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Abstract

The paper investigates the impacts of the volatility of monetary policy on the econ-
omy in a DSGE model with financial frictions à la Bernanke, Gertler, and Gilchrist
(1999). The model is estimated by the particle filter maximum likelihood estimator
for the U.S. economy. Our results first show that a positive monetary volatility
shock causes a contraction in economic activity: output, consumption, investment,
hours, and real wages fall. Second, we argue that financial frictions amplify the
effects of the shock via the financial accelerator mechanism. Third, we document
that the size of the effects of the shock is relatively small mostly because of the
counteracting response of monetary policy to the shock. Therefore, the impacts
would be substantial if monetary policy was restrained to respond to changes in
current conditions in the economy.
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1 Introduction

The role of financial frictions in business cycles has been attracting the interest of both
academics and policy makers, especially after the recent financial crisis. The seminal work
of Bernanke, Gertler and Gilchrist (1999) develops a framework combining nominal rigidi-
ties with an agency cost model and argues that endogenous developments in the credit
market can significantly amplify and propagate shocks to the economy through the finan-
cial accelerator mechanism. The core of this mechanism lies at the negative relationship
between the net worth of firms and the external premium demanded by lenders. With
respect to monetary policy, their model shows that an unanticipated increase in the nom-
inal interest rate decreases the demand for capital and therefore causes a fall in its price.
The decline in the value of capital reduces entrepreneurs’ net worth and thus leads to a
higher external premium, which further lowers investment and output. Christensen and
Dib (2008) and Christiano, Motto and Rostagno (2010), among others, provide quantita-
tive evidence to support the financial accelerator and assert that financial frictions play
a significant role in transmitting monetary policy disturbances to the real economy.1

This paper investigates further the interaction between financial frictions and mone-
tary policy. However, our attention is directed to the impacts of changes in the volatility
of monetary policy on the economy instead of those in its level. While the latter has been
discussed extensively in the literature, including the papers above, only few studies have
considered the former, as reviewed below. Shifts in the volatility of monetary policy are
important because they relate to monetary policy uncertainty which has been a pivotal
theme in policy discussions, especially after the recent financial crisis. For example, Hawks
and doves at the Federal Reserve System have argued about the extent of quantitative
easing and the appropriate monetary stance given opposing signals from core and headline
inflation measures (Born and Peifer 2014). Furthermore, an increasing number of stud-
ies (for instance, Justiniano and Primiceri 2008, Fernández-Villaverde, Guerrón-Quintana
and Rubio-Ramı́rez 2010, Mumtaz and Zanetti 2013) have shown that the volatility of
monetary policy shocks has changed substantially in the U.S. Specifically, it was large
during the Great Inflation of the mid 1970s and early 1980s, became mild after the mid
1980s and increased significantly during the recent crisis (Mumtaz and Zanetti 2013).

In order to model changes in the volatility of shocks, the literature has proposed
three alternatives: stochastic volatility, GARCH, and Markov regime switching mod-
els. A detailed comparison between these approaches is reported in Fernández-Villaverde
and Rubio-Ramı́rez (2010). We use the first method following most of the literature
on macroeconomics and volatility (for example, Born and Peifer 2014, Gilchrist, Sim
and Zakraǰsek 2014, Cesa-Bianchi and Fernandez-Corugedo 2014, Fernández-Villaverde
et al. 2010, Arellano, Bai and Kehoe 2010, Justiniano and Primiceri 2008). Therefore,
there are two types of shocks relating to monetary policy: one affects the level of the inter-
est rate (first moment shocks or structural shocks or level shocks) and the other affects the
standard deviation of the interest rate (second moment shocks or volatility shocks). Note

1Christensen and Dib (2008) estimate a dynamic stochastic general equilibrium model with the
Bernanke-Gerltler-Gilchrist financial frictions for the U.S., while Christiano et al. (2010) consider both
the Euro Area and the U.S.
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that we assume the nominal interest rate to be the only instrument of monetary policy, as
opposed to a monetary supply aggregate, as in line with Smets and Wouters (2007). This
assumption appears to be reasonable to describe U.S. monetary policy (Clarida, Gaĺı and
Gertler 1999).

We then incorporate the stochastic volatility of monetary policy into a sticky-price
DSGE model embedded with the financial frictions à la Bernanke et al. (1999). We also
allow time-variation in the standard deviations of other structural innovations, including
those of government spending innovations, investment-specific technology innovations,
and technology innovations, in order to capture aggregate dynamics. The diverse sources
of volatility in our paper are desirable as has been argued by the growing literature on the
role of volatility in business fluctuations such as Sims and Zha (2006) and Justiniano and
Primiceri (2008) among others. Moreover, Hamilton (2008) shows that even if the object
of interest is in the conditional mean, correctly modeling time-varying volatility can still
be quite important. Stochastic volatility has been mostly ignored in the literature on
financial frictions though.

Our paper is related to the studies on the aggregate effects of uncertainty. Al-
though this strand has been rapidly growing since the recent financial crisis (for instance,
Bloom 2009, Alexopoulos and Cohen 2009, Bloom, Floetotto, Jaimovich, Saporta-Eksten
and Terry 2012, Bachmann and Bayer 2011, Popescu and Smets 2010), there are only
few studies on the effects of policy uncertainty.2 Mumtaz and Zanetti (2013) estimate an
SVAR model for the U.S. economy and show that an increase in the volatility of monetary
policy leads to a fall in output growth. The authors also calibrate a simple DSGE model
enriched with the time-varying standard deviation of monetary policy shocks in order to
generate similar responses. Born and Peifer (2014) consider both fiscal and monetary un-
certainty in a DSGE model and conclude that policy risk has an adverse effect on output.
This result is also supported by Fernández-Villaverde, Guerrón-Quintana, Kuester and
Rubio-Ramı́rez (2013) and Fernández-Villaverde, Guerrón-Quintana, Rubio-Ramı́rez and
Uribe (2011). Financial frictions are not incorporated in these models though.

The present study is one of the few that integrates volatility and financial frictions,
which are two important issues emerging form the crisis, into a united framework to
analyze macroeconomic dynamics. We briefly review this branch as follows. Dorofeenko,
Lee and Salyer (2008) extend the Carlstrom and Fuerst (1997) agency cost model to
study the effect of the volatility of firm’s idiosyncratic productivity shocks and show
that an increase in the uncertainty leads to a fall in investment supply. Christiano,
Motto and Rostagno (2014) consider a so-called risk shock in an estimated DSGE model
incorporating the Bernanke et al. (1999) financial frictions and find that an increase in this
shock reduces consumption, investment and output. Moreover, they argue that this shock

2The influential paper of Bloom (2009) shows that jumps in uncertainty in response to major economic
and political shocks cause firms to pause their investment and hiring leading to a fall in productivity
growth and then output and employment. Alexopoulos and Cohen (2009) and Bloom et al. (2012)
affirm that an increase in the uncertainty results in a sharp drop and slow recovery in GDP. In contrast,
Bachmann and Bayer (2011) argue that uncertainty is unlikely to be a major quantitative source of
business cycle fluctuations. Popescu and Smets (2010) report similar results with Bachmann and Bayer
(2011).
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plays the most important role in driving the U.S. business cycle over the 1985-2010 period.
Arellano et al. (2010) build a model with heterogeneous firms and financial frictions and
find that increases in uncertainty at the firm level cause a large increase in the dispersion
of growth rates across firms and a contraction in economic activity. Gilchrist et al. (2014)
consider a model with heterogeneous firms, partial investment, irreversible, nonconvex
capital adjustment costs, and financial frictions in both the debt and equity markets. The
authors document the negative effects of firm level uncertainty shocks on the economy
and argue that credit spreads are an important channel through which uncertainty shocks
affect the economy. Cesa-Bianchi and Fernandez-Corugedo (2014) investigate the impacts
of two different types of uncertainty shocks: TFP and firm level uncertainty. They find
that the latter has a greater impact on economic activity because it is greatly magnified
by credit frictions. Finally, Bonciani and Van Roye (2013) consider the volatility of TFP
and show that financial frictions amplify the effect of uncertainty on the economy.

Our work differs from the above papers in three important aspects. First, we are,
to our best knowledge, the first to investigate the interaction between financial frictions
and policy uncertainty. Second, the parameters of exogenous processes of volatility in our
study are jointly estimated with other parameters of the model instead of being calibrated
as common in this strand of the literature. Note that a few papers have used proxies for
uncertainty shocks to estimate those parameters independently while calibrating other
parameters of the model- an approach that differs from the one applied in this paper.
Third, while the studies above are mainly confined to a certain type of uncertainty, we
incorporate a variety of uncertainty shocks. With such a variety, our model provides a
clearer picture about changes in the uncertainty in the U.S. by measuring the evolution
of those volatility shocks. This kind of exercise has been conducted in models without
financial frictions, for instance Justiniano and Primiceri (2008) and Fernández-Villaverde
et al. (2010).

Regarding the estimation, likelihood-based inference is a useful tool to take DSGE
models to the data (An and Schorfheide 2007). However, those models mostly do not
imply a likelihood function that can be calculated numerically or analytically. Therefore,
the model must be solved before it can be estimated. Linear approximation methods are
very popular because they result in a linear state-space representation of the model whose
likelihood can be obtained by the Kalman filter (An and Schorfheide 2007). Neverthe-
less, in a linearized version of our model, stochastic volatility would drop, canceling any
possibility of studying its impacts on the real economy. We therefore have to solve the
model to a higher-order approximation. This solution however leads to a non-linear state
space representation so that the Kalman filter can not be utilized to evaluate the likeli-
hood function. To overcome this issue, Fernández-Villaverde and Rubio-Ramı́rez (2007)
propose to use the particle filter which performs sequential Monte Carlo estimation using
a point mass representation of probability densities. Fernández-Villaverde et al. (2010)
apply the method to estimate a DSGE model with stochastic volatility. Following these
studies, we take advantages of the particle filter to evaluate the likelihood function in a
maximum likelihood framework. We use U.S. data for the estimation.

Our results first show that an increase in the volatility of monetary policy shocks
causes a contraction in consumption, investment, output and hours worked. The model is
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therefore successful in generating business-cycle co-movements among key macroeconomic
variables (see Basu and Bundick (2012)). Moreover, this contractionary effect resembles
the findings of Mumtaz and Zanetti (2013) and Born and Peifer (2014) who also study
the impacts of monetary volatility shocks. Second, we find that financial frictions amplify
the transmission of volatility shocks to the economy through the financial accelerator
mechanism. Our counterfactual exercises indicate that an increase in the level of financial
frictions leads to a greater fall in investment and output. This finding thus supports
Gilchrist et al. (2014) and Bonciani and Van Roye (2013).

Third, in line with Born and Peifer (2014), we find that the pure effect of monetary
uncertainty shocks is unlikely to play a considerable role in business cycle fluctuations.
However, this does not imply that time-varying volatility is unimportant. The estimates of
volatility shocks show that they were large during the 1970s and early 1980s but then have
declined considerably since around the mid-1980s. Our results therefore suggest that the
Great Moderation might be a consequence of a combination between both“good luck”and
“good policy”. Fourth, we document that the small impacts of a monetary volatility
shock on economic activity is due to dampening general equilibrium effects in the model,
mostly the stabilizing role of monetary policy. Our counterfactual experiment shows that
the contraction in economic activity would be sizable if monetary policy became less
responsive to current conditions.

The rest of the paper is organized as follows. Section 2 presents the baseline DSGE
model. Section 3 shows the state-space representation of the model. In section 4, we
present the estimates of model parameters and of structural and volatility shocks. Section
5 analyzes impulse response functions. Finally, section 6 concludes.

2 The DSGE Model

Our model is a cashless-limited closed-economy New Keynesian DSGE model that incor-
porates the financial-accelerator mechanism proposed by Bernanke et al. (1999). In this
small-sized model of the economy, there are five agents: households, capital producers,
entrepreneurs, retailers and policy authorities. Households make decisions on consump-
tion and hours worked to maximize their utilities subject to their intertemporal budget
constraints. Capital producers transform the investment component of output into new
capital goods which replace depreciated capital and add to capital stock. Entrepreneurs
produce wholesale goods. They borrow from financial intermediates to cover for the
difference between the expenditure on new capital and their net worth. Because of imper-
fect information between entrepreneurs and lenders, the former faces an external finance
premium that rises when their leverage increases. This is how financial frictions are in-
corporated into the model. Retailers are introduced to motivate sticky prices. They buy
the wholesale goods from the entrepreneurs, transform them into differentiated goods,
and set prices in the Calvo type. Finally, authorities conduct both monetary and fiscal
policy. The nominal interest rate, which is supposed to be the only tool of monetary
policy, follows a Taylor rule that responds to the deviations of inflation and output from
their steady states. Regarding fiscal policy, government spending is financed by lump-sum
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taxes.
Although our main interest is on monetary policy innovations, we include technology

innovations, investment specific technology innovations, and government spending innova-
tions into the model to capture aggregate dynamics. All standard deviations are assumed
to be time-varying following an AR(1) process. Consequently, there are four structural
shocks and four volatility ones brought into the model, which makes the number of shocks
driving the economy eight.

2.1 Households

The representative household chooses consumption Ct, the amount of risk-less bonds Bt+1

and hours worked ht to maximize the following lifetime utility function

Et

∞∑
k=0

βk

(
log(Ct+k − χCt+k−1)−$

h1+ϑ
t+k

1 + ϑ

)
, (2.1)

where β ∈ (0, 1) is the discount factor, χ controls habit persistence, $ controls the level of
labor supply, and ϑ is the inverse of the Frisch elasticity. Moreover, Ct is the consumption
index given by

Ct =

(∫ 1

0

Ct(i)
1− 1

ζ di

) ζ
ζ−1

, (2.2)

where ζ is the elasticity of substitution and Ct(i) represents the quantity of good i con-
sumed by the household in period t. We assume the existence of a continuum of goods
represented by the interval [0,1].

Maximization of (2.1) is subject to a sequence of flow budget constraints given by∫ 1

0
Pt(i)Ct(i)di

Pt
+
Bt+1

Pt
≤ Rn,t−1Bt

Pt
+
Wtht
Pt

+ Transfers + Profits, (2.3)

where Pt(i) is the price of good i, Bt+1 is the amount of risk-less bonds held between
period t and period t+1 which pay a nominal gross interest rate Rn,t at maturity, and Wt

is the wage rate. The household receives lump-sum transfers from the government and
profits from firms. Pt is the aggregate price index given by

Pt =

(∫ 1

0

Pt(i)
1−ζdi

) 1
1−ζ

.

For each differentiated good i, the household must decide how to choose Ci to maximize
(2.2) for any given level of expenditures

∫ 1

0
Pt(i)Ct(i)di. The first-order solution yields

the set of demand equations for consumption

Ct(i) =

(
Pt(i)

Pt

)−ζ
Ct,
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for all i ∈ [0, 1]. Thus, ∫ 1

0

Pt(i)Ct(i)di = PtCt. (2.4)

Substituting (2.4) into the budget constraint (2.3) results in

Ct +
Bt+1

Pt
≤ Rn,t−1Bt

Pt
+
Wt

Pt
ht + Transfers + Profits. (2.5)

We then derive the first-order conditions for the household’s problem as follows

1

Ct − χCt−1

− βEt(χ
1

Ct+1 − χCt
) = λt,

λt = βEt(λt+1
Rn,t

Πt+1

),

$hϑt = λt
Wt

Pt
,

where λt is the Lagrangian multiplier associated with the budget constraint in (2.5).

2.2 Capital Producers

Suppose that there is a single, representative, competitive capital producer who uses a
portion of final goods purchased from retailers as investment goods It to produce capital
goods. The production is subject to quadratic capital adjustment costs S(.) and an
investment-specific technology shock κt and it generates eκt(1− S( It

It−1
))It capital goods.

These goods are sold at a real price Qt per unit at the end of period t.
The adjustment cost function, similar to Smets and Wouters (2007) and Christiano,

Eichenbaum and Evans (2005), is specified as

S

(
It
It−1

)
= φs(

It
It−1

− 1)2,

where φs is the adjustment parameter. Along the balanced growth path, S(1) = S ′(1) = 0.
The investment specific technology shock is assumed to follow an AR(1) process

κt = ρκ κt−1 + σκe
σκtεκt, εκt ∼ N(0, 1),

where σκt is the time-variant component of the standard deviation of investment specific
technology shock εκt. Its evolution is given by

σκt = ρσκ σκt−1 + ηκuκt, uκt ∼ N(0, 1).

The capital producer’s optimization problem is to maximize its discounted profits with
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respect to It

Et

∞∑
k=0

Λt,t+k[Qt+ke
κt+k(1− S(Xt+k))It+k − It+k],

where Xt = It
It−1

and Λt,t+k is the real stochastic discount factor over the interval [t, t+k].
The first-order condition for this problem is

Qte
κt(1− S(Xt)−XtS

′
(Xt)) + Et[Λt,t+1Qt+1e

κt+1S ′(Xt+1)X2
t+1] = 1.

The produced capital goods combine with the existing capital stock to generate new
capital goods. In other words, the capital accumulation process is described by

Kt = (1− δ)Kt−1 + eκt(1− S(Xt))It.

2.3 Entrepreneurs

Entrepreneurs manage the firms that produce the wholesale goods. This production uses
labor and capital. While the former is supplied by both households and entrepreneurs,
the latter is bought from capital producers. The entrepreneurs finance the expenditure
on capital by entrepreneurial net worth (internal finance) and debts (external finance).
In the latter, they face an external finance premium caused by the inability of lenders
to monitor borrowers’ actions or to share borrowers’ information. In this way, financial
market imperfections are introduced into the model.

The premium relies on the balance-sheet condition of the entrepreneurs. When their
net worth declines, internal sources of funds are limited, forcing them to seek external
sources by borrowing. However, the deterioration of their balance sheets causes the po-
tential divergence between them (the borrowers) and the lenders to be greater, leading
to an increase in agency costs. Consequently, the cost of external finance is pushed up
resulting in a contraction of investment spending and then output.

The entrepreneurs are risk neutral. They are endowed with het units of entrepreneurial
labor at the nominal entrepreneurial wage W e

t in order to start off. Moreover, each of
them is assumed to survive until the next period with a probability γ. This is to assure
that they do not accumulate enough funds to finance their expenditures on capital only
with their net worth. New entrepreneurs are allowed to enter to replace those exiting.

Production. The wholesale goods are produced according to a constant-return-to-scale
technology

Y W
t = eatA(Ht)

1−αKα
t−1,

where Kt−1 denotes the number of capital units, Ht is the labor input which is a composite
of household labor ht and entrepreneurial labor het , A is the level of technology which is
normalized to one, and at is a shifter to the technology level which evolves as

at = ρaat−1 + σae
σat εat, εat ∼ N(0, 1),

where σat is the time-variant component of the standard deviation of technology shock
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εat and it follows an AR(1) process

σat = ρσaσat−1 + ηauat, uat ∼ N(0, 1).

For the labor input, het is assumed to be constant at one. In addition, the share of
income going to the entrepreneurial labor is calibrated to be small (the order of 0.01), so
that the modification of the production function does not have substantial effects on the
results. The labor input Ht is written as follows

Ht = hΩ
t (het )

1−Ω.

The demand for household and entrepreneurial labor is obtained by equating the marginal
product of each type of labor to its corresponding cost

PW
t

Pt

(1− α)ΩY W
t

ht
=
Wt

Pt
, (2.6)

PW
t

Pt

(1− α)(1− Ω)Y W
t

het
=
W e
t

Pt
. (2.7)

Meanwhile, the demand for capital of the entrepreneurs is considered below with the
occurrence of financial frictions.

Financial frictions. At the end of time t, an entrepreneur borrows lt equivalent to the
difference between the expenditure on new capital Qtkt and the net worth nE,t

lt = Qtkt − nE,t.

The net worth accumulation nE,t is calculated by3

nE,t = ψtRk,tQt−1kt−1 −Rl,tlt−1,

where ψt is an idiosyncratic shock to the entrepreneur’s return,4 Rl,t is the real loan rate
set at time t− 1, and Rk,t is the real return on capital computed by

Rk,t =
α
PWt
Pt

YWt
Kt−1

+ (1− δ)Qt

Qt−1

.

Note that the idiosyncratic shock is the private information of the entrepreneur. We
follow Bernanke et al. (1999) to assume that ψt is distributed log-normally with positive
support and its standard deviation is time-invariant. The distribution of ψt hence can be
written as follows

log (ψt) ∼ N(−1/2σ2
ψ, σ

2
ψ),

3Lower case variables denote the representative entrepreneur, while upper case variables introduced
later denote the aggregate.

4The shock at t+ 1 is revealed at the end of period t right before investment decisions are made.
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where σψ is the standard deviation of the idiosyncratic shock ψt.
At time t+ 1, if the net worth nE,t+1 becomes negative, the entrepreneur is bankrupt.

In other words, the default occurs if the idiosyncratic shock falls below the cut-off value
ψ̄t+1 given by

ψt+1 =
Rl,t+1lt

Rk,t+1Qtkt
. (2.8)

Otherwise, the entrepreneur makes the full payment of her loans, Rl,t+1lt, to the lender.
Let fψt and ψmin be the density function and the lower bound of ψt, respectively.

Then, the probability of default at time t+ 1 is calculated by

F (ψt+1) =

∫ ψt+1

ψmin

f(ψ)dψ.

If default happens, the lender obtains the assets of the firm. However, it has to pay a
proportion µ to observe the realized return. Therefore, the expected gross return on the
loan of the lender is given by

Et

[
(1− F (ψt+1))Rl,t+1lt + (1− µ)Rk,t+1Qtkt

∫ ψt+1

ψmin

ψf(ψ)dψ

]
.

Substituting Rl,t+1lt by ψt+1Rk,t+1Qtkt (see (2.8)) yields

Et

[
Rk,t+1Qtkt(ψt+1(1− F (ψt+1)) + (1− µ)

∫ ψt+1

ψmin

ψf(ψ)dψ)

]
. (2.9)

Define Γ(ψt+1) as the share of entrepreneurial earnings accrued to the lender

Γ(ψt+1) = ψt+1(1− F (ψt+1)) +G(ψt+1), (2.10)

where

G(ψt+1) =

∫ ψt+1

ψmin

ψf(ψ)dψ. (2.11)

For the optimal contract, the entrepreneur needs to find kt and ψt+1 to maximize her
expected net earnings

Et
[
(1− Γ(ψt+1))Rk,t+1Qtkt

]
, (2.12)

subject to
Et
[
Rk,t+1Qtkt(Γ(ψt+1)− µG(ψt+1))

]
= Et(R

ex
t+1lt). (2.13)

The constraint reflects the assumption that the lender is indifferent between the expected
return from lending to the entrepreneur and the one from owning risk-free bonds. Then,
using the Lagrange multiplier method, we obtain

Et[Rk,t+1] = Et[ι(ψt+1)Rex
t+1],

9



where ι(ψt+1) is the premium on external finance given by

ι(ψt+1) =
Γ′(ψt+1)

(1− Γ(ψt+1))(Γ′(ψt+1)− µG′(ψt+1)) + Γ′(ψt+1)(Γ(ψt+1)− µG(ψt+1))
. (2.14)

For the calculation of Γ(.),Γ′(.), G(.) and G′(.), see Appendix A.1.
So far we have established the optimizing decision of a representative entrepreneur.

We now assume that a fraction 1− γ of entrepreneurs exits at the end of period t− 1 and
they consume all their residual equities. Therefore, the aggregate net worth accumulating
at the end of time t is calculated by

NE,t = γ(1− Γ(ψt))Rk,tQt−1Kt−1 +
WE,t

Pt

and the consumption of the exiting entrepreneurs is

CE,t = (1− γ)(1− Γ(ψt))Rk,tQt−1Kt−1.

2.4 Retailers

In order to motivate sticky prices, two additional ingredients are added to the model.
First, the retail sector is assumed to be monopolistically competitive. Second, there are
costs of adjusting nominal prices.

Optimal Price Setting. Retailers purchase the wholesale goods from the entrepreneurs
and transform them into differentiated goods according to

Yt =
Y W
t

∆t

where Yt = (
∫ 1

0
Yt(i)

1− 1
ζ di)

ζ
ζ−1 and ∆t =

∫ 1

0
(Pt(i)
Pt

)−ζdi is the price dispersion. The retailers
then set prices to optimize their expected profits. The setting is however constrained
by the so-called Calvo-typed price rigidity (Calvo 1983). Specifically, each retailer can
reoptimize her price in a given period with a constant probability 1− ξ. The law of large
number suggests that a fraction 1−ξ of firms re-optimize their prices at each period. The
remaining retailers are assumed to adjust their prices based on the lagged inflation with
a degree of indexation γ ∈ [0, 1] in order to capture the inertia observed in the response
of inflation to a monetary policy shock (Woodford 2003).

Given a common real marginal cost MCt to all retail firms, a new price P ∗t (i) chosen
by the retailer i in period t should maximize her discounted nominal profits given by

Et

∞∑
k=0

ξkDt,t+kYt+k(i)

[
P ∗t (i)

(
Pt+k−1

Pt−1

)γ
− Pt+kMCt+k

]
,
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subject to the sequence of demand constraints

Yt+k(i) =

(
Pt+k(i)

Pt+k

)−ζ
Yt+k.

Note that Dt,t+k = βk λt+k
λt

is the nominal stochastic discount factor over the interval
[t, t+ k] and k = 0, 1, 2, ....
The first order condition associated with the above problem has the form

Et

∞∑
k=0

ξkDt,t+kYt+k(i)

[
P ∗t (i)

(
Pt+k−1

Pt−1

)γ
−MPt+kMCt+k

]
= 0, (2.15)

where M ≡ ζ
ζ−1

is the frictionless markup. We rearrange Dt,t+kYt+k(i) as follows

Dt,t+kYt+k(i) = βk
λt+k
λt

Pt
Pt+k

[
P ∗t (i)

Pt+k

(
Pt+k−1

Pt−1

)γ]−ζ
Yt+k

= βk
λt+k
λt

Pt
Pt+k

(
P ∗t (i)

Pt+k

)−ζ (
Pt+k−1

Pt−1

)−ζγ
Yt+k

= βk
λt+k
λt

(
P ∗t (i)

Pt

)−ζ
Πζ−1
t,t+kΠ

−ζγ
t−1,t+k−1Yt+k,

where Πt,t+k = Pt+k
Pt

. By substituting this rearrangement into (2.15), then canceling out

(
P ∗t (i)

Pt
)−ζ and multiplying by λt

Pt
in (2.15), we get

Et

∞∑
k=0

(ξβ)kλt+kΠ
ζ−1
t,t+kΠ

−ζγ
t−1,t+k−1Yt+k

[
P ∗t (i)

Pt
Πγ
t−1,t+k−1 −MΠt,t+kMCt+k

]
= 0.

This is equivalent to

P ∗t (i)

Pt
Et

∞∑
k=0

(ξβ)kλt+kYt+kΠ
ζ−1

t,t+k = MEt

∞∑
k=0

(ξβ)kλt+kYt+k Π
ζ

t,t+kMCt+k, (2.16)

where Πt = Πt
Πγt−1

. We now define

Ht = Et

∞∑
k=0

(ξβ)kλt+kYt+kΠ
ζ−1

t,t+k (2.17)

and

Jt = MEt

∞∑
k=0

(ξβ)kλt+kYt+k Π
ζ

t,t+kMCt+k. (2.18)
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From (2.17) and (2.18), we derive

Ht − ξβEt[Π
ζ−1

t+1Ht+1] = λtYt

and
Jt − ξβEt[Π

ζ

t+1Jt+1] = MλtMCtYt.

Moreover, combining (2.16), (2.17), and (2.18) yields

P ∗t (i)

Pt
=

Jt
Ht

. (2.19)

Aggregate Price Level Dynamics. Equation (2.19) implies that all the retailers that
are resetting their prices will choose an identical price which is P ∗t . The aggregate price
level at time t therefore evolves according to

Pt =

[
(1− ξ)P ∗1−ζt + ξ

(
Pt−1

(
Pt−1

Pt−2

)γ)1−ζ
] 1

1−ζ

. (2.20)

Dividing both side of (2.20) by Pt results in

1 = (1− ξ)
(
Jt
Ht

)1−ζ

+ ξΠ
ζ−1

t .

2.5 The Central Bank

The model is closed by the presence of a central bank that sets the nominal interest rate
according to a Taylor-type rule

Rn,t

Rn

=

(
Rn,t−1

Rn

)ρr ((Πt

Π

)θπ (Yt
Y

)θy)(1−ρr)

eσme
σmtεmt , εmt ∼ N(0, 1),

where εm,t is the monetary policy innovation whose time-varying component of the stan-
dard deviation σmt evolves according to an AR(1) process

σmt = ρσmσmt−1 + ηmumt, umt ∼ N(0, 1).

In the Taylor rule, the first term on the right-hand-side Rn,t−1

Rn
represents the smoothing

behavior of the central bank. The second term Πt
Π

denotes the deviation of inflation from
its steady level Π. The third term Yt

Y
is the output gap which is the deviation of output

from its balanced state Y .
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2.6 Resource Constraint

The market for final goods clears in every period

Yt = Ct + CE,t + It +Gegt + µG(ψt)Rk,tQt−1Kt−1.

In that the government spending is financed by lump-sum taxes on the basis of a balanced
budget. G is the steady state level of government spending which is influenced by an
exogenous shock gt following an AR(1) process

gt = ρggt−1 + σge
σgtεgt, εgt ∼ N(0, 1),

where εgt is the government spending shock. The time-varying component of the standard
deviation is σgt whose evolution is given by

σgt = ρσgσgt−1 + ηgugt, ugt ∼ N(0, 1).

3 State-Space Representation

3.1 State Transition Equations

The optimal decisions of households, capital producers, entrepreneurs, and retailers, the
Taylor rule and the resource constraint form a non-linear rational expectations system.
This system can not be estimated by likelihood-based approaches directly because the
system does not imply a likelihood function that can be calculated numerically or analyt-
ically (Fernández-Villaverde and Rubio-Ramı́rez 2007). Therefore, we need to solve the
model before estimating it.

As regarded in the introduction, the most popular method in the literature is lineariza-
tion because it leads to a linear state space representation of the model whose likelihood
can be obtained by the Kalman filter (An and Schorfheide 2007). However, linearization is
certainty-equivalent, which means that all volatility shocks will be dropped out, therefore
canceling any chance of analyzing their impacts on the economy. In a second order ap-
proximation, volatility shocks enter as cross-products with the corresponding level shocks
in the policy functions. In a third order approximation, volatility shocks play a role by
themselves, thus allowing us to calculate the impulse response functions to a monetary
volatility shock, while holding constant its level shock. This feature makes the third-order
approximation very attractive, but it comes with high computational costs in the esti-
mation, given that the particle filter is employed to obtain the likelihood function (see
the computational issues of particle filters in Fernández-Villaverde and Rubio-Ramı́rez
(2007)). In contrast, although the second-order approximation does not allow us to inves-
tigate independent effects of volatility shocks, it is sufficient to estimate the parameters
of the model including those of stochastic processes, while having smaller computational
costs than the third-order approximation does. Fernández-Villaverde et al. (2010) and
Fernández-Villaverde and Rubio-Ramı́rez (2007) also estimate dynamic macroeconomic
models with stochastic volatility based on their second-order approximations. Therefore,
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we first follow those papers to estimate a second-order approximation of our DSGE model.
Given the estimates, we then solve the model to third-order approximation and compute
the impulse response functions to a monetary volatility shock. By using such a strategy,
we can take advantages of each method.

Let st be the vector of all variables of the model at time t with each variable expressed
in terms of log deviation from its steady state. The system is driven by the vector
of structural shocks vt = (εκt, εat, εgt, εmt) and by the vector of volatility shocks wt =
(uκt, uat, ugt, umt). The solution of the rational expectations system takes the form

st = Θ(st−1, vt, wt; Ξ), (3.1)

where Ξ is the vector of parameters in the model. Equation (3.1) represents the state
transition equations in the state-space representation and it is non-linear.5The following
part describes the measurement equations.

3.2 Measurement Equations

We assume that the time period t corresponds to one quarter. For the estimation, we use
four data series including the Hodrick-Prescott output gap per capita , the log difference
of the GDP deflator, the federal funds rate, and the Moody’s seasoned data corporate
bond yields, which are denoted by OUTt, INFt, INRt, and CBYt, respectively. Details
on the sources and constructions of these time series are documented in Appendix A.2.
All these series are demeanded and connected to the model variables by

INFt = Π̂t + σmπεmπ,t, εmπ,t ∼ N(0, 1),

OUTt = Ŷt + σmyεmy,t, εmy,t ∼ N(0, 1),

INRt = R̂n,t + σmrnεmrn,t, εmrn,t ∼ N(0, 1),

CBYt = R̂k,t + σmrkεmrk,t, εmrk,t ∼ N(0, 1),

where εmy,t, εmπ,t, εmrn,t, and εmrk,t are measurement errors and their standard deviations
are σmy, σmπ, σmrn andσmrk , respectively. The notation “̂ ” above a variable denotes the
log deviation of that variable form its steady state. These four measurement equations and
the state transition equations in (3.1) establish the non-linear state-space representation
of the model.

5For example, a second-order approximation is given by

sj,t = Cj +

J∑
i=1

Θ
(s)
j,i si,t−1 +

n∑
l=1

Θ
(v)
j,l vl,t +

n∑
l=1

Θ
(v2)
j,k v2l,t +

J∑
i=1

J∑
l=1

Θ
(ss)
j,il si,t−1sl,t−1

+

J∑
i=1

n∑
l=1

Θ
(sv)
j,il si,t−1vl,t +

n∑
l=1

Θ
(vw)
j,ll vl,twl,t.

(3.2)
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4 Estimation

In order to estimate the non-linear state space system described in the previous section,
we follow Fernández-Villaverde and Rubio-Ramı́rez (2007) to use the particle filter to
evaluate its likelihood function. Basically, the particle filter performs sequential Monte
Carlo estimation using a point mass representation of probability densities to approximate
the posterior density of the states and the likelihood function (see Appendix A.3 for the
algorithm of the particle filter). As discussed above, we use the four quarterly U.S. time
series for the estimation. Regarding the coverage of the sample, while including the post-
2007 could be beneficial because of the increased observations, it will introduce extra
problems originating from the recent crisis and its on-going consequences, among which is
the zero-lower bound of the interest rate. Given the inherent complexity in the estimation
of a higher-order approximated model, a more ‘safe and sound’ solution is to exclude the
post-2007 period. Our sample therefore spans from 1959Q1 to 2007Q1. Advancing the
model to include the recent crisis episode into consideration is a potential expansion of
our work.

We summarize the procedure of the estimation in three steps. First, for given the
values of parameters, we solve the non-linear rational expectations system by performing
a second-order perturbation around the deterministic steady states (as in 3.1). Second,
we construct the state-space representation of the model and apply the particle filter to it
in order to evaluate the likelihood of the model. Finally, we use an maximum-likelihood
algorithm to estimate parameters.

We are aware that obtaining the MLE is complicated because the shape of the like-
lihood function may be rugged and multimodal. In addition, the use of optimization
algorithms based on derivatives is not applicable because the particle filter generates an
approximation to the likelihood function that is not differentiable with respect to parame-
ters. Instead, we follow Van Binsbergen, Fernández-Villaverde, Koijen and Rubio-Ramirez
(2012) to use the covariance matrix adaption evolutionary strategy, whose aim is to cope
with objective functions which are non-linear, non-convex, multimodal, as well as other
difficult conditions, in order to obtain the maximum-likelihood estimates.

As customary when taking DSGE models to data, some parameters are fixed to values
which are common in the existing literature or selected to satisfy some certain conditions
in the steady state (for instance, Fernández-Villaverde, Guerrón-Quintana and Rubio-
Ramı́rez 2009, Smets and Wouters 2007, Justiniano and Primiceri 2008). This helps to
reduce the numbers of parameters required to estimate, therefore lessening the compu-
tational issues. We discuss those fixed parameters in subsection 4.1. The estimates of
unknown parameters are presented in subsection 4.2. Given the values of all parameters,
we perform particle filtering to compute the posterior densities of structural and volatility
shocks and then estimate their means. Combining these estimates over the sample shows
us the evolution of structural and volatility shocks. They are presented in subsection 4.3.
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4.1 Fixed Parameters

The standard parameters calibrated includes {β, ζ, α,Ω, ϑ, φs, χ,$, }. The discount factor
β = 0.985 is chosen to match the inverse of the average of risk-free rate observed in the U.S.
The elasticity of substitution ζ is fixed at 10 which implies a 10% mark-up. The elasticity
of capital to output α = 0.3 reflects the share of national income that goes to capital. As
mentioned previously, the share of income to entrepreneurial labor (1 − α)(1 − Ω) is set
to a very small number 0.01, which implies a value of 0.98 for Ω . The depreciation rate
δ is assigned to 0.025, which is a common value in the literature of DSGE models on the
U.S. economy. The inverse of the Frisch labor elasticity ϑ is set to 1.3 which pins down
the Frisch elasticity to around 0.75 as suggested by Chetty, Guren, Manoli and Weber
(2011). The adjustment cost φs = 4.5 is similar to other estimates from DSGE models,
for example, Fernández-Villaverde (2010). The habit persistence χ is set to 0.9 in order
to reflect the observed sluggish response of consumption to shocks (Fernández-Villaverde
et al. 2010). The steady state government spending to GDP ratio G/Y is fixed at 0.2 to
match the U.S. data on average. The parameter controlling the level of labor supply $
is calibrated in such a way that generates a steady state level of hours worked h = 0.35.

We also calibrate three non-standard financial parameters including {µ, σψ, σE}. They
are chosen to imply the three following conditions in the steady state:(i) a probability of
default equal to 3%, (ii) a credit spread of 66.5 basis points which is consistent with the
data over the sample, and (iii) a ratio of capital to net worth QK/N of 2. Specifically, the
fraction of realized payoffs lost in bankruptcy µ is 0.0555, the existing rate of entrepreneurs
γ is found to be 0.9708, and the steady state level of the variance of the idiosyncratic
productivity variable σψ is equal to 0.3388.

4.2 Parameter Estimates

Table 1 reports the estimates for the remaining 24 parameters. First, the degree of index-
ation γ is 0.2 implying a moderating inflation inertia. The price rigidity ξ is around 0.7
which suggests that the prices are reoptimized approximately once every three quarters.
These values are common in the literature, see e.g., Smets and Wouters (2007). Regard-
ing the estimates of policy parameters, the response to the deviation of inflation in the
long run is about 1.560, which is close to the estimate of Christensen and Dib (2008) in
a linearized DSGE model with financial frictions. In contrast, the interest rate does not
appear to respond strongly to changes in the output gap. Given a 1% increase in the
output gap, the interest rate only rises about 7 basis points. Smets and Wouters (2007)
also document a very weak response to the output gap (0.09). Finally, the interest rate
shows a moderating inertia with the smoothing parameter ρr around 0.6.

Turning to the stochastic processes of structural shocks, they appear to be very persis-
tent with estimated AR(1) coefficients equal to 0.962, 0.978, and 0.959 for the investment-
specific technology, technology, and government spending process, respectively. For the
time-invariant component of the standard deviations of structural shocks, the government
shock has the largest value 0.04. The smallest figure is for the investment-specific shock
roughly 0.0006.
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Table 1: Parameters’ estimates of the DSGE model

Parameter Mean S.E. (×10−2)
Nominal rigidities parameters

γ 0.203 0.308
ξ 0.708 0.162

Policy parameters
ρr 0.597 0.189
θπ 1.560 0.400
θy 0.069 0.114

Parameters of the stochastic process
for structural shocks

ρκ 0.962 0.101
ρa 0.978 0.092
ρg 0.959 0.159
σκ 0.060× 10−2 0.020
σa 0.881× 10−2 0.013
σm 0.188× 10−2 0.004
σg 4.130× 10−2 0.039

Parameters of the stochastic process
for volatility shocks

ρσκ 0.424 0.741
ρσa 0.980 0.685
ρσm 0.971 0.482
ρσg 0.624 0.651
ηκ 0.352 2.239
ηa 0.168 2.000
ηm 0.163 2.058
ηg 0.337 2.350

Parameters of
measurement equations

σmy 0.338× 10−2 0.011
σmπ 0.412× 10−2 0.012
σmrn 0.154× 10−2 0.010
σmrk 0.434× 10−2 0.012

Notes: The table shows the estimates of parameters in the baseline DSGE model in section 2.

Regarding the stochastic volatility processes, the standard deviation of the technology
shock is the most persistent with an estimated AR(1) coefficient of 0.980, followed closely
by the coefficient of the monetary shock, 0.971. The standard deviation of government
shock is found to be fairly persistent with a coefficient of 0.624. Meanwhile, the corre-
sponding value for the investment-specific technology shock is the least persistent, 0.424.
For the standard deviations of volatility shocks, we find that those of investment-specific
technology and government spending innovations are similar with a value of about 0.35
for each. Meanwhile, the corresponding values of monetary and teachnology innovations
are close to each other, 0.17.

Finally, we find that the standard deviations of measurement noises are small, sug-
gesting that the model captures the aggregate dynamics relatively well. To corroborate
the statement, we plot the actual data and the data generated by the model (filtered
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Figure 1: Model vs. Data

Notes: The graphs show the actual data and those generated by the baseline DSGE model with 2 S.D.

bounds.

states) in Fig. 1. The top left graph shows that the model captures much of the dy-
namics of the real output gap per capita. The model value has a correlation of 99% with
the data. The standard deviation of the former and the latter are of equal magnitude
0.015. The top right plot displays the actual data and the generated data for inflation.
The correlation between them is 80% and their standard deviations are similar around
0.005. The bottom left graph depicts the actual observation and the one created by the
model for the nominal interest rate, it appears that the model replicates the data very
well with a correlation of 99% and a standard deviation of 0.008 for each. Finally, the
actual data and the value produced by the model for the nominal rate of return on capital
are displayed in the bottom right graph. Their correlation is 88% and they have similar
standard deviations of 0.007. Based on these evidence, we conclude that the model is
fairly successful in characterizing the properties of the economy.
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Figure 2: Structural shocks

Notes: The graphs present the estimates of structural shocks. They are obtained by performing particle

filtering to compute the posterior densities of the shocks given the values of parameters. Combining all

the estimates of their means over the sample provides us the measures of the shocks.

4.3 The Evolution of Structural and Volatility Shocks

In this subsection, we present the estimates of the structural shocks and the volatility
shocks of the model. This exercise has been done in models without financial frictions,
for instance Fernández-Villaverde et al. (2010) and Justiniano and Primiceri (2008).

Figure 2 reports the evolution of structural shocks (εmt, εat, εgt, and εκt). The fig-
ure shows that our model is successful in capturing striking features documented in the
literature. First, there are two clear drops in the technology shocks in 1972 − 1974 and
1980 − 1981 and one substantial reduction in the investment-specific technology shocks
in 1980 which are likely the consequences of the oil price shocks. Second, regarding the
monetary policy shocks, our model shows large fluctuations in the first half of the 1980s
which might be caused by fast changes in the policy by the Fed chairman Paul Volcker.
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Figure 3: Volatility shocks

Notes: The graphs present the estimates of volatility shocks. They are obtained by performing particle

filtering to compute the posterior densities of the shocks given the values of parameters. Combining all

the estimates of their means over the sample provides us the measures of the shocks.

The volatility shocks are plotted in Figure 3. One common feature is that the shocks
were higher in the 1970s and early half of the 1980s than in other periods. This re-
sult therefore asserts Blanchard and Simon (2001)’s observation that volatility had fallen
in the 20th century with a temporal and surprising rise in the 1970s. Especially, the
volatility shocks have substantially declined since the middle of the 1980s, around 1984.
McConnell and Perez-Quiros (2000) and Kim and Nelson (1999) also document a decline
in the volatility of U.S real GDP growth around this point in time. Stock and Watson
(2002) consider 1984 as the start of the “Great Moderation” period in the U.S economy.
Our results therefore suggest that the fall in the magnitude of shocks, especially that of
volatility shocks, might have contributed to the stability during the Great Moderation pe-
riod in the U.S., in accordance with Born and Peifer (2014) and Justiniano and Primiceri
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(2008).

5 Impulse Response Functions

This section is devoted to investigate the impulse response functions (IRFs) generated
by our model to a one-standard-deviation shock umt. There are two issues deserving
discussion. First, recall that in the second order approximation the volatility shocks enter
policy functions in the cross-product with the corresponding level shocks, e.g. umtεmt.
This connection presents us from disentangling the impact of volatility shocks on the
economy independently. To overcome this issue, we solve the model to the third-order
approximation, given the parameters estimated in the previous section, because at that
volatility shocks play a role by themselves, therefore allowing us to compute the IRFs to
a second-moment shock of monetary policy while keeping its level shock unchanged.

Second, the higher-order approximation of the model not only results in a nonlinear
environment which makes the computation of IRFs somewhat complicated, but also makes
the simulated paths of states and controls in the model move away from their state values.
To deal with these issues, we follow the process proposed by Fernández-Villaverde et al.
(2011) which calculates the IRFs as percentage deviations form their means, rather than
their steady states.

Figure 4 plots the IRFs to a positive one-standard-deviation monetary volatility shock.
This shock causes a prolonged contraction in economic activity: output, consumption,
investment, real wages and hours fall. Our model is therefore successful in generating
business-cycle co-movements in response to changes in the uncertainty of monetary policy.
This feature is an important prerequisite for any shock that seeks to explain business cycle
fluctuations because those co-movements are observed in the data (see Cesa-Bianchi and
Fernandez-Corugedo 2014, Basu and Bundick 2012).

The principal transmission mechanism for monetary volatility shocks is in line with
Basu and Bundick (2012). The uncertainty causes households to consume less, save more,
and supply more hours for any given wage (precautionary behavior). An increased labor
supply decreases wages, leading to a fall in marginal cost. The decline in marginal cost
raises markups because prices adjust slowly due to the price rigidity. Consequently, the
demand for household labor falls, which lowers the real wage earned by the representative
household. Moreover, the decrease in labor demand reduces investment in the capital stock
by entrepreneurs. Financial frictions amplify further the decrease in investment via the
financial accelerator mechanism as will be analyzed below. The increase in inflation can
be explained as a supply-shock-alike effect of the uncertainty because it lowers labor and
capital demand. Policy rate, which follows a Taylor rule, rises in response to the increase
in inflation. Then both inflation and the interest rate fall because of the contraction of
economic activity.

In order to investigate the role of financial frictions, we compare the IRFs to a monetary
volatility shock in the baseline economy in section 2 and in two different counterfactual
ones which include: one with reduced financial frictions and the other with more pro-
nounced financial frictions. These alternative cases are generated by modifying the value
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Figure 4: IRFs to a one S.D. monetary volatility shock

Notes: The graphs are expressed as percentage changes from their ergodic means.

of the monitoring cost parameter µ. The idea is that monitoring cost introduces a wedge
in the lender’s zero profit condition. Therefore, if the monitoring cost is higher, they
require a higher return from lending, which in turn causes a greater external premium or,
in other words, a more pronounced level of financial frictions. This intuition is captured
by Equation (2.14). We present the IRFs in these models in Figure 5. The financial
accelerator mechanism are magnified in both the baseline and the counterfactual models.
The decline in capital demand caused by increased markups leads to a fall in its price,
therefore decreasing firms’ net worth. The fall in the net worth increases the external
premium required by lenders, forcing down investment and output. More importantly, we
note that a higher level of financial frictions lead to a greater premium, which decreases
further investment. A kind of multiplier effect arises, since the fall in investment lowers
the price of capital and net worth, therefore pushing down investment more substantially.
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Figure 5: IRFs to a one S.D. monetary volatility shock- Effects of Financial Frictions

Notes: The graphs are expressed as percentage changes from their ergodic means. For low level of

financial frictions: µ = 0.03. For high level of financial frictions: µ = 0.1

Consequently, the decline in output is larger when financial frictions are more pronounced.
Nevertheless, we find that the overall effects of monetary volatility shock are small.

This is consistent with previous studies on aggregate uncertainty including Born and Peifer
(2014), Cesa-Bianchi and Fernandez-Corugedo (2014), Bonciani and Van Roye (2013),
and Bachmann and Bayer (2011). According to Born and Peifer (2014), such relatively
small effects of volatility shocks are due to dampening general equilibrium effects. In
what follows, we conduct several counterfactual experiments (henceforth CE), described
in Table 2, in order to understand those effects better. Specifically, in the first CE, the
inverse of the Frisch labor elasticity ϑ is increased, which therefore makes labor supply
less flexible in response to shocks. In the next three experiments, we decrease the values
of Calvo parameter prices ξ, capital adjustment costs φs, and consumption habits λ, thus
reducing the persistence in the model. The last experiment is about the counteracting
reaction of monetary policy; specifically, we shut off the response of interest rate to output
gap and considerably increase the smoothing parameter. These changes are expected to
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Table 2: Counterfactual Experiments (CE)
Parameter Descriptions Baseline CE I CE II CE III CE IV CE V

ϑ Inverse of the Frisch elasticity 1.3 10 * * * *
ξ Calvo parameter prices 0.708 * 0.6 * * *
φs Capital adjustment costs 4.5 * * 0.5 * *
λ Consumption habits 0.9 * * * 0.6 *
θy Taylor rule output gap 0.069 * * * * 0
ρr Interest smoothing 0.597 * * * * 0.98

Notes: “*” means that the value of relevant parameter in the counterfactual model is the same with

that in the baseline model. Other parameters not listed in the table are remained the same as in the

baseline model.

Figure 6: IRFs of output to a one S.D. monetary volatility shock- Baseline and Counter-
factual models

Notes: The graphs are expressed as percentage changes from their ergodic means. The left graph plots

the IRFs of output in the baseline model (solid), the CE I (circle), the CE II (star), the CE III

(triangle), the CE IV (dashed). The right graph shows the IRFs of output in the CE V (hexagram).
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reduce the dampening general equilibrium effects, thus generating a bigger fall in the
output in response to the volatility shock.

Figure 6 presents the impulse response functions of output in the baseline and coun-
terfactual models to a monetary volatility shock. The left graph compares the response
in the baseline model and those in the first four counterfactual experiments (I to IV).
As it can be seen, output falls more in most of counterfactual experiments than in the
baseline model. Especially, the CE I, in which the inverse of the Frisch labor elasticity is
increased, triples the negative output response (after 40 quarters). Although the size of
responses are still relatively small.

Figure 7: IRFs to a one S.D. monetary volatility shock: Counterfactual experiment V

Notes: The graphs are expressed as percentage changes from their ergodic means.

However, this is not the case in the counterfactual experiment V which is shown in
the right graph of the same figure. A one-standard-deviation monetary volatility shock
causes a large and persistent decline in output. Specifically, output drops immediately
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by 0.5% after the shock, falls as great as 1.5%, reaching to the lowest point, after 20
quarters, and then slowly returns to its mean. This implies that monetary policy plays
the most important role in deciding the size of the effects of uncertainty. A similar result
is documented by Born and Peifer (2014). In the baseline model, with positive response
to output gap and a small value of interest smoothing, the response of the central bank is
more aggressive and quicker to offset the negative shock, therefore mitigating the potential
impacts of uncertainty. In the experiment V, we however force the response to output
down to zero and give more weight to past interest rates. This means that the current
economic conditions affect the nominal interest rate less than its past values. Figure 7 plots
the IRFs of output and other variables to a monetary volatility shock in the counterfactual
experiment V. The transmission mechanism of the shock is similar to what we discussed in
the baseline model with increased markups and greater premium. However, the sluggish
response of monetary policy exacerbates the contraction. As it can be seen, the nominal
interest rate falls as a result of the reduction in inflation caused by the contraction in the
economy (because the response to output gap is fixed at zero), but the decrease of inflation
is much stronger than that of the nominal interest rate, leading to an increase in the real
interest rate. Consequently, investment decreases further, which is again amplified by the
occurrence by financial frictions in the model. Eventually, investment falls by more than
4% after 10 quarters, resulting in a substantial decline in output.

The finding that the more sluggish monetary policy the more substantial the effects
of monetary volatility shocks on the economy might have a very important implication
regarding the zero-lower bound in the nominal interest rate, although our current model
does not explicitly account for it. In such a situation, the nominal interest rate is clearly
independent to current conditions and substantially, if not completely, depends on its
last values. We can think about it as a Taylor rule in which the interest smoothing
approaches one. This limits the ability of the nominal interest rate to mitigate negative
shocks to the economy, therefore resulting in a more negative effects on economic activity.
Basu and Bundick (2012) consider the uncertainty of TFP shocks and argue that the
uncertainty has larger effects in the zero-lower bound. A similar result is documented by
Fernández-Villaverde et al. (2013) who consider fiscal uncertainty.

6 Conclusion

The paper attempts to investigate the role of financial frictions in the transmission of
monetary volatility shocks on output. In order to do that, we employed the particle filter to
estimate a non-linear DSGE model incorporating the financial frictions à la Bernanke et al.
(1999) and allowing for stochastic volatility of structural shocks. The results show that
our model captures aggregate dynamics relatively well. We also find that the magnitude
of volatility shocks was large during 1970s and early 1980s, but has declined considerably
since the mid-1980s, around 1984. Therefore, the fall in the magnitude of shocks might
have contributed to the Great Moderation in the U.S.

We also show that an increase in the volatility of monetary policy causes a contrac-
tion in economic activity: output, consumption, investment, hours, and real wages fall.
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In addition, we argue that financial frictions amplify the effects of monetary volatility
shocks via the financial accelerator mechanism. Nevertheless, the effects of a monetary
volatility shock are relatively small, which is due to the dampening general equilibrium
effects, especially the counteracting response of monetary policy to the shock. Our re-
sults document that the impacts of monetary volatility shocks would be substantial if the
monetary policy was restrained to response to current conditions in the economy.

Our work does not examine the impact of monetary volatility shocks under environ-
ments in which there is a zero-lower bound in the nominal interest rate or unconventional
monetary policies. Advancing the model to address these issues is an interesting and
important expansion which we would like to consider in the future research.
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A Appendix

A.1 Choice of density function for ψt

Then, one can draw that Et(ψt+1) = 1. Some other outputs can be calculated including

F (ψt) = Φ(zt)

G(ψt) =

∫ ψt

0

ψf(ψ)dψ

= 1−
∫ ∞
ψt

ψf(ψ)dψ

= 1− Φ(σψe
σψt − zt)

= Φ(zt − σψeσψt)

Γ(ψt) = ψt(1− Φ(zt)) + Φ(zt − σψeσψt)

G
′
(ψt) = ψtf(ψt)

Γ
′
(ψt) = 1− F (ψt)

where zt = (
log (ψt)+0.5σ2

ψe
2σψt

σψe
σψt ), f(ψ) is the p.d.f of ψ, and Φ(.) is the standard normal c.d.f.

A.2 Data Sources and Construction

The original time series’ sources are summarized as follows

• RGDP: Real Domestic Product, Billions of chained (2005) dollars, Seasonally ad-
justed at annual rates, Bureau of Economic Analysis Table 1.1.6, line 1

• GDPDEF: Gross Domestic Product: Implicit Price Deflator (GDPDEF), Index
2009 = 100, Quarterly, Seasonally Adjusted, Federal Reserve Economic Data

• LNU00000000Q: Labor force status: Civilian noninstitutional population; Bureau
of Labor Statistics

• LNS10000000Q: Labor force status: Civilian noninstitutional population; Bureau of
Labor Statistics (Before 1976: LNU00000000Q)

• LNSindex: LNS10000000Q(2005 : 2) = 1

• FFR: Federal Funds Rate; Federal Reserve Bank of St. Louis

• BAA: Moody’s seasoned Baa corporate bond yields; Federal Reserve Bank of St.
Louis

The four observable data used in the estimation are constructed as below

• ROUTt = LN
(

RGDPt
LNSindext

)
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• OUTt = ROUTt − ROUT t in which ROUT t is the potential output per capital
filtered by the Hodrick-Prescott method.

• INPt = LN
(

GDPDEFt
GDPDEFt−1

)
demeanded

• INRt = FFRt/400demeanded

• CBYt = BAAt/400demeanded

A.3 Particle Filter Algorithm

The model considered above belongs to a larger class of non-linear and/or non-normal
dynamic macroeconomic models which can be written generally in the following state-
space system. First, the law of motion for the state vector xt is given by

xt = h(xt−1,wt; Ξ) (A.1)

where wt is a random vector of innovations, in our specific case wt includes structural
and volatility shocks, with dimension nw and Ξ is the vector of parameters of the model.
Second, the set of observables denoted by zt are connected to the state variables xt by
the measurement equation

zt = g(xt,vt; Ξ) (A.2)

where vt is a random vector of measurement errors. To be convenient, we assume in-
dependence between vt and wt. The functions h and g come from the equations that
characterize the behavior of the model. The particle filter algorithm is presented below.
Particle Filter Algorithm

• Initialization t = 0
Draw N particles x

(i)
0 , i = 1, 2, .., N , from p(x0; Ξ) and let π

(i)
0 = 1

N
for all i.

• Propagation
Draw N particles x

(i)
t , i = 1, 2, .., N , from p(xt|x̂(i)

t−1; Ξ).

• Importance weights
Evaluate the importance weights π

(i)
t , i = 1, 2, .., N

π
(i)
t = π

(i)
t−1p(zt|x

(i)
t ; Ξ)

• Log-Likelihood Contribution

log Lt = log Lt−1 + log(
N∑
i=1

π
(i)
t )
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• Normalization
Normalize the importance weights π

(i)
t , i = 1, 2, .., N

π̃
(i)
t =

π
(i)
t∑N

i=1 π
(i)
t

• Resampling step
We use the systematic resampling algorithm to generate a new set of particles
{x̂(j)

t }Nj=1 by resampling (with replacement) from the existing particles {x(i)
t }Ni=1

with probability {π̂(i)
t }Ni=1.

• Propagation
Set t = t+ 1 and go to Step 2: Propagation

Systematic Resampling Algorithm

• Construction of the cumulative sum of weights (CSW)

Let c1 = π̃1
t and define ci = ci−1 + π̃

(i)
t for i = 2, ..., N

• Resampling step
Generate a starting point from a uniform distribution: u1 ∼ U [0, N−1] and define
uj = u1 + N−1(j − 1) for j = 2, ..., N . For each j = 1, ..., N , find i = 1, ..., N to
satisfy

c(i− 1) ≤ u(j) ≤ c(i)

- Assign sample: s
(j)∗

k = x
(i)
k

- Assign weight: π
(j)
t = N−1
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