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Abstract

In this paper we study a model of political competition where citizens vote

sincerely and candidates may be either citizens or Downsian politicians.

The model extends the citizen-candidate model proposed by Osborne and

Slivinski [1996] by including Downsian politicians similar to those studied

by Osborne [1993]. We give necessary and sufficient conditions for existence,

together with complete characterisation, of one party and two party Nash

equilibria in our model. An important feature, in view of the Duverger’s

Law, of the two-party equilibrium is that these equilibria cannot have any

Downsian contestant. Moreover, we compare our model with that studied

by Osborne and Slivinski [1996], showing that in both cases there exist po-

litical configurations that can appear in one of the models only. We show

also that in our settings it is possible to have Nash equilibria with Downsian

candidates, without requiring to have very restrictive constraints on the dis-

tribution function. We also argue that as the number of parties in equilibrium

increases, the ‘likelihood’ of an ideology driven citizen-candidate winning the

elections and running the government falls. Finally we argue that in any

equilibrium extremist parties proposing their policies uniquely are typically

ideology-driven as well.

Keywords: Citizen-candidates, Downsian Politicians, Plurality Rule.

JEL classification: C70, D70, D72



1 Introduction

The seminal Hotelling-Downs model (Hotelling [1929] and Downs [1957]) of

electoral competition and its well known result of policy convergence to the

median voter have remained central in the literature on formal political eco-

nomics.1 However, in a seminal work by Osborne [1993] it is shown that

this result is not robust to the possibility of new entry in a model where

politicians care only about winning the elections and voters vote sincerely.

In particular it was shown that when there are n > 2 potential candidates,

for almost all distributions over the political preferences of voters, a Nash

equilibrium in pure strategies fails to exist.2 The literature then naturally

moved towards exploring models of sincere voting where politicians are ide-

ology driven. In this respect, Osborne and Slivinski [1996] have proposed the

citizen-candidate model to address the problem of entry. In that model, each

voter (a citizen) with an ideal policy can become a candidate and implement

his ideal policy upon winning the election.3 The citizen-candidate model has

become central to many on-going research today as it has been successful in

overcoming the equilibrium existence problem with free entry.

In any large and matured democracy it is natural to have both Downsian

politicians who are professionals and care only about winning elections along

with ideology-driven citizen-candidates who care also about the policy that is

finally implemented. Hence it is natural to study a model that incorporates

both these features to be able to address issues relating to the nature of

equilibrium policies and the likely profile of candidates who compete.

We study a model of political competition where citizen-candidates and

Downsian players compete side-by-side to win the election. The model en-

1Osborne [1995] presses on the fact that the convergence result is strongly robust as

long as there are only 2 competing politicians.
2Osborne [1995] also suggests that no easy extension of the basic Hotelling-Downs model

exists that resolves this equilibrium non-existence problem. However in a beautiful recent

work by Sengupta and Sengupta [2008], this problem is partially overcome by allowing

Downsian politicians the choice of a cost-saving withdrawal option.
3Besley and Coate [1997] studies a similar model but assumes strategic voting.
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riches the one studied in Osborne and Slivinski [1996] with Downsian players

similar to those studied in Osborne [1993]. In our environment, there is a

continuum of citizens with single peaked preferences over a one-dimensional

ideology space. In addition, there are also a countably infinite number of

Downsian politicians. The identity of each agent is common knowledge. Any

agent can enter the electoral competition (governed by the plurality rule)

that comes with an entry fee that is common to all. These costs reflect

the expenses associated with mobilizing and administering a campaign.4 An

eventual winner also receives a personal benefit from holding the office. We

assume that these benefits are larger for Downsian politicians, since we see

them as seasoned office-users who are, therefore, more efficient in extract-

ing the benefits.5 Citizens in our model vote sincerely while votes of the

Downsian politicians do not affect the outcome as they are countably many.

We focus on pure strategy Nash equilibrium and provide a set of necessary

and sufficient conditions for one and two party equilibria. An interesting

feature, central to Duverger’s law, is that for that law to hold (that is for

equilibria with exactly two parties) we show that no Downsian politician

enters the competition. Since existence of equilibria with more than two

parties is established in Osborne and Slivinski [1996], we address the issue of

such equilibria by comparing across those in Osborne and Slivinski [1996] and

ours. In that sense, we give complete characterizations on costs and benefits

such that an equilibrium in Osborne and Slivinski [1996] can be supported

as an equilibrium in our general framework, and vice versa. In doing so, we

provide several examples to address some impossibility results in this respect.

We also provide some other comparisons with respect to costs and benefits.

We also argue that as the number of parties in equilibrium increases, the

‘likelihood’ of an ideology driven citizen-candidate winning the elections and

running the government falls. Moreover we show that in any equilibrium,

4Our results go through even if we assume that costs vary between citizens and Down-

sians, though the proofs get more lengthy.
5This is an assumption we make as a first step towards studying this general framework.

Some of our results depend on it.
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unique (that is those who do not share their electoral platforms) extremist

parties are ideology-driven as well.

1.1 Related Literature

The central theme of our work is competition amongst politicians with hetero-

geneous motivations. This has been raised as early as in Calvert [1985] where

the author had informally concluded that competition amongst politicians

with heterogeneous motivations, but with full post-election commitment to

announced policies, should not affect equilibria in spatial models of elections.

Heterogeneity within a political party is formally modelled in Roemer [1999]

to analyse how this affects the ability of parties to compete in a model with

full policy commitment. A recent work by Callander [2008] studies a model

of electoral competition amongst two parties who can either be policy or of-

fice motivated with these types being private information. The paper shows

that although office motivated parties are favoured in two-party elections,

policy motivated ones do win quite often. It also shows that the very ex-

istence of this heterogeneity does affect the announced equilibrium policies.

These results are driven by a novel aspect called ‘policy development’: pol-

icy motivated candidates care more about the actual implementation of the

policy and hence they exert more effort once they win the elections. This

fact is liked by the voters and hence even if the policy announced by a policy

motivated party otherwise should earn less votes than that announced by an

office motivated party (since such parties more carefully do the vote-bank

calculations to announce their policies), such motivated parties are endoge-

nously rewarded by the voters and so it is no longer the case that voters

necessarily support a candidate closest to them in the ideology space. The

paper then addresses the issue of ‘free-entry’ but restricting attention to the

existence of the same two parties to show that a unique equilibrium always

exists where both types of citizens enter the candidate pool. However, we

learn little about equilibria with more than two parties or about robustness

of two-party equilibria to entry at other policy positions. In this sense our
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work here is more general as it addresses the issue of free-entry more se-

riously. Of course we do not address here the otherwise important aspect

of policy development (and the nice feature of incomplete information) that

is both crucial and novel in Callander [2008]. The possibility that types of

politicians is private information is an extension that we wish to address in

the future.

The rest of the paper is structured as follows. In Section 2 the model

is described formally. Section 3 studies Nash equilibrium with one and two

parties. Section 4 deals with equilibria with more than two parties in general

and makes formal comparisons of the sets of equilibria with and without

Downsian politicians. This section also discuses issues concerning which type

of politicians are more likely to contest plurality elections. The paper draws

its conclusions in Section 5. Some proofs are collected in an Appendix at the

end.

2 The Model

There are two sets of players: set C consists of a continuum of citizens and

an infinite countable set D consists of Downsian politicians. These identities

are common knowledge amongst all players.6

Each citizen from C has a single-peaked preference over the set of policy

positions, which is assumed to be the real line R. The ideal policies of the

citizens are distributed on R with a distribution function F and density f .

We assume that F is non atomic, that is the support of f is an interval or the

whole line. Notice that this implies in particular that F is continuous and

has unique median m.7 Throughout the paper we will need to refer to points

at which F attains particular values. Hence to facilitate our presentation we

6Relaxing this assumption leads to a much more involved game of incomplete informa-

tion, and we reserve this for future research.
7The same assumption about distribution function is made in Osborne [1993], while

in Osborne and Slivinski [1996] a weaker assumption is made, requiring F to be continuous

and to have unique median.
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will use ax to denote F−1(x).

Each player (i. e. a citizen or a Downsian politician) chooses (simulta-

neously and independently) whether to enter an electoral competition or to

stay out. If a citizen i ∈ C enters, he proposes his ideal position xi. Since

it is common knowledge that every i ∈ C is ideology driven, so any other

proposal is not credible. On the other hand, if a Downsian player i enters,

he has to announce any policy xi ∈ R as his platform. A player who decides

to enter the electoral competition is called a candidate. After all players

have decided on whether to enter or not, they cast their votes. In case of

citizens, voting is sincere, that is each citizen votes (with equal probability)

for one of candidates proposing the policy closest to his own ideal positions.8

In case of Downsian players, we assume that they either vote for their own

proposed policy (if they are candidates) or they do not vote at all (or cast

their vote randomly). In any case, votes of players from D do not affect the

final outcome of elections. This is because the set D is countable and their

support towards any policy cannot affect the frequency of voters supporting

that policy as defined by f .

We study elections governed by the plurality rule, so that the potential

winner of the elections is one of the candidates who receives the maximum

mass of votes (from the citizens). As usual, the unique winner is selected

from the set of such potential winners with equal probability.

Each citizen’s payoff depends on the distance between his ideal position

and the policy proposed by the winner of the election, as well as on the

benefits from winning the election and the costs of entering them, in case the

citizen chooses to be a candidate. Payoff of Downsian players is either 0 if

they do not enter the election, or it depends on similar benefits and costs if

they enter as a candidate. Thus, citizens are ideology driven, while Downsian

politicians are not.

8Notice that this approach means that voters vote for policies rather than candidates,

which is consistent with the fact that their preferences are over the set of policies rather

then preferences over the set of pairs (policy, player).
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Costs of entering the election are the same for both types of players and

are represented by real number c > 0. Benefits from winning the election may

vary between types of players and are represented by real numbers bC > 0

(for citizens) and bD ≥ bC (for Downsian politicians). As highlighted in the

introduction, the motivation behind varying benefits between types of players

is that Downsian players are presumed in this paper to be “professionals”

who are at least as efficient as the citizens in appropriating personal (and non-

ideological) gains from winning the elections. To keep the model interesting,

we make the usual assumption that bD > c so that Downsian players have

the motivation to become candidates.

Let y ∈ R be the policy that is implemented. Then the payoff of a citizen

i ∈ C with ideal position xi is
bC − c if i enters and wins,

−|xi − y| − c if i enters and loses,

−|xi − y| if i does not enter.

We assume that if no candidate contests the elections (so that no policy is

implemented), each citizen i ∈ C gets −∞.

Independent of the value of the implemented policy (including the case

where no policy is implemented), the payoff of any Downsian player i ∈ D is
bD − c if he enters and wins,

−c if he enters and loses,

0 if he does not enter.

In summary, a strategic game, denoted ΓCD, is studied in which the set

of players is C∪D. For each player i ∈ C, the set of pure strategies is {E,N},
where E stays for “entering the competition” and N stays for “not entering

the competition”. For each player i ∈ D, the set of pure strategies is R∪{N},
where xi ∈ R stays for “entering the competition and proposing policy xi”

and N stays for “not entering the competition”.9

9Every player (that is a citizen-candidate or a Downsian politician) has some preferences
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Given a strategy profile s of the game ΓCD, we use K(s) to denote the

set of players who enter the competition under s (i. e. the set of candidates

in s), W (s) to denote the set of candidates from K(s) who gain maximum

mass of votes (i. e. the set of candidates tying for the first place) and L(s) =

K(s)\W (s) to denote the set of candidates fromK(s) who lose with certainty.

We will also useX(s) ⊂ R to denote the set of policies proposed by candidates

from K(s).

All players are risk neutral so that ui(s), the expected payoff of player i

with respect to strategy profile s, is given as follows. If i ∈ D then

ui(s) =


−c if i ∈ L(s),

bD
|W (s)| − c if i ∈ W (s),

0 otherwise,

while if i ∈ C then

ui(s) =


−∞ if K(s) = ∅,

−c− ûi(s) if i ∈ L(s),
bC
|W (s)| − c− ûi(s) if i ∈ W (s),

−ûi(s) otherwise,

where

ûi(s) =

∑
j∈W (s) |xi − xj|
|W (s)|

In addition, we assume that if indifferent, then each player prefers to stay

out of the competition than to enter, that is for any two strategy profiles s

and s′ and for any i ∈ C ∪ D, we have:

s -i s′ iff ui(s) < ui(s
′) or ui(s) = ui(s

′) and either s′i = si or si 6= N.

over the policy space; being indifferent to all policies is just a special case. But to call

that preference ordering Downsian may look somewhat odd. In principle what is central is

that while those we call Downsian are able to commit to any policy announcement, those

who are citizens have their unique ideal policy as the only credible pre-election platform.

We thank Kunal Sengupta for pointing this out.
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The game ΓCD is an extension of the citizen-candidate model studied

in Osborne and Slivinski [1996] (the case where D = ∅) and we shall refer

to it as the game ΓC .

In what follows we shall focus our attention on issues concerning existence

and characteristics of pure strategy Nash equilibria of the game ΓCD. But

before we begin our analysis, we provide a discussion on the nature of the

Downsian politicians that we study in relation to those studied in Osborne

[1993].

2.1 A discussion on Downsian players

Downsian politicians studied in our model are similar to those studied in Os-

borne [1993]. However, there are some differences which we would like to

point out here. Firstly, we assume that there are infinitely many Downsian

politicians, while Osborne [1993] has a fixed number of Downsian politicians.

Secondly, we define the preferences of players over strategy profiles on the

basis of costs and benefits associated with the elections, while Osborne [1993]

abstracts from costs and benefits and defines these preferences directly. The

properties of our preferences and those from Osborne [1993] are in most

cases the same: each Downsian player prefers to win outright than to tie,

each Downsian player prefers to tie for the first place than to lose, each

Downsian player prefers to stay out of the competition than to enter and

lose and each Downsian player is indifferent between any two outcomes in

which he wins outright. The difference is that in Osborne [1993] it is assumed

that each Downsian player prefers to tie for the first place than to stay out

from the competition, while in our model this preference depends on bD and

c. However, in our model, each Downsian player always prefers to enter the

competition and win outright (that is win with probability 1) than to stay

out. This is due to the assumption that bD > c.10 We will refer to the model

with n Downsian players with preferences as studied in Osborne [1993] as

10In Osborne [1993] one more variant of preferences is studied, where Downsian politi-

cians always prefer to enter the competition. This variant is not relevant to our studies.
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the game ΓDn .

3 Equilibria of ΓCD

Before proving results concerning existence of Nash equilibria in pure strate-

gies in the game ΓCD, it will be helpful to first identify some characteristics

of such equilibria. For this we will need the following notions.

Let s be a strategy profile in ΓCD with K(s) being finite and non empty.

We will use l(s) to denote a candidate proposing the extreme left policy under

s, that is a candidate such that xl(s) = minX(s). Similarly we will use r(s) to

denote a candidate proposing extreme right policy, that is a candidate such

that xr(s) = maxX(s).

Also, given a candidate i ∈ K(s), we define a left neighbour l(s, i) and a

right neighbour r(s, i) of i w. r. t. s as follows:

l(s, i) =

{
−∞ if i = l(s),

j, such that xj = max{x ∈ X(s) : x < xi} otherwise,

and

r(s, i) =

{
−∞ if i = r(s),

j, such that xj = min{x ∈ X(s) : x > xi} otherwise.

Notice that player i may have several neighbours proposing the same policy,

in which case l(s, i) (or r(s, i)) refers to any one such neighbour.

As in Osborne [1993], the constituency of xi is the fraction of the popu-

lation that votes for one of the candidates proposing xi, that is it is equal to

F ((xi + xr(s,i))/2)− F ((xi + xl(s,i))/2). A constituency consists of two semi-

constituencies, the left constituency, which is the fraction of the population

that votes for a candidate proposing xi and has an ideal point < xi, that is

it is equal to F (xi)− F ((xi + xl(s,i))/2), and the right constituency, which is

the fraction of the population that votes for a candidate proposing xi and

has an ideal point > xi, that is it is equal to F ((xi + xr(s,i))/2)− F (xi).
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The following lemma is an extension of [Osborne, 1993, Lemma 1] that

studied a model with only Downsian politicians. Point (i) of the lemma was

shown in [Osborne and Slivinski, 1996, Lemma 2] while points (v) and (vi)

were shown in [Osborne and Slivinski, 1996, Lemma 1] that studied the

game ΓC . The proof of the lemma can be found in the Appendix.

Lemma 1. Let s∗ be a Nash equilibrium in ΓCD. Then the following hold

(i). every policy x ∈ X(s∗) is proposed by at most two candidates,

(ii). for any i ∈ D, if |K(s∗)| ≥ 2 and i = l(s∗) or i = r(s∗) (that is i is a

Downsian candidate proposing an extreme policy), then xi is proposed

by more than one candidates,

(iii). for any x ∈ X(s∗) proposed by more than one candidates, the left and

right constituencies of x are equal,

(iv). L(s∗) ∩ D = ∅, that is no Downsian candidate loses with certainty,

(v). no candidate sharing his proposed policy with another candidate loses

with certainty, and

(vi). {l(s∗), r(s∗)} ⊆ W (s∗), that is no candidate proposing extreme policy

loses with certainty,

Remark 1. Notice that points (iv), (v) and (vi) do not require any assump-

tions on the distribution function F .

The next question we ask is as follows: suppose in the game ΓCD there

is an equilibrium where a Downsian politician (amongst other candidates)

proposes a policy alone. What can we say about the announced policies

which are his immediate neighbours? It turns out that it is impossible to

have an equilibrium configuration with a Downsian candidate proposing his

policy alone while his two neighbouring policies are both proposed by more

than one candidate. The lemma is not vacuous as Example 2 (provided
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in Section 4) suggests. Moreover, this lemma is useful in proving some non-

existence results in the game ΓDn studied by Osborne [1993] with only Down-

sian politicians.

Lemma 2. Let s∗ be a Nash equilibrium of ΓCD with the distribution function

F being non atomic. If i ∈ K(s∗) ∩ D is a Downsian candidate and xi is

proposed by exactly one candidate, then either xl(s∗,i) or xr(s∗,i) is proposed by

exactly one candidate.

Proof. Let [a, b] be the support of f and let S be the mass of support that

each player who does not lose with certainty gets (obviously S > 0). By

point (ii) of Lemma 1 we know that l(s∗, i) > −∞ and r(s∗, i) < +∞.

Suppose that xl(s∗,i) and xr(s∗,i) are proposed by more than one candidate,

each. By point (i) of Lemma 1 each of these policies is proposed by two

candidates if s∗ is a Nash equilibrium. Moreover, by point (iii) of Lemma 1

it holds that
[
xl(s∗,i), xr(s∗,i)

]
⊆ [a, b].

Also, by point (iii) of Lemma 1 it holds that F
(
xr(s∗,i)

)
−F

(
xl(s∗,i)

)
= 3S.

Hence either

F
(
(xl(s∗,i) + xr(s∗,i))/2

)
− F

(
xl(s∗,i)

)
≥ 3S/2

or

F
(
xr(s∗,i)

)
− F

(
(xl(s∗,i) + xr(s∗,i))/2

)
≥ 3S/2.

Without loss of generality suppose that the first case holds.

Since F is non atomic and
[
xl(s∗,i), xr(s∗,i)

]
⊆ [a, b] and

F
(
(xl(s∗,i) + xi)/2

)
− F

(
xl(s∗,i)

)
= S,

so there must exist t ∈
(
xl(s∗,i), xi

)
, such that

F
(
(xl(s∗,i) + xi)/2

)
− F

(
(xl(s∗,i) + t)/2

)
> 3S/4.

We will show that if player i proposed t instead of xi, he would win outright,

so s∗ cannot be a Nash equilibrium.
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Take any t satisfying conditions above and suppose that player i proposed

t instead of xi. Let

S1 = F
(
(xi + xr(s∗,i))/2

)
− F

(
(t+ xr(s∗,i))/2

)
and

S2 = F
(
(xl(s∗,i) + t)/2

)
− F

(
(xl(s∗,i) + xi)/2

)
.

By the construction above it holds that S2 > 3S/4. Moreover, since(
xl(s∗,i) + xr(s∗,i)

)
/2 <

(
t+ xr(s∗,i)

)
/2 <

(
xi + xr(s∗,i)

)
/2,

so

F
(
xr(s∗,i)

)
− F

(
(xl(s∗,i) + xr(s∗,i))/2

)
≤ 3S/2

and

F
(
xr(s∗,i)

)
− F

(
(xi + xr(s∗,i))/2

)
= S,

thus S1 < S/2.

The mass of support player i gets after repositioning himself to t is S −
S1 +S2 > 5S/4, while the mass of support candidates proposing xr(s∗,i) get is

(2S + S1)/2 < 5S/4. Also, the mass of support candidates proposing xl(s∗,i)

get is < S. Hence player i wins outright after repositioning himself to t.ut

The following corollary is immediate from the above proof.

Corollary 1 (Non-existence of Nash equilibria in Downsian Competition).

Consider the game ΓDn as in Osborne [1993]. If the distribution function F

is non atomic then the game ΓD5 has no Nash equilibrium. Moreover for any

game ΓD2n, a Nash equilibrium where n + 1 policies are proposed does not

exist and for any game ΓD2n+1 a Nash equilibrium with ≤ n+ 1 policies does

not exist.11

11As was shown in Osborne [1993], existence of Nash equilibria of game ΓDn
with n > 2

puts very restrictive constraints on the distribution function F , so such equilibria hardly

ever exist.
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Remark 2. It is of course possible to have a Nash equilibrium of ΓCD where

a Downsian candidate neighbours two candidates proposing the same policy

on one side and another candidate proposing his policy alone on the other

side, as illustrated by Example 3.

Having established some properties of the Nash equilibria of ΓCD, we can

look closer at existence of equilibria with different numbers of candidates, in

particular, with Downsian candidates.

3.1 One-party equilibrium

We start with equilibria where exactly one candidate stands for the elec-

tion. The following proposition corresponds to [Osborne and Slivinski, 1996,

Proposition 1], where conditions of one candidate Nash equilibria of ΓC were

characterized. Properties of such Nash equilibria in ΓCD are slightly differ-

ent, as explained in the remarks following the proposition. Most importantly,

no one-party equilibrium with the party announcing a policy different from

the median policy can exist in our settings. This is in contrast to ΓC , where

there are costs and benefits such that a non-median one-party equilibrium

exists.

Proposition 1. Let s∗ be a Nash equilibrium of ΓCD. Then |K(s∗)| = 1 iff

bD ≤ 2c. Moreover, if K(s∗) = {i}, then xi = m.

Proof. The proof is analogical to the proof of Proposition 1 from Osborne

and Slivinski [1996]. So suppose that s∗ is a Nash equilibrium and that

K(s∗) = {i}. If bD > 2c, then a Downsian player would enter and propose

xi, hence it must be that bD ≤ 2c. Moreover, if xi 6= m, then at least a

Downsian player would enter proposing m and would win outright. Hence it

must be xi = m.

On the other hand, suppose that bD ≤ 2c. Than it also holds that bC ≤ 2c.

Then a strategy profile s∗ withK(s∗) = {i} and xi = m is a Nash equilibrium.

This is because no player j can enter and get a support larger than i, and if

j gets the same support as i, then her expected payoff is not positive since
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bD ≤ 2c. Thus if j ∈ D, then he prefers to stay out and if j ∈ C, then he also

prefers to stay out, as ûi(s
∗) = ûi(s

∗
−i, E) and ui(s

∗
−i, E)−ui(s

∗) = bC/2−c ≤
0.

It is also not profitable for i to stay out, as either i ∈ D and he prefers

to enter and win outright than to stay out, or i ∈ C, in which case he would

get −∞ if he stayed out instead of entering and would be worse off.

Notice that it is possible to have a one candidate Nash equilibrium with

i ∈ C and bC < c. ut

Remark 3. Notice that Proposition 1 holds for a game ΓDn studied in Os-

borne [1993], if and only if n = 1. This is because it is assumed there that

each Downsian player prefers to tie for the first place than to stay out of the

competition, while in the model we study this is not the case when bD ≤ 2c.

Remark 4. As the above proposition suggests, it is impossible to have a one

candidate Nash equilibrium in ΓCD with the candidate i proposing xi 6= m,

which is possible in ΓC, when bC < c. This is due to the existence of Downsian

players with the fact that they always prefer to enter the competition and win

outright than to stay out (i. e. due to assumption that bD > c).

3.2 Two-party equilibrium

Since our policy space is 1-dimensional, the classical conjecture of Duverger

implies that in such scenarios two-party equilibria become important. We

now look at Nash equilibria where exactly two candidates stand for the elec-

tion. Again, the following proposition corresponds to [Osborne and Slivinski,

1996, Proposition 2], where Nash equilibria of ΓC with two candidates are

characterized.

We adopt the following notation from Osborne and Slivinski [1996]. Let

ε > 0 and consider a configuration where there are exactly two candidates

standing for the election, one of them proposingm−ε and the other proposing

m+ ε. Let s(ε, F ) ∈ (m− ε,m+ ε) be a point such that

F ((m− ε+ s(ε, F ))/2) = 1− F ((m+ ε− s(ε, F ))/2),
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that is if a player enters proposing s(ε, F ), then constituencies of candidates

proposing m− ε and m+ ε will be equal.

Also, let ep(F ) be the critical value of ε, such that if ε < ep(F ), then any

entry by a third player gives him a mass of votes < 1/3 and if ε > ep(F ),

then there exists an entry by a third player that gives him a mass of votes

> 1/3.

The following proposition gives a set of necessary and sufficient condi-

tions for the existence of a 2-party equilibrium in the game ΓCD. The most

important feature of any such equilibrium is that both candidates must be

citizens, that is no two-party equilibrium can have a Downsian contestant.

Proposition 2. A Nash equilibrium of ΓCD with two candidates standing for

the election exists iff bC > 2(c − ep(F )). Moreover, s∗ is a Nash equilibrium

of ΓCD with K(s∗) = {i, j} such that xi ≤ xj iff

(i). {i, j} ⊆ C,

(ii). m− xi = xj −m = ε,

(iii). 0 < ε ≤ ep(F ),

(iv). |m− s(ε, F )| ≤ c < ε+ b/2,

(v). ε = ep(F ) implies bD ≤ 3c,

Proof. The proof is analogical to the proof of Proposition 2 from Osborne

and Slivinski [1996], where conditions for existence of two candidate Nash

equilibria of ΓC and their properties were characterized.

We start by showing that conditions (i) – (v) are necessary for a strategy

profile s∗ with K(s∗) = {i, j} and xi ≤ xj to be a Nash equilibrium. So

suppose that s∗ is a Nash equilibrium. Point (ii) follows from the fact that

the constituencies of i and j must be equal, so m must be equidistant from xi

and xj. For point (iii) notice that by definition of ep(F ) it must be ε < ep(F ).

It must be also that ε > 0, as otherwise entry by a Downsian player at

t ∈ (a1/3,m) provides the entrant with mass of support > 1/3, while i and
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j would both have the mass of support < 1/3, so the entrant would win

outright. Also, if ε = ep(F ), then it must be that bD ≤ 3c, as otherwise there

exists an entry so that the entrant would not be losing with certainty, and

so a Downsian player would enter as the entry would result in at most three

candidates who do not lose with certainty and bD/3− c > 0.

Point (i) follows immediately from points (ii) and (iii) shown above and

point (ii) of Lemma 1.

For point (iv), as we have shown already, it must be that c < ε + b/2.

For the second part of this point assume that c < |m− s(ε, F )| and suppose

that s(ε, F ) < m (arguments in case of s(ε, F ) < m are analogical and it

is impossible to have s(ε, F ) = m under the assumption c < |m − s(ε, F )|,
as c > 0). Then for any t ∈ (s(ε, F ),m) a citizen k whose ideal position is

xk = t could enter and lose, making i (the proponent of m − ε) the unique

winner. The expected payoff of k when he enters is −c− t+m− ε and when

he does not enter is −ε, so k would prefer to enter if c < m − t. Taking

t ∈ (s(ε, F ),m − c) would make any citizen k enter, contradicting the fact

that s∗ is a Nash equilibrium. Thus it must be that c ≥ |m− s(ε, F )|.
It follows from the discussion above, that bC > 2(c−ep(F )) is a necessary

condition for existence of two party Nash equilibrium in ΓCD. For assume

that bC ≤ 2(c − ep(F )) and suppose that s∗ is a Nash equilibrium of ΓCD.

Then bC/2− c ≤ −ep(F ) and so, by point (iii), bC/2− c ≤ −ε. Hence any of

the players from K(s∗), being a citizen candidate, would prefer to stay out

of the competition than to enter.

Next we show that if bC > 2(c− ep(F )) is satisfied, then a strategy profile

s∗ with K(s∗) = {i, j} and xi ≤ xj and such, that conditions (i) – (v) are

satisfied for it is a Nash equilibrium of ΓCD. By point (ii) both players get

the same mass of supporter, so i and j tie for the first place. Moreover, by

point (i), they are both citizens, so we only need two consider them staying

out of the competition instead of entering. This is prevented by point (iv).

Also, no other player can enter and not lose with certainty, as guaranteed by

points (ii), (iii) and (v). The possibility of entry by a player who loses with
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certainty but prefers to enter is ruled out by point (iv). Thus s∗ is a Nash

equilibrium and bC > 2(c − ep(F )) is a sufficient condition for existence of

such equilibrium. ut

Remark 5. The only difference between the sets of conditions for the exis-

tence of two candidate Nash equilibria in ΓCD and ΓC is in point (v). In case

of ΓC if ε = ep(F ), then it is enough that bC ≤ 3c − ε (c. f. [Osborne and

Slivinski, 1996, Proposition 2]). In case of ΓCD, where there is the possibility

of entry by a Downsian player, the condition has to be stronger to prevent

such an entry.

The following remark follows directly from the above proposition.

Remark 6 (Sufficient conditions for non-existence of 2-party equilibria).

Notice that if bC ≤ 2(c − ep(F )) and 2c < bD ≤ 3c, then a Nash equilibrium

of ΓCD does not exist. Notice also that if 2c < bC ≤ bD ≤ 3c, then a Nash

equilibrium of ΓCD with Downsian candidates does not exist.

We do not give any direct propositions on Nash equilibria of ΓCD with

more than two candidates standing for the election. Instead, we take the fol-

lowing strategy is addressing multi-party equilibria: since existence of multi-

party equilibria is well established for the game ΓC in Osborne and Slivinski

[1996], in the next section we study the relation between Nash equilibria in

ΓCD and Nash equilibria in ΓC . The results we establish allow us to give

some examples of Nash equilibria with larger sets of candidates, including

Downsian players.

4 Relation between equilibrium configurations

of ΓCD and ΓC

Since ΓCD is an extension of ΓC , it is natural to ask how equilibria in one

game relate to those in another. In this section we show that it is possible

to “transfer” Nash equilibria of ΓCD to Nash equilibria of ΓC and vice versa,

17



under certain conditions. The transfer is made by replacing Downsian candi-

dates by citizen candidates, or the other way around and then modifying, if

necessary, costs and benefits characterising the models, so that the obtained

strategy profile is a Nash equilibrium of the new model. We also have an in-

teresting impossibility result, showing that there are configurations for which

such transfers are impossible.

4.1 From ΓCD to ΓC

We start by studying possible transfers from ΓCD to ΓC . Let us define what

we mean by saying that a Nash equilibrium s∗ can be transferred to ΓC . For

this definition, we will need the following notion of correspondence:

Definition 1. Given a strategy profile s of the game ΓM, we say that a

strategy profile s′ of the game ΓM′ corresponds to s if X(s) = X(s′) and each

policy in x ∈ X(s) is proposed by the same number of candidates under both

s and s′.

Definition 2 (Nash equilibrium transferable from ΓCD to ΓC). Let s∗ be

a Nash equilibrium in ΓCD with non atomic distribution F , benefits bC, bD

and costs c. We say that s∗ is transferable to ΓC iff there exists benefits

b′(bC, bD, c, s
∗) and costs c′(bC, bD, c, s

∗), such that every strategy profile s′ that

corresponds to s∗ is a Nash equilibrium in ΓC with benefits b′(bC, bD, c, s
∗) and

cost c′(bC, bD, c, s
∗).

The following example gives an impossibility results as it proves that

there are configurations which are not transferable.

Example 1. Let s be a strategy profile in ΓCD, such that K(s) = {i1, i2, j1, j2, l, r},
where {i1, i2, j1, j2} ⊆ D and {l, r} ⊆ C. Moreover, let xi1 = xi2 = a11/60,

xj1 = xj2 = a49/60, xl = 2a22/60 − a11/60 and xr = 2a38/60 − a49/60. Let F

such that (xl + xr)/2 = m, bir = (a11/60 + xr)/2 = a101/240, blj = (xl +

a49/60)/2 = a139/240, blm = (xl +m)/2 = a49/120, bmr = (xr +m)/2 = a71/120,

xl − a11/60 = a49/60 − xr, xr − xl > 2(xl − a11/60). Such a distribution exists
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1/24

a49/60a38/60

Figure 1: Configuration in ΓCD that cannot be transferred to ΓC .

and an example is presented in Figure 1, together with positions of players.

Also, let costs be such that 0 < c < xr + a11/60 − 3xl and benefits be such,

that 4c < bD ≤ 5c, c ≤ bC ≤ bD and bC ≤ 5c− (a49/60 − a11/60)/4.

We now show that s is a Nash equilibrium of ΓCD but is not transferable

to ΓC.

It is easy to check that under the distribution F and strategy profile s

the set of candidates that do not lose with certainty W (s) = {i1, i2, j1, j2}.
Moreover candidates l and r lose with certainty, and each of them stands for

the election to block another one from winning outright, that is l is the only

winner under strategy profile (s−r, N) and r is the only winner under strategy

profile (s−l, N).

Strategy profile s is a Nash equilibrium of ΓCD. It is easy to check that

none of the candidates is better off by withdrawing. Moreover it is not possi-

ble for any player to enter and win outright. There is a possibility of entering

at m and joining the set of players that do not lose with certainty, but both

citizen and Downsian players prefer to stay out than to join the set of win-

ners.

Consider a strategy profile s′ of ΓC that corresponds to s. There do not

exist c′ > 0 and b′ ≥ 0 such, that strategy profile s′ is a Nash equilibrium of

ΓC with costs c′ and benefits b′. This is because if entering the competition is

to be preferred to staying out by citizen candidates taking external positions,

then it must hold that b′ > 4c′ + 2(a49/60 − a11/60). Moreover, if staying out

is to be preferred to entering the competition by a citizen with ideal position
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m it must be that b′ ≤ 5c′ − (a49/60 − a11/60)/4. This implies that it must be

that c′ > 7(a49/60 − a11/60)/4. But then we know that c′ > xr + a11/60 − 3xl

and so candidates l and r prefer to stay out of the competition. Hence it is

not possible to have c′ > 0 and b′ ≥ 0 such, that s′ is a Nash equilibrium.

As Example 1 suggests, transferring a Nash equilibrium from ΓCD to

ΓC may require changing costs and benefits. Before giving a proposition

providing a complete characterization of Nash equilibria transferable from

ΓCD to ΓC we will need the following two notions.

Let s∗ be a Nash equilibrium of ΓCD. Given a candidate i ∈ K(s∗), define

Di(s
∗) = ûi(s

∗)− ûi((s
∗
−i, N)).

Moreover, let c̄(s∗) denote the upper limit for the maximal costs level for

which there exist b′C and b′D, such that s∗ is a Nash equilibrium of ΓCD with

costs c′ < c̄(s∗) and benefits b′C and b′D. Notice that c̄(s∗) exists if and only

if there are candidates losing with certainty under s∗. If there are no such

candidates under s∗, then for any costs there are benefits under which s∗

is a Nash equilibrium. On the other hand, if any candidates i losing with

certainty it must be that c < Di(s
∗). Hence it must be true that

c̄(s∗) = min
i∈L(s∗)

Di(s
∗).

Also, let Z(s∗) denote the set of all citizen players that are not candidates

under s∗ and such that W ((s∗−i, E)) = W (s∗)∪{i} for all i ∈ Z(s∗). That is,

Z(s∗) is a set of citizens that could enter and join the set of winners under

s∗. Observe that either each citizens from Z(s∗) have its ideal positions

placed between some two candidates from s∗ that lose with certainty, there

are exactly two policies proposed under s∗, all candidates tie for the first

place and |Z(s∗)| = 1. Let

ū(s∗) = max
i∈Z(s∗)

ûi(s
∗).

Now we are ready to give a complete characterization of Nash equilibria

transferable from ΓCD to ΓC .
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Proposition 3. Let s∗ be a Nash equilibrium in ΓCD with non atomic dis-

tribution F , benefits bC, bD and costs c. Then s∗ is transferable to ΓC iff

(1). there is no pair of neighbouring candidates l and r, such that {l, r} ⊆
L(s∗) for which there exists xi ∈ (xl, xr), such that W ((s∗−i, E)) =

W (s∗) ∪ {i}, or

(2). there exists such a pair and for any Downsian candidate j ∈ K(s∗)∩D
it holds that |W (s∗)|Dj(s

∗) + ū(s∗) < c̄(s∗).

Proof. Suppose that s∗ is a Nash equilibrium in ΓCD.

For the left to right implication, suppose that s∗ is transferable to CC

and let s′ be a strategy profile corresponding to s∗. Moreover, let c′ and b′

be such that s′ is a Nash equilibrium of ΓC with costs c′ and benefits b′.

Suppose that both conditions (1) and (2) are not satisfied. Hence there

are two neighbouring candidates l and r, such that {l, r} ⊆ L(s∗) for which

exists xi ∈ (xl, xr), such that W ((s∗−i, E)) = W (s∗)∪{i} (and the same holds

for s′). This means that Z(s∗) 6= ∅.

Also, there must exist a Downsian candidate j ∈ K(s∗) ∩ D such that

|W (s∗)|Dj(s
∗) + ū(s∗) ≥ c̄(s∗).

Let j′ be a citizen candidate under s′ such, that xj = xj′ . Then j′ must be

a candidate not losing with certainty under s′ and if j′ prefers to stay in the

competition than to stay out, it must hold that

b′

|W (s∗)|
− c′ − ûj′(s

∗) > −ûj′((s
∗
−j′ , N)).

This implies that b′ > |W (s∗)|(c′+Dj′(s
∗)) and since it must be that c′ < c̄(s∗)

(as otherwise one of the candidates losing with certainty would prefer to stay

out of the competition), so it must be also b′ > (|W (s∗)|+1)c′− ū(s∗). To see

this observe that from |W (s∗)|Dj(s
∗) + ū(s∗) ≥ c̄(s∗) and c′ < c̄(s∗) it follows

that |W (s∗)|Dj(s
∗) > c′ − ū((s∗)). Substituting this in b′ > |W (s∗)|(c′ +

Dj′(s
∗)), we get the result.
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On the other hand, if s′ is a Nash equilibrium, then none of the players

from Z(s∗) prefers to enter, so it must be that for all j ∈ Z(s∗) we have

b′

|W (s∗)|
− c′ − ûj((s

∗
−j, E)) ≤ −ûj(s

∗).

Notice that

ûj((s
∗
−j, E)) =

|W (s∗)|
|W (s∗)|+ 1

ûj(s
∗),

and therefore, the first inequality is equivalent to b′ ≤ (|W (s∗)|+1)c′−ûj(s
∗).

This implies that b′ ≤ (|W (s∗)|+1)c′−ū(s∗), which contradicts the inequality

above. Thus one of conditions (1) or (2) must be satisfied if s∗ is a Nash

equilibrium of ΓCD and is transferable to ΓC .

For the right to left implication suppose that one of the conditions (1),

(2) is satisfied and let s′ be a strategy profile of ΓC corresponding to s∗. We

will show that there are c′ and b′, depending on s∗, c and bC only, such, that

s′ is a Nash equilibrium of ΓC with costs c′ and benefits b′.

Consider a citizen candidate i ∈ K(s′) such, that i /∈ K(s∗) ∩ C. Hence

there is i′ ∈ K(s∗) ∩ D such, that xi = xi′ and i is tying for the first place

under s′ (as Downsian players prefer to stay out of the competition than to

lose with certainty). Thus the difference between the payoffs of i when he

enters and when he does not enter with benefits b′ and costs c is

b′

|W (s∗)|
− c−Di(s

∗).

Hence taking any b′, such that b′ ≥ bC and for any Downsian candidate

k ∈ K(s∗), b′ > |W (s∗)|(c+Dk(s∗)) makes entering more profitable then not

entering for any citizen candidate replacing a Downsian candidate. Hence

with b′ satisfying the conditions above it is not profitable for i to withdraw.

Notice that b′ depends on bC, c and s∗ only.

Notice also that it is not profitable for any citizen candidate under s′ who

is a candidate under s∗ to stay out of the competition under s′ . This is

because b ≥ bC and so it would be profitable for him to stay out under s∗ as

well, which is impossible, as s∗ is a Nash equilibrium.
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Now consider the possibility of entry by a player who is not a candidate

under strategy profile s′ in CC. Notice first that it is not profitable for any

citizen player to enter and lose with certainty under s′, as then it would

have been profitable for him to enter under s∗ in ΓCD as well, which would

contradict the fact that s∗ is a Nash equilibrium (such decision does not

depend on benefits).

Suppose now that there are no Downsian candidates in K(s∗). In this case

b = bC and if it was profitable to enter for any citizen under strategy profile

s′, then it would be also profitable for this citizen to enter under strategy

profile s∗. Hence no entry is possible in this case, as s∗ is a Nash equilibrium.

Suppose then, that there are Downsian candidates in K(s∗). Suppose that

there is only one candidate standing for the election, that is |K(s∗)| = 1. This

time b′ ≥ bD and, by the same arguments as those used above, no entry is

possible under strategy profile s′ in CC.

If |K(s∗)| > 1 and there is a Downsian candidate in K(s∗) then, by

point (ii) of Lemma 1 and Proposition 2, it must be that |K(s∗)| ≥ 3 (and

consequently |K(s′)| ≥ 3). Notice that it is not possible for any citizen to

enter under s′ and win outright, as it would be possible for a Downsian player

to enter and win outright under s∗, which would contradict the fact that s∗

is a Nash equilibrium.

Note: In all the cases considered so far it was enough to increase benefits

(when needed) leaving costs level unchanged to make s′ a Nash equilibrium

of ΓC . The remaining cases studied below require a change in costs as well.

The only kind of entry that remains to be analysed is the one where some

citizen i enters and joins the set of candidates who do not lose with certainty

under s′. Observe, that if bD > (|W (s∗)| + 1)c, then this situation is not

possible, as it would be possible for a Downsian player to enter with positive

expected payoff under s∗, which would contradict the assumption that s∗ is

a Nash equilibrium. Hence suppose that |W (s∗)|c < bD ≤ (|W (s∗)| + 1)c

(Notice that |W (s∗)|c < bD follows from the fact that s∗ is a Nash equilib-

rium with at least one Downsian candidate and W (s∗) winning candidates).
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Situation where some citizen i enters and joins the set of candidates who do

not lose with certainty is possible only if either (a) i’s entry does not affect

any of the candidates from W (s′) or (b) i’s entry affects all the candidates

from W (s′). In both cases Z(s∗) 6= ∅.

Consider case (a) first. This means that there exists a pair of neighbouring

candidates l and r such that {l, r} ⊆ L(s∗) for which there exists xi ∈
(xl, xr) such that xi /∈ X(s∗) and W ((s∗−i, E)) = W (s∗) ∪ {i}. Moreover, by

condition (2), it must be that for any Downsian candidate j ∈ K(s∗) ∩ D it

holds that |W (s∗)|Dj(s
∗) + ū(s∗) < c̄(s∗).

Hence there exists c ≤ c′ < c̄(s∗) such that for any Downsian candidate

j ∈ K(s∗)∩D it holds that |W (s∗)|Dj(s
∗)+ū(s∗) < c′. This c′ guarantees that

no candidate losing with certainty under s′ will prefer to withdraw. Moreover,

it guarantees that there exists b′ ≥ bC, such that for any Downsian candidate

k ∈ K(s∗) ∩ D, b′ > |W (s∗)|(c′ +Dk(s∗) and b′ ≤ (|W (s∗)|+ 1)c′ + ū(s∗).

Thus with costs c′ and benefits b′ no candidate tying for the first place

prefers staying out of the competition to entering it. Moreover, no player

from Z(s∗) prefers to enter the competition joining the set of candidates

tying for the first place to staying out. Hence s′ is a Nash equilibrium of ΓC

with costs c′ and benefits b′. Notice that b′ and c′ depend on bC and s∗ only.

Secondly, consider case (b). Since |K(s′)| ≥ 3, so this situation is possible

only if X(s′) = 2, that is two policies are proposed under s′, and xi lies

between the two proposed policies. By points (i) and (vi) of Lemma 1, there

are either 4 or 3 candidates under s′ (and s∗), all of them tying for the first

place.

By arguments similar to those used in Lemma 2, it can be shown that

the situation with 4 candidates is impossible. If it was possible to enter

between the two policies proposed by the four candidates and join the set of

players that do not lose with certainty, then there would have to exist a policy

between the two policies, such that a player that would enter proposing it

would win outright. Hence such a situation is not possible if s∗ is a Nash

equilibrium.
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The situation with 3 candidates is possible (c.f. Example 3). Suppose

then, that there are 3 winning candidates {i, j, k} under s∗ in CCD. Without

loss of generality, suppose that xi < xj and xj = xk. By point (ii) of Lemma 1

it must be that i ∈ C. Moreover, if {j, k}∩Cneq, then s′ is a Nash equilibrium

of ΓC with benefits bC and costs c. Hence assume that {j, k} ⊆ D. Take any

c′, such that c′ ≥ c and c′ > 5|xi − xj|/3. Take any b′ such that b′ ≥ bC

and 3c′ + |xi − xj| < b′ ≤ 4c′ − 2|xi − xj|/3. Notice that such b′ exists, as

3c′ + |xi − xj| < 4c′ − 2|xi − xj|/3 when c′ > 5|xi − xj|/3.

Strategy profile s′ is then a Nash equilibrium of ΓC with benefits b′ and

costs c′. It can be easily checked that it is not profitable for any of the

candidates to withdraw. It cannot be profitable for any player to enter and

lose with certainty under s′, as c′ ≥ c and it cannot be profitable for any

player to enter and lose under s∗ with costs c. Moreover, as we argued

above, it is not possible for any player to enter and win outright. However

it is possible for a player to enter and join the set of winners. Entering in

this case is not profitable as the condition b′ ≤ 4c− 2|xi − xj|/3 prevents it.

Notice that b′ and c′ depend on bC and s∗ only.

Thus we have shown that there are b′(bC, c, s
∗) and c′(bC, c, s

∗), such that

s′ is a Nash equilibrium in ΓC with benefits b′(bC, c, s
∗) and costs c′(bC, c, s

∗).

ut

Remark 7. Notice that any Nash equilibrium s∗ of ΓCD with K(s∗) ⊆ C is

a Nash equilibrium of ΓC with benefits bC and costs c.

Remark 8. Notice that any Nash equilibrium s∗ of ΓCD which is robust

to increases in benefits, i. e. there is no increase in benefits that would

make entry by any player profitable, can always be transferred to ΓC without

requiring any change n costs. Observe also that any Nash equilibrium of ΓCD

with bD > (|W (s∗)|+ 1)c is robust to increases in benefits.

We now prove our next result on transferability from ΓCD to ΓC .

Proposition 4. Let s∗ be a Nash equilibrium of the game ΓCD with cost c

and benefits bC and bD, such that extremist candidates are citizens earning a
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non-negative expected payoff. Then s∗ is a Nash equilibrium of the game ΓC

with cost c and benefit bC.

To prove the above proposition we first prove the following lemma.

Lemma 3. Let s be a strategy profile of ΓCD with the set of candidates K(s)

being finite and non empty. Then maxi∈W (s) ûi(s) = max{ûl(s)(s), ûr(s)(s)}.

Proof. Let W (s) = {i0, . . . , iM} and suppose that for all 0 ≤ j, k ≤M , j ≤ k

implies xij ≤ xik . Then

(M + 1)ûin(s) =
n∑

j=1

j|xij − xij−1
|+

M∑
j=n+1

(M − j + 1)|xij − xij−1
|.

Hence, for 1 ≤ n ≤M , the following holds

(M + 1)(ûin(s)− ûin−1(s)) = n|xin − xin−1| − (M − n+ 1)|xin − xin−1|

= (2n−M − 1)|xin − xin−1|.

If n ≤ (M+1)/2, then (M+1))ûin(s)−ûin−1(s)) ≤ 0 and so ûin(s) ≤ ûin−1(s).

On the other hand, if n > (M + 1)/2, then ûin(s) ≥ ûin−1(s).

Thus it follows, that maxi∈W (s) ûi(s) = max{ûl(s)(s), ûr(s)(s)}. ut

The proof of the above proposition is now straightforward.

Remark 9. Notice that a Nash equilibrium s∗ of ΓCD is not transferable iff

(1). there is a pair of neighbouring candidates l and r losing with certainty

and Z(s∗) 6= ∅, that is there exists a player that could enter an join the

set of candidates tying for the first place (which means that |W (s∗)|c <
bD ≤ (|W (s∗)|+ 1)c), and

(2). there exists a Downsian candidate j ∈ K(s∗)∩D, such that |W (s∗)|Dj(s
∗)+

ū(s∗) ≥ c̄(s∗).
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4.2 From ΓC to ΓCD

Having established properties of Nash equilibria of ΓCD that can be trans-

ferred to ΓC , we switch our attention to properties of Nash equilibria of ΓC

that can be transferred to ΓCD. We start by defining what we mean by saying

that a Nash equilibrium of ΓC can be transferred to ΓCD.

Definition 3 (Nash equilibrium transferable from ΓC to ΓCD). Let s∗ be a

Nash equilibrium in ΓC with non atomic distribution F , benefits b and costs

c. We say that s∗ is transferable to ΓC if there exists a strategy profile s′

in ΓCD corresponding to s∗, bC(b, c, s
∗), bD(b, c, s∗) and c′(b, c, s∗) such that

s′ is a Nash equilibrium of ΓC with benefits bC(b, c, s
∗), bD(b, c, s∗) and cost

c′(b, c, s∗).

It turns out that almost every Nash equilibrium of ΓC is transferable to

ΓCD with the same costs and benefits of citizen players. The transfer is done

by not changing the strategies of citizen players and assigning strategy N to

all Downsian players.

The only kind of Nash equilibria of ΓC that are an exception to the above

observation are those with a single candidate whose ideal position is not m

(the fact that such equilibria are not transferable to ΓCD follows immediately

from Proposition 1). The following proposition states two important things

therefore: (1) Any multi-party Nash equilibria in ΓC can be transferred to

ΓCD and almost all of them without requiring any change in benefits and

costs, and (b) One-party Nash equilibria of ΓC can be transferred to ΓCD if

and only if in all such equilibria, the median candidate stands.

Proposition 5. Let s∗ be a Nash equilibrium in ΓC with non atomic dis-

tribution F , benefits b and costs c. Then s∗ is transferable to ΓCD iff the

following is true in ΓC: |K(s∗)| = 1 implies that X(s∗) = {m}.
If s∗ is transferable, then there exists bD, such that bD > c, bD ≥ b and

s′ = (s∗, (N)i∈D) is a Nash equilibrium of ΓCD with benefits bC = b, bD and

costs c. Moreover, if |W (s∗)| 6= 2, then there exists bD which additionally
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satisfies bD > |W (s∗)|c such that s′ is a Nash equilibrium of ΓCD with benefits

bC = b, bD and costs c.

Proof. Let s∗ be a Nash equilibrium of ΓC , like stated in the proposition. By

Proposition 1, if |K(s∗)| = 1 and X(s∗) 6= {m}, then it is easy to see that

such equilibrium is not transferable to ΓCD. Hence |K(s∗)| = 1 implying

X(s∗) = {m} is a necessary condition for such transferability to be possible.

Suppose then, that |K(s∗)| = 1 implies X(s∗) = {m}.
Let s′ = (s∗−D, (N)i∈D) be a strategy profile of ΓCD.

Suppose first that K(s∗) = {i} and xi = m. As was shown in [Osborne

and Slivinski, 1996, Proposition 1], it must hold that b ≤ 2c. Hence there

exists bD, such that b ≤ bD and c < bD ≤ 2c, and for any such bD, the strategy

profile s′ is a Nash equilibrium of ΓCD with costs c and benefits bC = b and

bD, as no entry is possible under these conditions and candidate i prefers to

stay for the competition than to stay out (c.f. Proposition 1).

Secondly, suppose that W (s∗) = {l, r} with xl < xr. We will show

first that in ΓC it is not possible for any player to enter and win outright

under s∗.12 For suppose the opposite and let i be a player that could enter

proposing xi and win outright. It must be that xl < xi < xr. Since s∗ is

a Nash equilibrium, it must be that i prefers to stay out than to enter, so

b ≤ c− (xr − xl). On the other hand, it must be that both l and r prefer to

enter than to stay out, so b > 2c− (xr − xl), which contradicts the previous

inequality. Thus it is not possible that such player i exists.

Suppose now that there exists a player i that could enter proposing xi

and join the set of candidates that tie for the first place, making one of

them losing with certainty (such situation is possible when i enters between

a candidate that loses with certainty and a candidate that ties for the first

place).

Since s∗ is a Nash equilibrium of ΓC , so it must be that i prefers to stay

12To be sure, note that this does not necessarily mean that such a player would then

enter.
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out then to enter, hence

b

2
− c− xr − xl − d

2
≤ −xr − xl

2
,

where d is the distance between xi and the policy proposed by a candidate

who becomes a certain loser after i’s entry. Thus the first inequality is equiv-

alent to b ≤ 2c−d. Hence there exists bD, such that b ≤ bD and c < bD ≤ 2c,

and for any such bD, the strategy profile s′ is a Nash equilibrium of ΓCD

with costs c and benefits bC = b and bD, as no entry is possible under these

conditions and player i prefers to enter the competition than to stay out.

Suppose now that there exists a player i that could enter proposing xi

and join the set of candidates that tie for the first place. Since s∗ is a Nash

equilibrium of ΓC , it must be that i prefers to stay out than to enter, so

b ≤ 3c−(xr−xl)/2. Hence there exists bD, such that b ≤ bD and c < bD ≤ 3c,

and for any such bD, the strategy profile s′ is a Nash equilibrium of ΓCD with

costs c and benefits bC = b and bD, as no entry is possible under these

conditions and player i prefers to enter the competition than to stay out.

If any player entering under s∗ loses with certainty, then for any bD, such

that bD > c and bD ≥ b, the strategy profile s′ is a Nash equilibrium of ΓCD

with costs c and benefits bC = b and bD, as no entry is possible under these

conditions and each of candidates prefers to stay for the competition than to

stay out.

For the last case, suppose that |W (s∗)| ≥ 3. We will show first that it is

not possible for any player to enter and win outright under s∗. For suppose

the opposite and let i be a player that could enter and win outright. Since

s∗ is a Nash equilibrium of ΓC , it must be that i prefers to stay out then to

enter, so b ≤ c − ûi(s
∗). On the other hand, as it was shown in [Osborne

and Slivinski, 1996, Proposition 4], it must be that b ≥ |W (s∗)|c, which

contradicts the previous inequality. Thus it is not possible that such a player

i exists.

Secondly, we will show that it is not possible for any player i to enter

proposing xi and join the set of candidates that tie for the first place, making

one of them lose with certainty (such situation could be possible when i enters
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between a candidate that loses with certainty and a candidate that ties for

the first place).

Since s∗ is a Nash equilibrium of ΓC , so it must be that i prefers to stay

out then to enter, hence

b

|W (s∗)|
− c− ûi((s

∗
−i, E)) ≤ −ûi(s

∗).

Notice that

ûi((s
∗
−i, E)) = ûi(s

∗)− d

|W (s∗)|
,

where d is a distance between xi and the policy proposed by a candidate who

becomes a certain loser after i’s entry. Thus the first inequality is equivalent

to b ≤ |W (s∗)|c − d/|W (s∗)|. But then b < |W (s∗)|c, which contradicts the

fact that it must be b ≥ |W (s∗)|c. Hence such situation is not possible.

Suppose now that there exists a player i that could enter proposing xi

and join the set of candidates that tie for the first place. Since s∗ is a Nash

equilibrium of ΓC , so it must be that i prefers to stay out then to enter, and

so b ≤ (|W (s∗)|+ 1)c− ûi(s
∗) (c.f. proof of Proposition 3).

Hence there exists bD, such that b ≤ bD and c < bD ≤ (|W (s∗)|+ 1)c, and

for any such bD strategy profile s′ is a Nash equilibrium of ΓCD with costs

c and benefits bC = b and bD, as no entry is possible under these conditions

and player i prefers to stay in than to stay out of competition.

If any player entering under s∗ loses with certainty, then for any bD, such

that bD > c and bD ≥ b, the strategy profile s′ is a Nash equilibrium of ΓCD

with costs c and benefits bC = b and bD, as no entry is possible under these

conditions and each of candidates prefers to stay for the competition than to

stay out.

Notice that in all the cases studied above, apart from the one with

|W (s∗)| = 2, it was possible to have bD > |W (s∗)|c for which s′ is a Nash

equilibrium of ΓCD with costs c and benefits bC = b and bD. ut

We are particularly interested in Nash equilibria of ΓCD with Downsian

candidates. Hence we ask the following question: under what conditions is
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it possible to transfer Nash equilibria of ΓC to ΓCD when some of the citizen

candidates are replaced by Downsian candidates. Obviously, the necessary

conditions for such replacements follow from properties of Nash equilibria of

ΓCD given in Lemma 1 and Lemma 2. Additional constraints follow from

properties of the distribution F : for each Downsian player that replaces a

citizen candidate it cannot be profitable to move to a new position.

To prove our result, we nee the following lemma that gives necessary

and sufficient conditions for impossibility of profitable repositioning by a

Downsian player replacing a citizen candidate within the interval defined

by its left and right neighbours. The proof of the lemma is moved to the

Appendix.

Lemma 4. Let s be a strategy profile of ΓCD satisfying properties given in

Lemma 1 and Lemma 2. Let {l, i, r} ⊆ K(s) be candidates such that l =

l(s, i), r = r(s, i), i ∈ W (s)∩D and xi is proposed by exactly one candidate.

Then there is no x ∈ (xl(s,i), xr(s,i)), such that i strictly prefers (s−i, x) to s

iff the following conditions are satisfied:

NMR(i,s)

(1). if l ∈ W (s), then for all t ∈ (0, (xr − xi)/2),

F (bil + t)− F (bil) > L(F (blr + t)− F (blr))/(L+ 1),

(2). if l ∈ L(s) and the mass of support that l gets is Sl, then for all t ∈
(0, (xr − xi)/2), if F (bir)− F (bil + t) ≥ Sl, then

F (bil + t)− F (bil) ≥ F (blr + t)− F (blr)) and

if F (bir)− F (bil + t) < Sl, then

F (bil + t)− F (bil) ≥ L(F (blr + t)− F (blr) + S − Sl)/(L+ 1),

NML(i,s)

(1). if r ∈ W (s), then for all t ∈ (0, (xi − xl)/2),

F (bir)− F (bir − t) > R(F (blr)− F (blr − t))/(R + 1),

(2). if r ∈ L(s) and the mass of support that r gets is Sr, then for all

t ∈ (0, (xr − xi)/2), if F (bir − t)− F (bil) ≥ Sr, then
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F (bir)− F (bir − t) ≥ F (blr)− F (blr − t) and

if F (bir − t)− F (bil) ≥ Sr, then

F (bir)− F (bir − t) > R(F (blr)− F (blr − t) + S − Sr)/(R + 1).

where bli = (xl + xi)/2, bir = (xi + xr)/2, blr = (xl + xr)/2, R is the number

of right neighbours of i, L is the number of left neighbours of i and S =

F (bir)− F (blr) is the mass of support that i gets.

We are unable to give any general properties of the function f that would

be associated with conditions NMR(i,s) and NML(i,s) given in Lemma 4.

However we can give the following property which is necessary if the condi-

tions are satisfied, given that f is continuous. The proof can be found in the

appendix.

Fact 1. Let s and i be like in Lemma 4 and suppose that f is continuous on

(xl, xr). If conditions NMR(i,s) and NML(i,s) are satisfied, then

1. if l ∈ L(s), then f(bli) ≥ f(bir).

2. if l ∈ W (s), then f(bli) ≥ Lf(bir)/(L+ 1).

3. if r ∈ L(s), then f(bli) ≤ f(bir).

4. if r ∈ W (s), then f(bli) ≤ (R + 1)f(bir)/R.

Having established necessary and sufficient conditions for impossibility of

profitable repositioning by Downsian players within the interval defined by

the left and right neighbour, we are ready to give a proposition that gives

necessary and sufficient conditions for strategy profiles in ΓCD constructed

on the basis of Nash equilibria of ΓC to be Nash equilibria of ΓCD.

Proposition 6. Let s∗ be a Nash equilibrium in ΓC with a non atomic dis-

tribution F , benefits b and costs c and let s′ be a strategy profile of ΓCD

corresponding to s∗, such that there exists i′ ∈ D that replaces some i ∈ C in

s∗. Then there exist bC, bD and c′ such that s′ is a Nash equilibrium of ΓCD

with benefits bC, bD and costs c′ iff |K(s∗)| = 1 implies that X(s∗) = {m} and
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the following conditions are satisfied for each Downsian player i′ replacing

citizen candidate i not sharing his proposed policy with another candidate:

(i). i /∈ L(s∗),

(ii). if l(s∗, i) = −∞ or r(s∗, i) = +∞, then xi is proposed by two candi-

dates,

(iii). if xl(s∗,i) and xr(s∗,i) are proposed by two candidates each, then xi is

proposed by two candidates,

(iv). conditions NML(i′,s′) and NMR(i′,s′) are satisfied.

Proof. Let s∗ be a Nash equilibrium in ΓC and let s′ be a strategy profile in

a ΓCD obtained from s∗ as stated in the proposition.

The left to right implication follows immediately from Lemma 1, Lemma 2

and Lemma 4.

For the right to left implication, suppose that conditions (i) – (iv) are

satisfied for any Downsian candidate replacing a citizen candidate proposing

his policy alone. By condition (ii), this means that |W (s∗)| 6= 2.

Let bD be such that (s∗, (N)j∈D) is a Nash equilibrium of ΓCD with benefits

bD > |W (s∗)|c, bC = b and costs c (by Proposition 5 such bD exists). We will

show that s′ is a Nash equilibrium of ΓCD with exactly the same costs and

benefits.

To show this, it is enough to show that none of the Downsian candidates

under s′ strictly prefers to stay out of the competition or propose a different

policy (by the fact that (s∗, (N)j∈D) is a Nash equilibrium of ΓCD, it follows

that no player staying out of the competition prefers to enter the competition

and no citizen candidate strictly prefers to stay out of the competition).

Notice first that since bD > |W (s∗)|c, so it is not profitable for any of the

Downsian candidates to stay out of the competition.

Take any Downsian candidate i ∈ K(s∗) proposing policy xi. If |K(s∗)| =
1, then it is easy to see that changing the proposed policy does not change

i’s expected payoff. On the other hand, if |K(s∗)| > 1, then two cases are
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possible: (a) xi is proposed by some other candidate or (b) xi is proposed by

i only.

For case (a) observe that since (s∗, (N)j∈D) is a Nash equilibrium of ΓCD,

so it is not possible for any player to enter and obtain a mass of support

greater of equal to the mass of support obtained by candidates tying for the

first place. Hence if i repositioned himself to any new policy x 6= xi, he would

obtain smaller mass of support that the other candidate proposing xi and

so i would lose with certainty. Thus it is not profitable for i to change his

proposed policy.

For case (b) observe that, by condition (iv) and Lemma 4, it is not prof-

itable for i to propose a different policy x within the interval
(
xl(s∗,i), xr(s∗,i)

)
.

Also, since (s∗, (N)i∈D) is a Nash equilibrium of ΓCD, so there cannot be x

outside
(
xl(s∗,i), xr(s∗,i)

)
, such that i would strictly prefer to propose x instead

of xi (as otherwise it would be possible for some other player to enter at x

and win outright).

Hence s′ is a Nash equilibrium of ΓCD with benefits bC, bD and costs c. ut

As Proposition 6 suggests, there can exist many equilibrium configura-

tions involving both citizen and Downsian candidates, provided that the dis-

tribution F satisfies additional properties and conditions from Lemma 1 and

Lemma 2. We are unable give any general characterisation of such equilib-

ria, however we give the following examples to show how constructing Nash

equilibria of ΓCD from Nash equilibria of ΓC can be done.

The following example demonstrates a case where a Nash equilibrium

with 3 candidates in ΓC can be replicated in ΓCD with one new Downsian

player as a candidate.

Example 2. Let s∗ be a strategy profile of ΓC with candidates K(s∗) =

{i, j, k}, such that xi < xj < xk. As was shown in Osborne and Slivinski

[1996], if (xi +xj)/2 = a1/3, (xk +xj)/2 = a2/3, then s∗ is a Nash equilibrium

of ΓC, for any non atomic distribution F . Benefits b and costs c must satisfy

the following conditions: b > 3(c+xi−xj) +xk−xi and b > 3(c+xj−xk) +

xk − xi. Notice that this implies that b > 3c.
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Consider a strategy profile s′ =
(
(s∗−j, N), xj, (N)l∈D\{j′}

)
of ΓCD, ob-

tained from s∗ by replacing citizen candidate j with a Downsian candidate j′,

who enters the competition proposing policy xj. It follows from Proposition 6,

s′ is a Nash equilibrium of ΓCD with costs c and benefits bC = bD = b iff F

satisfies conditions NMR(j′,s′) and NML(j′,s′).

For example, for any F , such that f is a single peaked function, with its

maximum within the interval (a1/3, a2/3) and satisfying f(a1/3) ≥ f(a2/3)/2

and f(a2/3) ≥ f(a1/3)/2, conditions NMR(j′,s′) and NML(j′,s′) are sat-

isfied. Hence, for any such distribution a Nash equilibrium with three candi-

dates proposing different policies and tying for the first place, with Downsian

candidate proposing the middle policy, exists if benefits and costs satisfy con-

ditions given above. Moreover the policy proposed by a Downsian candidate

lies within interval
(
a1/3, a2/3

)
, while policies proposed by citizen candidates

lie outside this interval.

Notice that if either f(a1/3) < f(a2/3)/2 or f(a2/3) < f(a1/3)/2, then it

is impossible to have a Nash equilibrium in ΓCD with three candidates, each

taking a different position and one of the a Downsian player.

The next example shows that it is possible to have a Nash equilibrium

in ΓCD with four winning candidates and up to three Downsian players. It

shows also that it is possible to have an equilibrium configuration where a

Downsian player proposing his policy alone neighbours two players proposing

the same policy.

Example 3. Let s be a strategy profile in ΓCD, such that K(s) = {i, j1, j2, k},
where i ∈ C, k ∈ D and players j1 and j2 could be either Downsians or

citizens. Moreover, let xj1 = xj2 = a3/4, xk = 2a1/2 − a3/4 and xi = 2a1/4 +

a3/4 − 2a1/2. Let costs c > 0 be such that c ≥ a1/2 − (a1/4 + 3a3/4)/2 and

c ≥ (3a1/4 + 5a3/4)/2− 4a1/2 and let benefits bC > 0 and bD ≥ bC be such that

bC > 4c + 2(a3/4 − a1/4). Suppose also that the distribution F is such that

2a1/2 > a1/4 + a3/4.

It is easy to check that if conditions given above are satisfied, it holds that

xi < xk < xj1 = xj2 and all candidates receive the same mass of support 1/4.
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Figure 2: Four party equilibrium with a Downsian candidate having two

neighbours proposing the same policy.

Moreover none of the candidates is better off by withdrawing independent of

whether any of the candidates j1 and j2 is a citizen, as guaranteed by high

enough level of benefits. It is also impossible for any player to enter and win

outright or to join the set of winners. Entering and losing with certainty

by a citizen player is also impossible as costs are high enough to prevent it.

It is also impossible for any of the players j1 and j2 to reposition himself

to a position which would allow him to be one of the players that do not

lose with certainty (if any of these players is a Downsian player). Hence

the only thing that needs to be guaranteed for s to be a Nash equilibrium of

ΓCD is impossibility of profitable repositioning by a Downsian player k. Not

every distribution satisfying conditions given above guarantees that, however

there are distributions that do, as illustrated in Figure 2. In the figure, bij =

(xi + a3/4)/2 = a1/4 + a3/4 − a1/2.

Thus under the distribution F presented in Figure 2, the strategy profile

s is a Nash equilibrium in ΓCD.

4.3 Benefits of The Citizens

As we can see from the proof of Proposition 3, the constraints required on

citizens’ benefits for a configuration to remain a Nash equilibria of ΓC are

more strict than those for the same citizens in ΓCD. Hence it is possible to

have equilibrium configurations in ΓCD which, if to be supported as equilibria

in ΓC would in turn require higher benefits for citizens in ΓC . In particular,
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it is not true for ΓCD that the condition bC ≥ |W (s∗)| is necessary to have

s∗ as a Nash equilibrium, as it was in ΓC (c. f. [Osborne and Slivinski, 1996,

Proposition 4]). The following two examples illustrate this.

Example 4. Let s∗ be a strategy profile of ΓCD with candidates K(s∗) =

{l1, l2, i, r1, r2}, such, that xl1 = xl2 = a1/5, xr1 = xr2 = a4/5, xi = 2a2/5 −
a1/5, {l1, l2, r1, r2} ⊆ D and i ∈ C. Let the distribution F be such that

2a2/5 − a1/5 = 2a3/5 − a4/5. Then a1/5 < xi < a4/5 and each candidate

receives the same mass of support. Suppose also that (a1/5 + a4/5)/2 < m.

Then after i withdraws, xr1 and xr2 would be the only candidates tying for

the first place.

If we take bD > 5c and bC > 5(c + (3a4/5 − a1/5 − 2a3/5)), then it is

not profitable for any candidate to stay out of the competition. Moreover, if

c > 2(a2/5 − a1/5 − 2(a4/5 − a3/5)) and c > 2(a4/5 − a3/5 − 2(a2/5 − a1/5)),

then it is not profitable for any citizen to enter and lose with certainty. It

is also not possible for any player to enter and win outright or join the set

of candidates tying for the first place. Similarly, it is impossible for any

Downsian candidate to reposition himself and win outright or be a candidate

tying for the first place. Hence s∗ is a Nash equilibrium of ΓCD.

Notice that if 2a2/5 − a1/5 = 2a3/5 − a4/5 < (a1/5 + a4/5)/2, so that xi

is closer to a1/5 than to a4/5, then constraints on citizens benefits allow for

benefits below 5c, as this condition is equivalent to 3a4/5 − a1/5 − 2a3/5 < 0.

Hence it is possible to have a Nash equilibrium in ΓCD with bC < |W (s∗)|c.

Example 5. Let s∗ be a strategy profile of ΓCD with candidates K(s∗) =

{i, j, r1, r2}, such, that xr1 = xr2 = a3/4, xj = 2m− a3/4, xi = 2a1/4 + a3/4 −
2m, {r1, r2} ⊆ D and {i, j} ⊆ C. Then xi < xj < a3/4 and each candidate

receives the same mass of support. Suppose also that a1/4 + a3/4 −m < a1/3,

so that after j would withdraw, candidate i would win outright.

If we take bD > 4c, bC > 4(c + 2(3m + a1/4 − 2a3/4)) and bC > 4(c +

2(8m+ 3a1/4− 5a3/4)), then it is not profitable for any candidate to stay out

of the competition (the first condition on bC prevents withdrawal by i and the

second one prevents withdrawal by j). Moreover, if c > 4a3/4−a1/4−5m and
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c > 8m + 3a1/4 − 5a3/4, then it is not profitable for any citizen to enter and

lose with certainty. It is also not possible for any player to enter and win

outright or join the set of candidates tying for the first place. Similarly, it is

impossible for any Downsian candidate to reposition himself and win outright

or be a candidate tying for the first place. Hence s∗ is a Nash equilibrium of

ΓCD.

Notice that if 2a3/4 > 3m + a1/4, so that xj is closer to a3/4 than to xi,

then constraints on benefits of citizen players allow for benefits below 4c, as

this condition is equivalent to 3m+a1/4−2a3/4 < 0 and, moreover, it implies

that 8m+ 3a1/4 − 5a3/4 < 0.

Hence it is possible to have a Nash equilibrium in ΓCD with bC < |W (s∗)|c.

The following proposition gives necessary conditions relating benefits and

costs of players and possible equilibrium configurations with at least three

candidates tying for the first place.

Proposition 7. Let s∗ be a Nash equilibrium of ΓCD with |W (s∗)| ≥ 3.

Then it holds that bD > |W (s∗)|c. Moreover if each of the extreme policies if

proposed by a citizen candidate, then bC > |W (s∗)|c.

Proof. Let s∗ be a Nash equilibrium of ΓCD as stated in the proposition.

Suppose that there is a Downsian candidate under s∗. Then, obviously, it

must hold that bD > |W (s∗)|c. On the other hand, suppose that each of the

extreme policies is proposed by a citizen candidate. Let a citizen candidate

proposing the left extreme policy be denoted by l and a citizen candidate

proposing the right extreme policy be denoted by r. Since it is not profitable

for neither l nor r to stay out of the competition, so it must hold that:

bC
|W (s∗)|

− c− ûl(s
∗) > −dl

and
bC

|W (s∗)|
− c− ûr(s

∗) > −dr,

where dl is the distance between l and his right neighbour (if xl is proposed

by exactly one candidate) or 0 (otherwise), and dr is defined analogically.
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It can be easily seen that ûl(s
∗)+ ûr(s

∗) = xr−xl (see proof of Lemma 3).

Hence, adding sides of the two inequalities we get

2bC
|W (s∗)|

− 2c− (xr − xl) > −(dl + dr)

and consequently bC > |W (s∗)|(c + (xr − xl − (dl + dr))/2). Since xr − xl >

dl + dr, so it follows that bC > |W (s∗)|c.
Notice, in particular, that if there are no Downsian candidates under s∗,

then it must be that bC > |W (s∗)|c and since bD > bC, so it must also be that

bD > |W (s∗)|c. ut

4.4 Who runs office: a discussion

As mentioned in Section 1, an important question that arises when a model of

political competition is studied where ideology motivated politicians compete

with those motivated by benefits from running the office only is which type of

candidates is more likely to win the election. This question is directly posed

in a model of incomplete information and two competing parties by Callander

[2008]. We can ask a similar question in our model of complete information

but with free-entry and the answer would rely solely on the number of can-

didates of different types that are tying for the first place in equilibrium

configurations.

The possible number of Downsian candidates depends on two factors:

(a) the configuration of candidates under the equilibrium (i. e. the policies

proposed, the numbers of candidates proposing each policy and candidates

tying for the first place) and (b) the distribution of voters’ ideal policies, F .

The way in which factor (a) affects this number follows immediately from

conditions (i) – (iii) given in Proposition 6 and by the fact that a citizen

candidate sharing his proposed policy can be always replaced by Downsian

candidate. The way in which factor (b) affects this number follows from

condition (iv).

We have already shown explicitly that if there are two candidates in

equilibrium, then all of them must be citizens (that is ideology motivated
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politicians) (c. f. Proposition 2). This, in light of Callander [2008] is new – it

shows that if identity of a politician is common knowledge and there is free

entry, then in cases where there are exactly two competing parties (a case

that is empirically well supported in view of Duverger’s Law), none of them

can be only office motivated.

If there are three candidates under an equilibrium configuration, then, as

was shown in [Osborne and Slivinski, 1996, Proposition 3] three configura-

tions are possible:

1. If two candidates are tying for the first place and one is losing with

certainty, than all candidates must be citizens (that is ideology moti-

vated);

2. If all three candidates are tying for the first place, but exactly two

different policies are proposed, then it is possible to have at most one

or two Downsian candidates sharing their proposed policy with other

candidate. Notice that if there are exactly two Downsian candidates

in this case, then the ideology motivated candidate is less likely to win

the elections.

3. Lastly, if all three candidates are tying for the first place and each of the

proposes a different policy, then there can be at most one Downsian

candidate in this configuration, depending on the distribution (c. f.

Example 2). Hence it is more likely to have an ideology motivated

candidate winning the election under this configuration.

Such analysis of different cases could be continued for equilibrium con-

figurations with more than three candidates (e. g. it is possible to have a

four party equilibrium where only one candidate is ideology motivated, c. f.

Example 3). However, one thing comes out clearly from our analysis: the

more candidates in equilibrium, the more possibilities there are for ideol-

ogy motivated candidates to be in minority, and hence less likely to win the

elections.
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5 Conclusions

The paper studies electoral competition amongst citizen-candidates and Down-

sian politicians with one dimensional ideology space and provides existence

and characterization of Nash equilibria in pure strategies. In this, an inter-

esting result is that in any 2-party equilibrium, all contesting players must

necessarily be ideology driven. The paper also sheds some light on how the

set of multi-party equilibria compare between a model with only ideology-

driven players with that where there are Downsian players. Throughout the

analysis it is assumed that Downsian and citizen identities of players are

common knowledge. Relaxing this assumption, in line with Callander [2008]

is our next research agenda. Also some of the results depend upon the as-

sumption that Downsian politicians earn a weakly higher personal reward

from holding office. We hope to relax this assumption in a future study as

well.

Appendix

Lemma 1. The proof is very similar to the proof of Lemma 1 from Osborne

[1993]. Point (iv) holds immediately because each Downsian player prefers

to stay out of the competition, if he loses with certainty. For Point (v),

assume that some policy x ∈ X(s∗) is proposed by more than one candidate.

Take any such candidate. If he is a Downsian candidate, then by point (iv),

point (v) is satisfied. If this player is a citizen candidate, then it is more

profitable for him to stay out of the competition, if he loses with certainty,

as his ideal point will still be proposed by some other player.

For point (vi), the only case that is not covered by points (iv) and (v)

is the one where an extreme policy is proposed by uniquely by a single cit-

izen candidate i. Without loss of generality suppose that xi is the leftmost

extreme policy. Notice that if i was losing with certainty, then he would

be better of by staying out of the competition. This is because if he is los-

ing with certainty, then |K(s∗)| ≥ 2 and there must be some other player
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j ∈ W (s∗). Moreover, if i does not enter, then the expected payoff he gets

can only increase, as the cost of entry is removed and negative payoff follow-

ing from distances to winning candidates can only increase, because it might

only make a candidate proposing r(s∗, i) to win outright.

For point (iii), suppose that xi ∈ X(s∗) is a policy proposed by n ≥ 2

candidates (among them player i) and let S be the constituency of xi. By

point (v), none of the candidates proposing xi loses with certainty. Hence

the mass of votes each of them gets is S/n. Assume that one of the semi-

constituencies of xi is greater than another. Without loss of generality assume

this is the left constituency. Hence F (xi) − F
(
(xl(s∗,i) + xi)/2

)
> S/2. By

the fact that F is continuous and non decreasing, there exists t ∈
(
xl(s∗,i), xi

)
,

such that F (t) − F
(
(xl(s∗,i) + xi)/2

)
> S/2. Entry by a player proposing t

gives him the support > S/2 ≥ S/n, so that the entering player would win

outright. But this contradicts the assumption that s∗ is a Nash equilibrium.

Analogical argument can be used to show that point (i) holds as well.

For point (ii), suppose, without loss of generality, that xi ∈ X(s∗) is

the extreme left policy proposed by some unique Downsian candidate i ∈
K(s∗) ∩ D. Since we have |K(s∗)| ≥ 2, so r(s∗, i) 6= +∞ and, by point (vi),

there is a candidate proposing a policy different to xi, who does not lose

with certainty. Also, by the assumption that F is non atomic, if i proposed

some different policy x′i ∈
(
xi, xr(s∗,i)

)
, then he would win outright. But this

contradicts the assumption that s∗ is a Nash equilibrium. Hence point (ii)

must hold. ut

Lemma 4. Let s be a strategy profile of ΓCD with {l, i, r} ⊆ K(s) like stated

in the lemma.

For the left to right implication, suppose that there does not exist x such

that i prefers to propose x instead of xi. Suppose also that one of the con-

ditions NMR(i,s) or NML(i,s) is not satisfied. Without loss of generality

suppose that NMR(i,s) is not satisfied (arguments in case of NML(i,s) are

analogical).

Suppose first that l ∈ W (s). In this case, if condition NMR(i,s) is

42



not satisfied, then there exists t ∈ (0, (xr − xi)/2), such that F (bil + t) −
F (bil) ≤ (F (blr + t)− F (blr))/R. Suppose that i proposes x = xi + 2t. Then

the mass of support of all right neighbours (one or two) of i will decrease.

On the other hand, the mass of support of i will increase by F (blr + t) −
F (blr) − (F (bil + t) − F (bil)), and the mass of support of each of the left

neighbours (one or two) of i will increase by (F (bil + t) − F (bil))/L. Hence

if F (bil + t)− F (bil) ≤ L(F (blr + t)− F (blr))/(L+ 1), then either i gets the

largest support and wins outright (if the inequality is strict) or he ties for the

first place with his left neighbour (otherwise). In both cases i strictly prefers

to propose x instead of xi, hence we get a contradiction with our assumptions

and so the condition NMR(i,s) must be satisfied.

Secondly, suppose that l ∈ L(s) (by point (v) of Lemma 1, xl is proposed

by l only). In this case, if condition NMR(i,s) is not satisfied, then there

exists t ∈ (0, (xr − xi)/2), such that either F (bir) − F (bil + t) ≥ Sl and

F (bil + t) − F (bil) < F (blr + t) − F (blr)), or F (bir) − F (bil + t) < Sl and

F (bil + t)−F (bil) ≥ L(F (blr + t)−F (blr) + S − Sl)/(L+ 1). Again, suppose

that i proposes x = xi + 2t.

Suppose, that F (bir) − F (bil + t) ≥ Sl and F (bil + t) − F (bil) < F (blr +

t) − F (blr)). Then the mass of support of all right neighbours (one or two)

of i will decrease. On the other hand, the mass of support of i will increase

to S + F (blr + t) − F (bil + t), and the mass of support of will increase to

Sl + F (bil + t) − F (bil) ≤ S. Hence i will gain the largest mass of support

and will win outright.

Now suppose, that F (bir) − F (bil + t) < Sl and F (bil + t) − F (bil) ≥
L(F (blr + t) − F (blr) + S − Sl)/(L + 1). Again, the mass of support of

all right neighbours (one or two) of i will decrease, the mass of support of

i will increase to S + F (blr + t) − F (bil + t)) and the mass of support of

l will increase to Sl + F (bil + t) − F (bil). Hence if F (bil + t) − F (bil) ≤
L(F (blr + t)−F (blr) +S−Sl)/(L+ 1), then either i gets the largest support

and wins outright (if the inequality is strict) or he ties for the first place with

his left neighbour (otherwise). In both cases i strictly prefers to propose x
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instead of xi.

In all the cases studied above we get a contradiction with our assump-

tions and so the condition NMR(i,s) must be satisfied. Showing that condi-

tion NML(i,s) must be satisfied as well can be done by similar arguments.

For the right to left implication, suppose that conditions NMR(i,s) and

NML(i,s) are satisfied. By analysis similar to the one above it can be seen

that condition NMR(i,s) denies profitable repositioning to x ∈ (xi, xr) and

condition NMR(i,s) denies profitable repositioning to x ∈ (xl, xi). ut

Fact 1. Suppose that s, i and f are like stated in the lemma and that con-

ditions NMR(i,s) and NML(i,s) are satisfied.

Assume first, that l ∈ L(s). Since Sl < S, so there exists 0 < ε ≤
(xr − xi)/2, such that for all t ∈ (0, ε), Sl + F (bil + t) − F (bil) ≤ S, that is

F (bir)− F (bil + t) ≥ Sl. By condition NMR(i,s) it holds that∫ bli+t

bli

f(x) dx ≥
∫ bri+t

bri

f(x) dx,

for all t ∈ (0, ε). Suppose that f(bli) < f(bir). Since f is continuous, so there

exists δ > 0, such that f(bli + t) < f(bir + t), for all t ∈ (0, δ). But then

we get a contradiction with condition NMR(i,s). Hence it must be that

f(bli) ≥ f(bir). Similarly, it can be shown that if r ∈ L(s), then it must be

that f(bir) ≥ f(bli).

Secondly, assume that l ∈ W (s). By condition NMR(i,s) it holds that∫ bli+t

bli

f(x) dx ≥ L

L+ 1

∫ bri+t

bri

f(x) dx,

for all t ∈ (0, (xr − xi)/2). Using similar arguments as above, we can show

that it must be then, that f(bli) ≥ Lf(bir)/(L + 1). Similarly, it can be

shown that if r ∈ W (s), then it must be that f(bir) ≥ Rf(bli)/(R + 1). ut
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