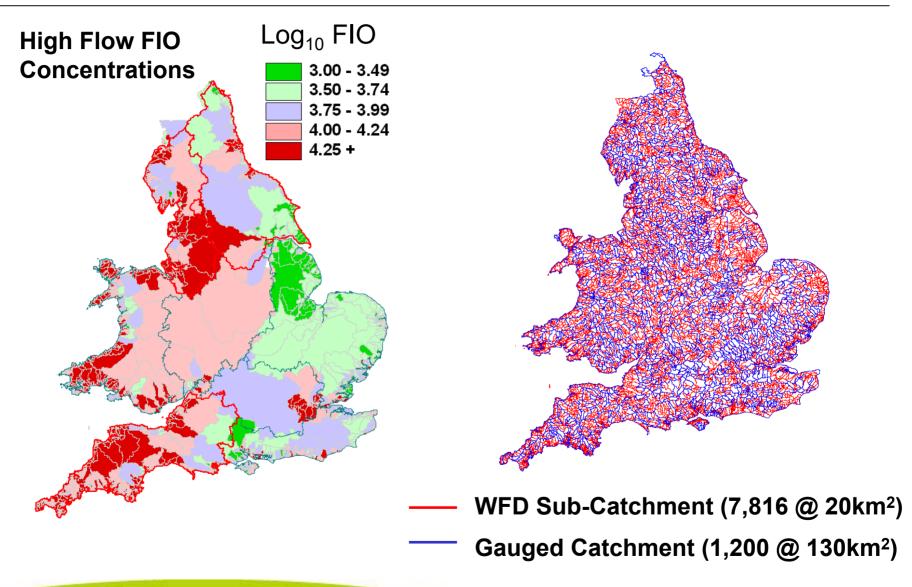
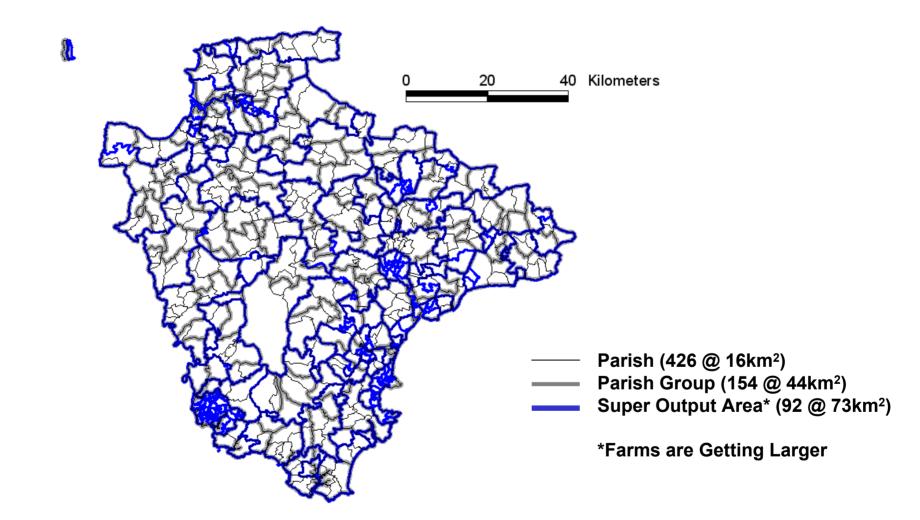
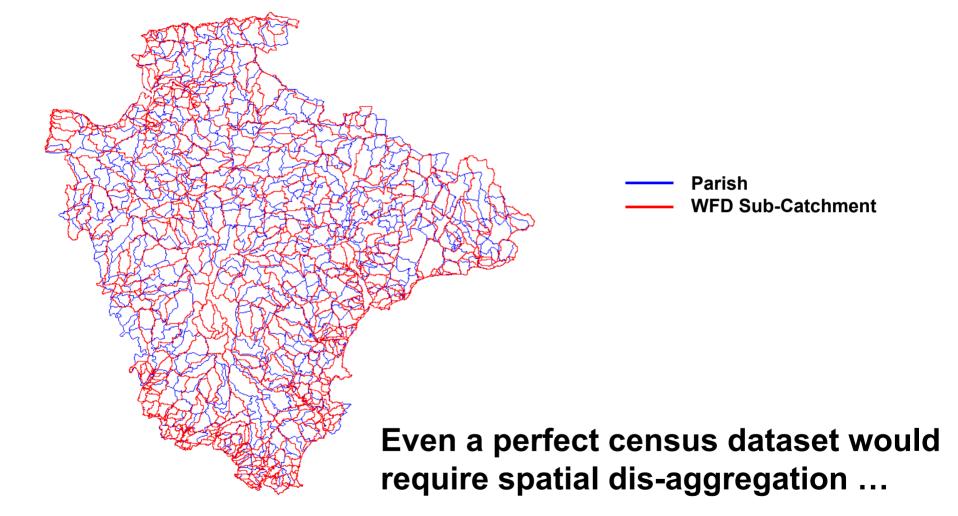
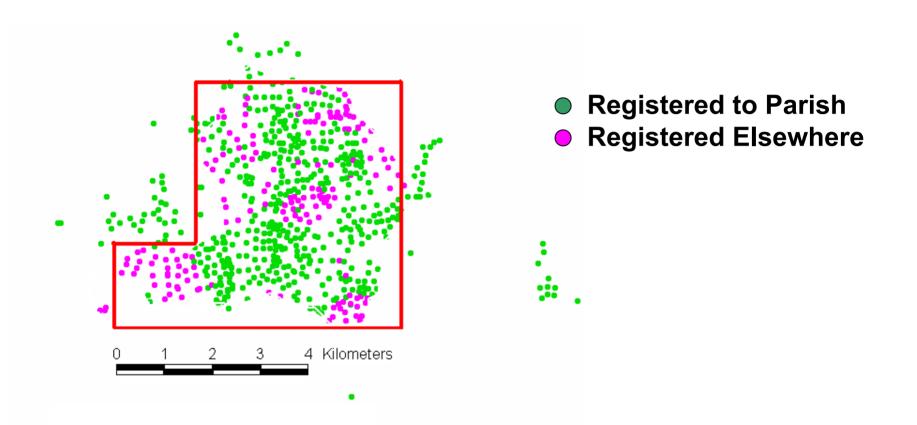
Re-mapping the Agricultural Census ~ Cattle and Grassland


Rural Economy and Land Use Uncertainty Workshop

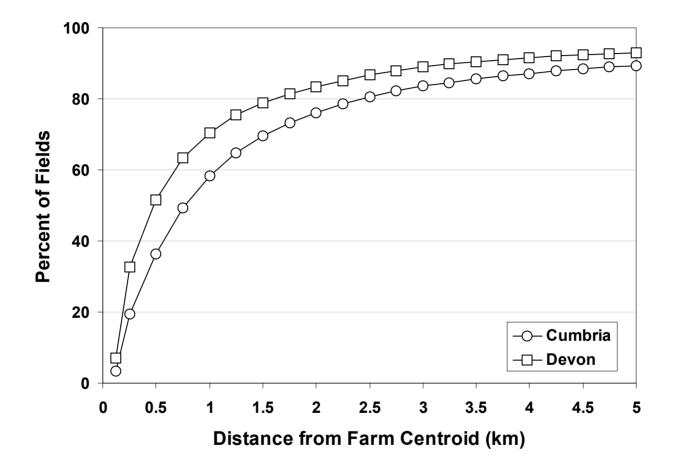
21st March 2007


Dr Steven Anthony Environment Systems ADAS UK

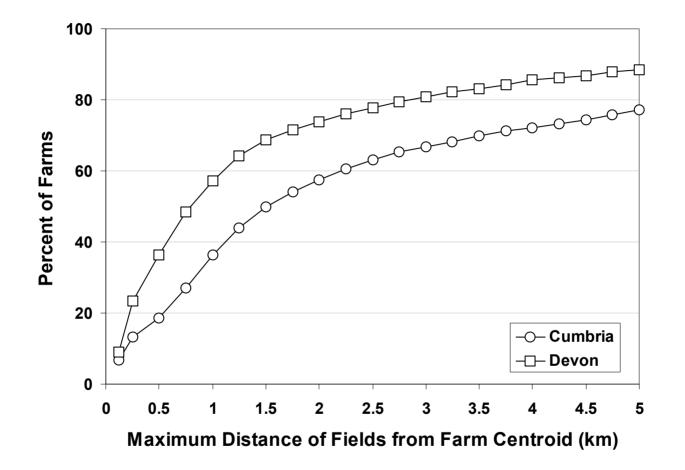

Scale of Modelling ~ Catchments and Basins


Scale of Agricultural Source Data

Incompatible Source and Target Units



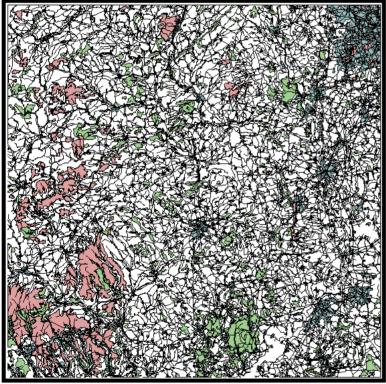
Parish Registration by Holding and Group


Devon : 25% of Fields Outside of Parish to which Holding is Registered, and 18% Outside of Parish Group

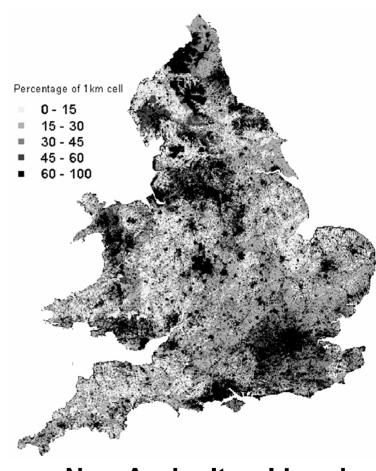
Intrinsic Farm Scale ~ Span of Field Distances

Similar Results for Farm Holding Location

Intrinsic Farm Scale ~ Maximum Distance

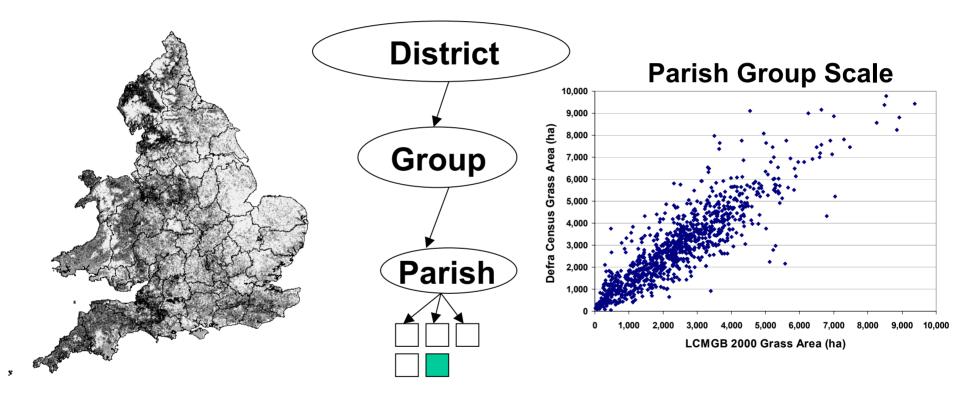

SOA Mapping Now Based on Average Field Grid Reference

Re-mapping the Agricultural Census


- Map potential agricultural land using non-census data sources at high resolution 1km², e.g. LCMGB
- Use census data at parish and parish group level to provide 'practice information'
- Iterative mapping algorithms conserve:
 Arable : Grass Ratio at Parish Scale
 Relative Areas of Crop Types at Parish Scale
 Stock Density at Group Scale
 Absolute Area / Stock Count at District Scale

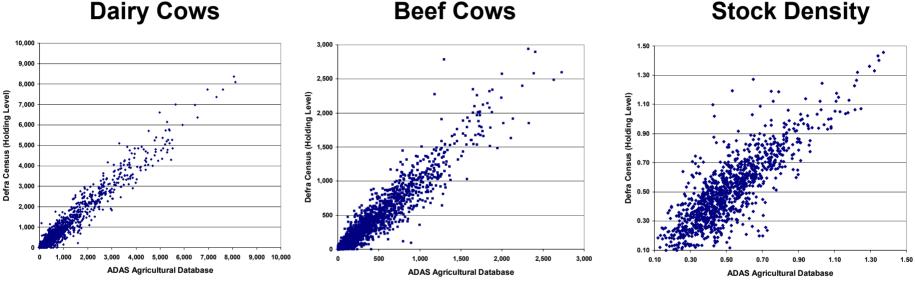
Non-Agricultural Mask – Dasymetric Method

Vector data at a scale of 1 : 250,000 were sourced from government agencies to define areas of non-agricultural land. These included Woodland, Urban Areas, Rivers, Roads, Airfields, and areas of Common Land.


Reproduced with permission of the Controller of Her Majesty's Stationary Office. MAFF Licence no. GD272361

Non-Agricultural Land

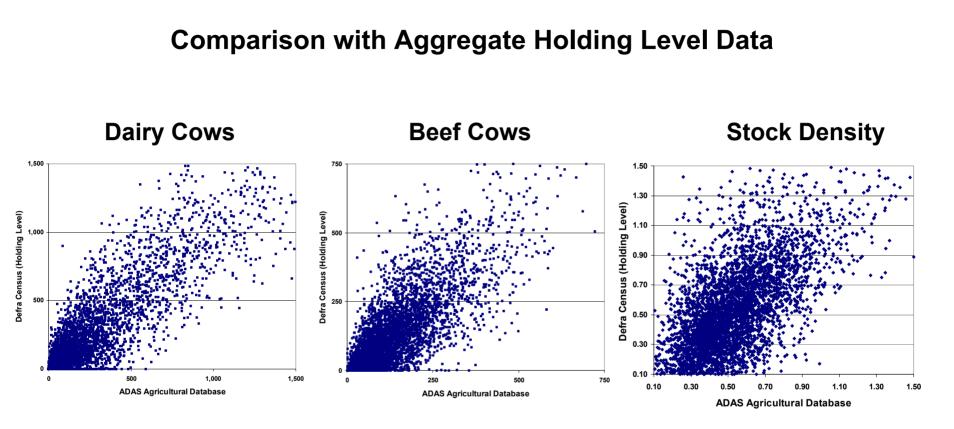
LCMGB Gap Filling – Pycnophylactic Method


Multi-Scale Comparison and Correction

Quantifying the Uncertainty ~ 10by10km Cells

Comparison with Aggregate Holding Level Data

Dairy Cows

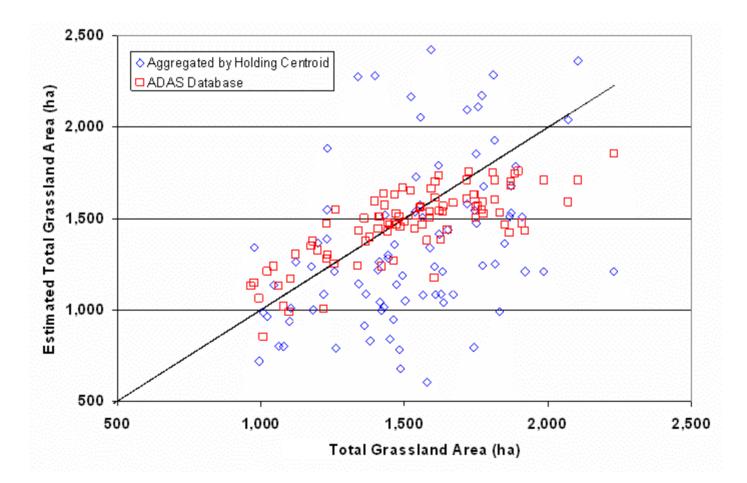


Error σ 310

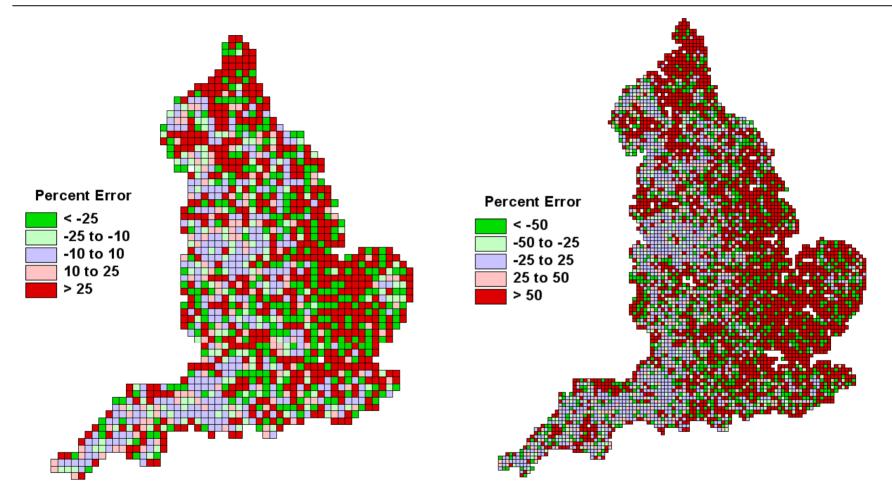
Error σ 170

Error **σ** 0.17

Quantifying the Uncertainty ~ 5by5km Cells


Error **σ** 174

Error σ 96


Error σ 0.29

Quantifying the Uncertainty ~ 5by5km Cells

Comparison with Aggregate Field Scale Data (Devon)

Residual Mapping ~ Number of Dairy Cows

Modelled Dairy Sector Contributions to Total Pollutant Loads Western : N 36-55% P 44-65% Eastern : N 3-12% P 5-15% Using expert 'activity' weights to improve mapping of stock and emissions, e.g. AENIED model (Dragosits, 1999)

- Hard Standings, Storage ~ On the Holding
- Dairy Stock ~ Close to the Holding (<1,000m)
 ~ Potentially Zero Grazed
- Beef Stock ~ Unrestricted, Poorer Quality Grass
- Temporal Variation in Grazing and Muck Spreading

But Mapping is Sensitive to MAUP and is Potentially Disclosive

Farm Risk Survey and Stock Records

Land cover	Stock Access	Drainage	Spreading	Percent:
Grass	Access	Drained	Spread	10.8
86.6	21.7		Not Spread	6.9
		Undrained	Spread	1.1
			Not Spread	2.9
	Water	Drained	Spread	11.9
	21.0		Not Spread	2.2
		Undrained	Spread	2.7
			Not Spread	4.2
	None	Drained	Spread	24.1
	43.8		Not Spread	5.1
		Undrained	Spread	7.4
			Not Spread	7.3
Arable	Access	Drained	Spread	1.3
13.4	1.6		Not Spread	0.0
		Undrained	Spread	0.4
			Not Spread	0.0
	Water	Drained	Spread	1.9
	2.4		Not Spread	0.0
		Undrained	Spread	0.5
			Not Spread	0.0
	None	Drained	Spread	6.8
	9.4		Not Spread	0.1
		Undrained	Spread	2.2
			Not Spread	0.2

Attributes of surveyed fields on the 25 survey farms within the Caldew catchment (*n* = 851)

Fields were surveyed by type (arable or grass); presence of flowing water (49%) and whether there was free access to livestock (25%); installation of drainage (71%); and whether manures were spread in them (54%).

- Stochastic model assigning specific risk (inputs) to fields based on a statistical correlation (+/-) with intrinsic risk (environment) index.
- Used to establish magnitude of gap between best and worst practice.
- Degree of correlation between intrinsic and specific risk factors used to represent effect of uncertainty and education.

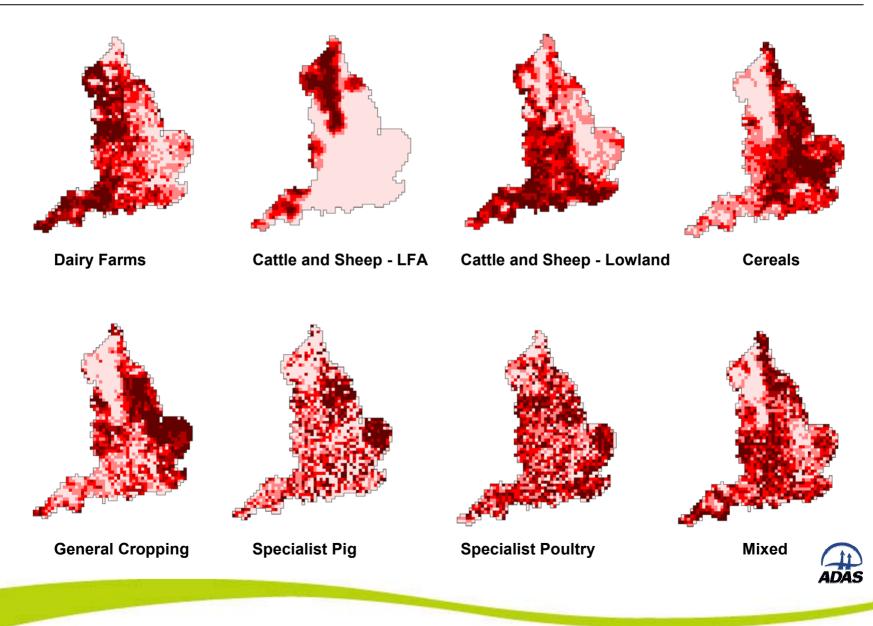
Field Risk Factors:

	Ranked F	Risk Factors:	Pollutant
Field ID:	Intrinsic	Specific	Loss
0	1	0	0
1	1	0	0
2	1	0	0
3	1	0	0
4	1	0	0
5	2	5	10
6	2	5	10
7	2	5	10
8	2	5	10
9	10	5	50

Export Coefficient Model Approach, e.g. PIT

Montecarlo Output:

Risk Factor Corr	Pollutant Loss	
P-Expert	-0.8	3,840
P-Ignorant	0	7,710
P-!!! Off	+0.8	10,595


Re-mapping by Farm Type

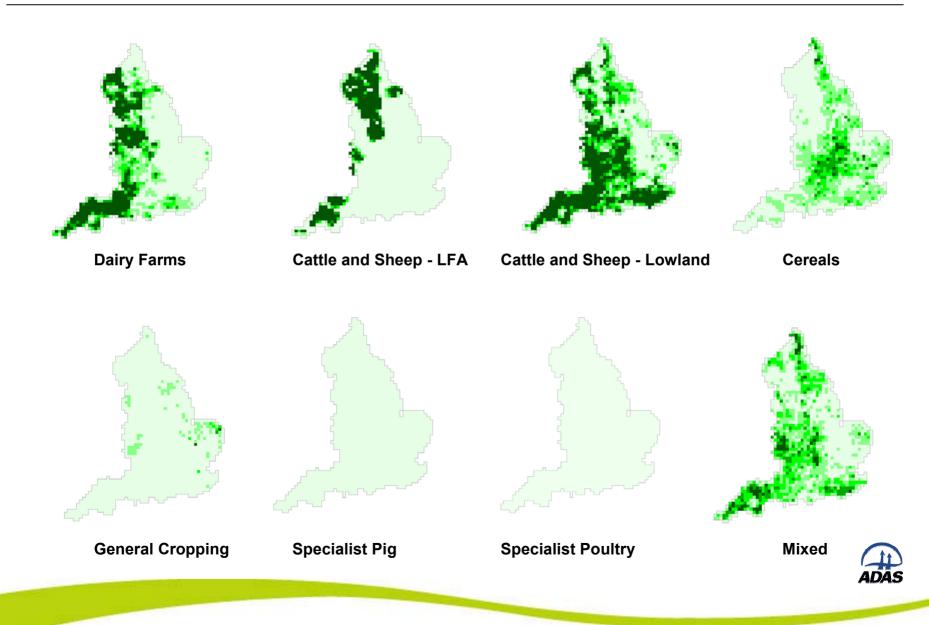
Farm Business Survey - Farm Types

- Dairy Farms
- Cattle and Sheep LFA
- Cattle and Sheep Lowland
- Cereals
- General Cropping
- Specialist Pig
- Specialist Poultry
- Mixed
- Horticultural

50 to 150 Farms per 100km² Cell

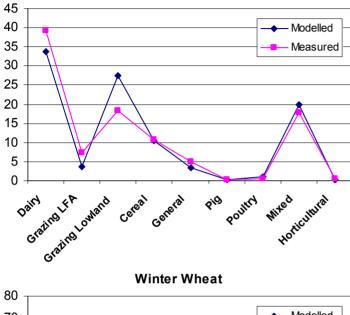
Equal Area Mapping – Farm Type Counts

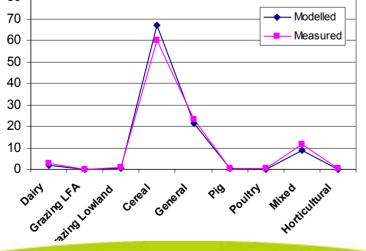
Re-mapping by Farm Type

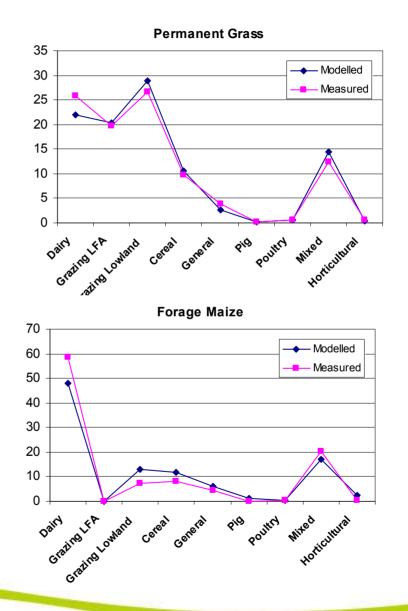

Use Farm Business Survey Data as Weights to Further Dis-aggregate Non-Disclosive Data

Census All Holdings Average Area	76.0	83.0	27.0	134.0	149.0	15.0	10.0	97.0	11.0
FBS Average Farm Area:	95.0	165.0	82.0	232.0	211.0	29.0	22.0	149.0	22.0

	,	FBS Av	erage Farr	m Data						,
	,		Grazing	Grazing		· · · · ·	1		/	Horti-
Land Use Category	FBS Indicator Category	Dairy	LFA	Lowland	Cereal	General	Pig	Poultry	Mixed	Cultural
32 Set-Aside Land	Set-Aside	1.8	3 0.1	0.2	2 15.5	5 13.1	0.7	7 0.8	6.8	0.2
33 Wheat	Wheat	4.8	3 0.1	0.4	50.9	46.3	3.5	5 1.0	19.0	0.5
34 Winter Barley	Barley	2.9	0.4	1.1	14.4	19.3	1.1	1 0.7	10.5	0.3
35 Spring Barley	Barley	2.9	0.4	1.1	14.4	19.3	1.1	1 0.7	10.5	0.3
36 Sugar Beet	Sugar Beet	0.0	0.0	0.0) 2.1	14.5	0.1	1 0.3	0.8	0.1
37 Oilseed Rape	Oilseed Rape	0.6	6 0.0	0.0) 16.5	5 7.6	0.3	3 0.0	6.1	0.1
38 Potatoes	Potatoes	0.1	0.0	0.0	0.3	7.8	0.0	0.0	0.4	0.1
39 Other Cereals	Other Cereals	0.3	3 0.1	0.1	3.1	1.7	0.0	0.0	1.8	0.1
40 Other Root Crops	Fallow & Arable Fodder Crops	7.5	5 0.2	0.7	1.2	2.2	1.2	2 0.2	3.3	0.6
41 Other Crops	Other Crops	0.2	2 0.0	0.0	0.8	11.4	0.2	2 0.0	0.7	5.4
42 Vegetables	Other Crops	0.2	2 0.0	0.0	0.8	11.4	0.2	2 0.0	0.7	5.4
43 Soft Fruit	Other Crops	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.4
44 Nursery Stock	Other Crops	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.4
45 Temporary Grassland	Temporary Grass	17.8	3 2.6	5.4	3.5	5 3.5	0.8	8 1.3	12.6	0.2
46 Permanent Grassland	Permanent Grass	33.5	i 36.3	16.0) 10.5	5 8.0	2.1	1 2.2	27.0	0.9
47 Common Ownership Rough Grazing	Rough Grazing (Sole Occupation)	3.0	39.9	0.5	0.4	0.4	0.4	4 0.0	2.0	0.1
	Rough Grazing (Sole Occupation)	3.0	39.9	0.5	5 0.4	0.4	0.4	4 0.0	2.0	0.1
49 Maize	Fallow & Arable Fodder Crops	7.5	0.2	0.7	1.2	2.2	1.2	2 0.2	3.3	0.6

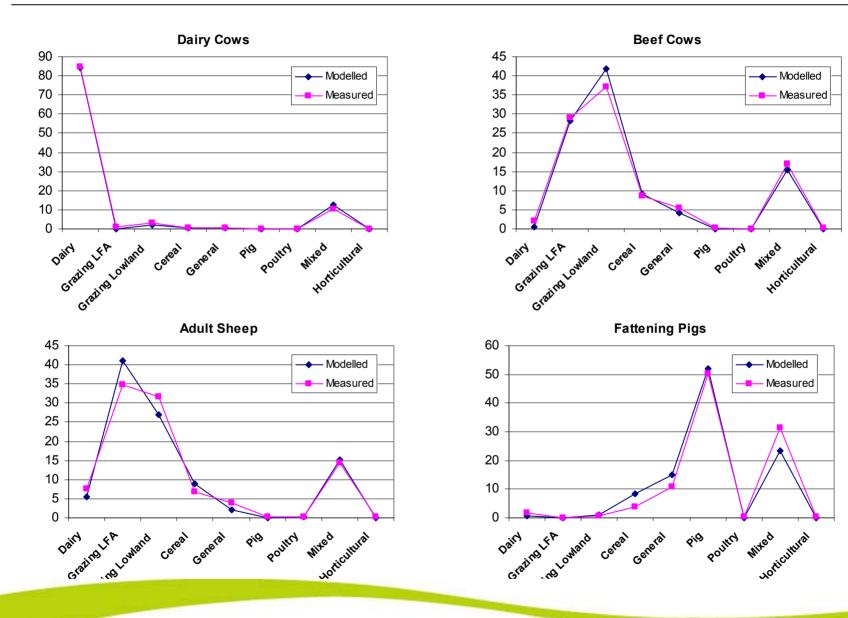



Sample Distribution of Permanent Grass



Validation vs Holding Level Data

Temporary Grass



ADAS

Validation vs Holding Level Data

ADAS

Why do you want to do this ?

- Links to economic data for cost-effectiveness studies and forecasts of industry structure
- Better system characterisation, e.g. stock densities:

	Dairy		LFA Cattle & Sheep	Lowland Cattle & Sheep	Cereal	General	Pig	Poultry	Mixed
Livestock Units		4 0 0		0.00	0.54			0.40	4.40
per Hectare		1.98	0.55	0.80	0.54	0.97	0.32	0.49	1.16

• Farm type specific inputs, e.g. manure management, fertiliser rates:

	Grassland		Tillage	Fillage			
	Nitrogen	Phosphate	Nitrogen	Phosphate			
Farm Type	(kg/ha N)	(kg/ha P₂O₅)	(kg/ha N)	(kg/ha P₂O₅)			
Dairy	129	10	86	38			
Cattle and Sheep	50	15	112	40			
Mixed	79	13	134	30			
Cropping	65	11	163	39			

Conclusions

- ADAS have a pragmatic approach to mapping the census;
- Uncertainty can be large but significance varies spatially;
- Farm scale mapping possibly compromised by census;
- Interest in smaller WFD sub-catchments is a problem;
- There is value in coarse scale data ease of linkage to increasingly important economics and mitigation scenario data;
- Potentially more important to a policy relevant model run than high spatial accuracy ...

The End