

Part III. Scaling up from the farm to catchment and use of nationally available datasets

Exploring a few of the uncertainties of meso and macro scale geospatial data-based models

Background and aim

Simple models linking land based activities with water quantity and quality

Develop data based geospatial catchment scale models

Model development and performance are dependant on the data that are used in their development and operation

(Vörösmarty et al., 2000)

Uncertainties of meso and macro scale geospatial models

Data sets -geospatial catchment descriptors

-catchment outlines

-observations

Focus

How do you define your catchment?

Method f (perceptual model, extent, resolution)

Which representation of your catchment to use?

STN30P Vörösmarty *et al.*, 2000

Legend

TRIP Oki and Sud 1998

<Double-click here to enter text>

Kappa statistics

$$kappa = \frac{(Po - Pc)}{(Pp - Pc)}$$

Crisp Kappa

Kappa, Klocation (Pontius 2000), Khisto (Hagen 2002)

Fuzzy Kappa

Kfuzzy (Hagen 2003), Global fuzzy kappa (Power et al., 2001)

Comparison of two global 0.5 deg river networks

Agreement between catchment descriptors and catchment outlines

Карра

Klocation

Global fuzzy kappa

Influence of catchment outline on model results

Caraco and Cole, 1999 DIN f(urban pop, runoff, N fert, N dep)

Wealands *et al.*, 2005

How can comparison statistics support moving to the catchment scale?

	1. INPUTS	SPATIAL DATA TYPE
	Raw observations	BOTH
	Hydrological model simulations/predictions	BOTH
	Surrogate observations V	BOTH
ſ	2. PRE-PROCESSING Condition (e.g. noise reduction)	вотн
	Interpolate (points to spatial field)	CONTINUOUS
	Resample (to required resolution)	BOTH
	Categorise (convert spatial field from continuous to categorical)	BOTH
	Segment (convert spatial field from continuous to categorical)	CONTINUOUS
	Identify important features	BOTH
	3. PROCESSED INPUTS (these can be multiscale inputs)	
	Observed spatial field(s)	вотн
	Predicted spatial field(s)	BOTH
	4. COMPARISON METHODS	
	Feature-by-feature comparison	BOTH
	Weighted feature-by-feature comparison	вотн
	Fuzzy comparison	CATEGORICAL
	5. INTERMEDIATE MEASURES	
	Scatterplot	N/A
	Residuals map	CONTINUOUS
	Confusion matrix V	N/A
	Fuzzy map	CONTINUOUS
	6. COMPARISON MEASURES (these can vary with scale)	
	Correlation coefficient	N/A
	Kappa statistic (including fuzzy kappa)	N/A
	Mean squared error (MSE) or weighted MSE	N/A
	% accuracy	N/A
	Comparison metric	N/A

SOIL N

N EMISSIONS TO ATMOSPHERE from manure, fertiliser, agricultural land

DIRECT N OR P INPUTS manure applications, livestock excretion, fertiliser

SOCIO-ECONOMIC

total population, urban population, GDP, food budgets, vehicles, CO₂ emissions, agricultural production index LIVESTOCK dairy, non-dairy cattle, pigs, poultry,

sheep & goat

NOy ATMOSPHERIC DEPOSITION

LAND COVER

irrigated land, wetland, permanent pasture, arable & permanent crops, grassland, cropland, urban land, forest, grazing, agricultural

POINT SOURCES sanitation indices

LAND USE

barley, cassava, cotton, groundnuts, maize, millet, oil palm, other crops, potatoes, pulses, rape, rice, sorghum, soy, sugar beet, sugar cane, sunflower, wheat, oil crop, cereals

CLIMATE precipitation, air

temperature, bioclimatic zones

SOIL PRODUCTIVITY

SOIL HYDROLOGY

top soil depth, drainage, water holding capacity, wilting point, field capacity, bulk density

HYDROGRAPHY composite runoff, runoff

GEOLOGY

sand & sandstones, carbonate, shales, acid volcanic, basalt, plutonic & metamorphic

DIN

DIP

TOPOGRAPHY topographic index, slope, river distance to ocean, area, overland flow, drainage density, volume of dams