). Applying a graphical lasso technique to Θ(k) = (Σ(k))−1 may give a sparse
precision matrix, which in principle leads to Γ and the complete Hüsler–Reiss parameterization. A practical hurdle
is the likelihood of inferring different graphs from different k, and that connections to the kth node are encoded in
row/column sums of Θ(k), which are not shrunk towards zero in a standard implementation. However, this could
provide a starting point to explore beyond trees and block graphs, should these appear inadequate.

The potential of the conditional formulation is particularly apparent in the case where mass of the multivariate
Pareto distribution lies on regions of the form {x ∈ L : min(x1, . . . , xd) = 0}. In this case, the normalizations in (2)
allow differing strengths of extremal dependence between the components of X and Xk, such that components of
Zk
\k may not have mass at −∞ where those of logUk

\k do. As such, the representation provides more detail about

the extremal dependence, increasing its utility for statistical modelling. To exploit assumption (2) in practice,
one poses parametric forms for ak, bk and the distribution of Zk. Suppose that we take ak(logXk) = αk logXk,
αk
\k ∈ [0, 1]d−1, αk

k = 1, bk(logXk) = 1 and, similarly to the Hüsler–Reiss model, assume Zk
\k ∼ N(µk,Σ(k)). Then,

above a high threshold u,

logX| logXk > u
d
≈ αk(E + u) +Zk, E ∼ Exp(1), E ⊥⊥ Zk; (3)

the Hüsler–Reiss model is a special case with αk = 1 and µk = −diag(Σ(k))/2 for all k. For illustration, model (3)
was fitted to the Danube river data both with αk = 1 fixed and estimated. The threshold u was taken as the
0.85 marginal quantile; higher thresholds produced some errors in sparse precision matrix estimation. In each
case the components of Zk

\k were estimated individually and a graphical lasso applied to Θ(k) using EBICglasso

in the R library qgraph (Epskamp et al., 2012). To give an impression of results across all k, Figure 1 displays
connections selected at least half of the time. Notably, although most estimates α̂k

j < 1, the set of connections is
fairly similar. As a diagnostic, Figure 2 displays χC(q) = Pr(Fi(Xi) > q ∀i ∈ C)/(1− q) for three sets with |C| = 2,
and C = {1, . . . , 31}. For a multivariate Pareto distribution χC(q) ≡ χC for q sufficiently large (Rootzén et al.,
2018), and the bivariate estimates from the fitted model in the paper are displayed. For model (3) with k ∈ C and
minj∈C{αk

j } < 1, χC(q)↘ 0 as q → 1. This is often realistic for environmental datasets, though the Danube data
display a high degree of extremal dependence.

Certain conditional independences could be established for model (3), but an interpretation along the lines of
Definition 1 in the paper is desirable. This seems to require a device like Proposition 1, where the fact that λ(y)
does not depend on k is crucial, and it remains to be seen whether useful and coherent notions of graphical structure
can be established in this case. The ideas presented in the paper nonetheless form great inspiration for consideration
of structured estimation and interpretation in the case of weaker extremal dependence.

I am very pleased to propose the vote of thanks for this thought-provoking work.
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Figure 1: Left: connections estimated under model (3) with αk = 1; right: connections estimated under model (3)
with αk estimated. The line thickness is proportional to the number of times connections were included in the
graph, with only those selected at least half of the time displayed. Some connections may not be visible due to the
graph layout.
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Figure 2: Estimates of χC(q) for C = {1, 2}, {1, 12}, {1, 22} and {1, . . . , 31}. Black dots: empirical estimates; red
line: estimate from model (3) with αk estimated; blue line: estimate from model (3) with αk = 1 fixed; black line:
estimate from the fitted model in the paper. The red and blue lines were produced conditioning on k = 1. Dashed
lines are approximate 95% confidence intervals for empirical estimates obtained using the nonparametric bootstrap.
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