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Abstract

In this paper we attempt to recover an integrated conception of the Precautionary Principle

(PP). The α= .05 inferential-threshold convention widely employed in science is ill-suited to the

requirements of policy decision making because it is fixed and unresponsive to the cost trade-offs

that are the defining concern of policy decision making. Statistical decision theory – particularly

in its Signal-Detection Theory (SDT) variant – provides a standard framework within which

to incorporate the (mis)classification costs associated with deciding between intervention and

non-intervention. We show that the PP implements preventive intervention in precisely those

circumstances where the SDT-based model yields a (1,1) corner solution. Thus the PP can be

understood as a heuristic variant of the SDT corner solution, which in turn serves to patch the

incongruity between the inferential practices of science and the inferential requirements of policy

decision making. Furthermore, SDT’s analytical structure directs attention to a small number of

variables – (mis)classification costs and prior probabilities – as determinants of the (1,1) corner

solution. Subjective biases impinging upon these variables – omission bias, protected values, and

the affect heuristic in particular, moderated by the decision maker’s industry-aligned (insider)

or industry-opposed (outsider) status – combine within SDT to successfully retrodict features

of the PP previously considered puzzling, if not inconsistent or incoherent. These psychological

biases do not exclude, and may in part reflect, the decision maker’s deontological moral beliefs,

or indeed social norms embodied in the nation’s legal system (common law vs. civil law).
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1 INTRODUCTION

The Precautionary Principle (PP) is commonly framed as being applicable only to problems

that lack reliable quantitative information.(1) Accordingly, contemporary formalizations of the

PP are predicated upon Knightian uncertainty, also known as ambiguity, which is distinguishable

from risk in being characterized by multiple irreducible priors.(2) Thus it might appear that the

PP’s domain of applicability excludes the case of risk – that is, uncertainty representable with a

unique probability distribution – and the very environmental- and health-hazard questions upon

which scientific research is rapidly generating petabytes of quantitative information.1

In this paper we develop a complementary framework within which the PP retains a role even

in the presence of (i) scientific research generating quantitative information and (ii) uncertainty

representable with unique, if possibly high-dispersion probability distributions. The intellectual

ancestry of this undertaking may be traced back to early decision analyses of hazard policy.(4–6)

We demonstrate that the PP may be understood as a post-hoc patch of the incongruity

between the nature of information generated by current scientific practice on the one hand, and

the form that this information needs to be processed into for policy decision-making purposes, on

the other. Current scientific practice gives pivotal prominence to statistical significance testing

and the convention – often a de facto hurdle to publication – of applying inferential procedures

that discretize results into either ‘significant’ or ‘non-significant’ categories with reference to the

fixed statistical significance level α = 0.05.

At its simplest, policy action or inaction is also discrete. Policy decision making thereby

also requires summative discretization of the evidence, namely into the categories ‘interven-

tion required’ or ‘intervention not required’. However, whereas in science the Neyman-Pearson

lemma determines the accepted combination between power (1− β) and test size (α), in policy

decision making the costs associated with misclassification – and the trade-offs between dif-

ferent misclassification costs – cannot be ignored. Policy decision making therefore requires

incorporation of these trade-offs, which analytically equates to the determination of an optimal

combination of test size and power (α∗, 1 − β∗) that reflects problem-specific misclassification

costs. Signal-Detection Theory (SDT) – a binary classification framework in the tradition of

Abraham Wald’s statistical decision theory(7,8) – integrates these problem-specific costs by de-

1For instance, the US National Oceanic and Atmospheric Administration (NOAA) archives more than a
petabyte (a quadrillion, or 1015 bytes) of new data each year. NOAA projects that the total volume of environ-
mental data held in its archives will rise to 140 petabytes by 2020.(3)
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sign. Where the costs associated with false negative errors are sufficiently large relative to the

remaining misclassification costs, optimally determined test size and power (α∗, 1 − β∗) yield

intervention/no-intervention classifications that are observationally equivalent to the post hoc

application of weak PP. Whereas public policy discourse cannot reliably sustain explicit appli-

cation of SDT – such are the analytical and complexity limitations of public policy discourse – it

can and does support application of the more straightforward, weak-form PP. In this sense, the

weak PP serves to patch, rather than remedy, the mismatch between the scientific community’s

inferential practices and the requirements for policy making.

Yet human decision making under risk and uncertainty does not consist of cold, rational

calculation alone. Instead emotions, heuristics and psychological biases are also involved, and

these impact upon the way in which the PP is formulated and applied. In this sense, one can

view particular PP features as projections of these psychological factors. Here we highlight the

effects of omission bias,(9–19,23,27) protected values,(22–27) and the affect heuristic(28–34) upon the

SDT-based model of the PP. These psychological factors crucially influence (i) which potential

targets for PP application fall into policy focus, (ii) the development of PP variants, and (iii)

the adoption of these variants by disputing interest groups, leading to sharp discord in public

policy discourse.

Cass Sunstein argues that the PP fails to satisfy a basic self-consistency requirement.(35)

This reprises and refines John Graham’s and Frank Cross’ observation that the PP should itself

be subject to examination for countervailing risks.(6,36,37) A self-consistent PP application would

not only prevent the risk of harm from industry’s actions, but would also require prevention

of second-round risk of harm arising from the act of preventive intervention. But in practice,

PP-predicated prevention of harm is truncated after the first-round preventive intervention.

In this sense, PP-based preventive intervention is in practice not uniformly deployed across

impact-round iterations. Neither, however, is the PP uniformly deployed at the macro level

either. With regard to honeybee Colony Collapse Disorder (CCD) for instance, the PP is in-

voked against neonicotinoid pesticides, but not against other, ostensibly important contributing

factors: agricultural intensification, habitat loss and fragmentation, pathogens, parasites, and

other environmental changes.(38) These apparent inconsistencies are rendered comprehensible –

and indeed predictable – within a behaviorally augmented SDT framework.

More than 20 PP definitions are in use, ranging from weak PP through to strong PP and
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super-strong PP. PP-definition variegation reflects the asymmetries of omission bias, protected

values, and the affect heuristic. These asymmetries couple with interest-group internal structure

as well, whereby each interest group’s members coalesce around particular PP variants rather

than others.

In the sequel we develop a behaviorally augmented SDT model of the PP, which successfully

explains heretofore puzzling features of the PP. First we show how SDT-based optimal cutoff

thresholds can be used to bridge the gap between scientific inferences and the inferences required

for policy decision making. Then we show how the PP serves as an easily-understood ‘patch’ that

implements the same preventive-intervention decisions as would be implemented under optimally

determined SDT corner solutions. Finally, we turn to an investigation of how omission bias,

protected values, and the affect heuristic impact upon the SDT model to make the preventive-

intervention replicating corner solution more – or less – likely.

2 VARIETIES OF THE PRECAUTIONARY PRINCIPLE

Of the twenty definitions of the PP in existence, we focus here on three key spinal points in an

ascending scale of stringency: weak PP, strong PP, and super-strong PP.

The PP emerged from Germany in the late 1970s as part of the country’s response to

large-scale environmental problems including acid rain, pollution of the North Sea, and climate

change.(39) Section VII of the Ministerial Declaration announced in London at the conclusion

of the 1987 Second International Conference on the Protection of the North Sea included the

following statement of the PP:

Accepting that, in order to protect the North Sea from possibly damaging effects of

the most dangerous substances, a precautionary approach is necessary which may

require action to control inputs of such substances even before a causal link has been

established by absolutely clear scientific evidence.(40)

But the most widely known variant of the PP was adopted as Principle 15 of the 1992 UNCED

Declaration on Environment and Development (the Rio Declaration):

In order to protect the environment, the precautionary approach shall be widely

applied by States according to their capabilities. Where there are threats of serious
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or irreversible damage, lack of full scientific certainty shall not be used as a reason

for postponing cost-effective measures to prevent environmental degradation.(41)

This is regarded as the definitive articulation of the weak PP. A slightly more verbose restatement

of it appears in Article 3 of the United Nations Framework Convention on Climate Change.

Under this weak variant of the PP, there is no mention of which party bears the burden of proof.

A strong PP variant was articulated in the Wingspread Consensus Statement on the Pre-

cautionary Principle (the Wingspread Statement), which was signed by all 32 scientists, philoso-

phers, lawyers and environmental activists who participated in the Science and Environmental

Health Network’s January 24–26 1998 Conference on the Precautionary Principle held in the

Wingspread Conference Center, Racine, WI:

When an activity raises threats of harm to human health or the environment, pre-

cautionary measures should be taken even if some cause-and-effect relationships are

not fully established scientifically. In this context the proponent of an activity, rather

than the public, should bear the burden of proof.2

Unlike the weak PP, the strong PP (i) does not mention costs, (ii) does not acknowledge that

different states have different levels of resources (‘capabilities’) available for environmental pro-

tection, and (iii) does not limit preventive intervention to threats of serious or irreversible harm.

The strong PP employs the operative word ‘should’, which can refer to either the moral duty

(moral imperative) for action, or the moral desirability of action. Hence from the text of the

strong PP alone, it is not clear (a) whether preventive intervention is called for as a moral,

categorical imperative, regardless of the direct and indirect (opportunity) costs of implementing

preventive intervention, or (b) whether preventive intervention is called for as being desirable,

yet subject to the practical direct- and indirect-cost trade-offs within the totality of obligations

involved in running a nation state, given its resources and degree of economic development.

From context we may infer that Wingspread Conference attendees intended the former, moral-

imperative interpretation. But this is not evident from the text of the Wingspread Statement

alone. Finally – yet crucially – the strong PP explicitly imposes the burden of proof on the

proponent of an activity.

The super-strong PP precludes aforementioned ambiguity by specifying not only the burden

of proof, but also the standard of proof:

2http://www.sehn.org/wing.html
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the [PP] mandates that when there is a risk of significant health or environmental

damage to others or to future generations, and when there is scientific uncertainty

as to the nature of that damage or the likelihood of the risk, then decisions should be

made so as to prevent such activities from being conducted unless and until scientific

evidence shows that the damage will not occur.(42) [emphasis added]

Thus under the super-strong PP preventive intervention is the default condition when (i) there

is a risk – any risk – of significant harm and (ii) there is scientific uncertainty over the level or

probability of that harm. The burden of proof lies with those who wish to proceed with the

potentially harmful activity. The standard of proof required by the super-strong PP is extreme,

in that preventive intervention remains in place “until scientific evidence shows that the damage

will not occur.” This is not the preponderance-of-evidence (> 50%) standard of proof employed

in US Common Law. Neither is it full conviction of the judge (90%, 95%, or 99.8%) standard

of proof employed in continental European Civil Law.(43) A literal reading of the super-strong

PP requires a 100% standard of proof to be achieved before preventive intervention may be

withdrawn.

Henceforth, references to ‘the PP’ shall be read as references to the weak-PP variant, unless

separately stipulated otherwise.

3 PP AS A PATCH

In computer science the term patch refers to retrospectively installed update code that repairs,

improves or adapts the functioning of an existing piece of software. Although not constituted

of computer software code, the PP serves as a patch in this sense, adapting the output of

scientific inferential conventions to the misclassification-cost-sensitive requirements of policy

decision making. For problems satisfying weak-PP applicability criteria, preventive intervention

decisions are thus triggered ‘as if’ they had been taken under optimally determined inferential

thresholds.

This role as a patch bridges between (a) fixed-inferential-threshold convention in science, and

(b) misclassification-cost-optimal inferential thresholds for policy decisions. We present each of

these below in turn before turning to PP as a patch.
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3.1 Scientific inferential convention: NHST

Null Hypothesis Significance Testing (NHST) is the workhorse method of statistical inference in

modern science. It combines Neyman and Pearson’s concept of a critical rejection region(44) with

Fisher’s formulation of p-values.(45) Although there are basic, pointed philosophical differences

between the developers of these two concepts,3 in modern usage these differences have been

glossed over or subsumed within a unified framework.(47,48)

That NHST has become a central preoccupation within empirical science was critically

noted already by Yates.(49) Since Yates, criticism of this preoccupation and of NHST per se

has been repeated and expanded.(50–52) John Ioannidis’ widely cited paper entitled ‘Why most

published research findings are false’ represents one culmination of this stream of criticism.(53)

Some of the strongest and most persistent critics of NHST are advocates of Bayesian statistical

methodology.(54) Nevertheless NHST remains the prevailing convention – in all but one journal

of which we are aware.4

3.1.1 The fixed α = 0.05 threshold

Fisher introduced significance testing and the concept of a p-value, i.e. the probability that a

test-statistic T = t(X),5 equals or exceeds the observed value t(x) given that the null hypothesis

H0 : θ = θ0 is true, i.e. p = P (t(X) ≥ t(x)|H0). In Fisher’s approach to significance testing,

there is no explicit alternative hypothesis under consideration. This is because there are innu-

merable different conceivable alternative hypotheses. Fisher views the alternative hypothesis –

and therefore any quantities derived from it, such as statistical power – as ‘unknown’. Although

Fisher believed that p-values require researchers’ subjective interpretation, his early expositions

advocated using p < 0.05 (i.e. a 5% significance level) as the standard for concluding that there

is evidence against H0.

[In 1925:] The value for which P = .05, or 1 in 20, is 1.96 or nearly 2; it is convenient

to take this point as a limit in judging whether a deviation is to be considered

3The distinction between ‘inductive inference’ as advocated by Fisher, and ‘inductive behavior’ as advocated
by Neyman, was at the heart of of their disagreement. Neyman advocated a theory of mathematical statistics
predicated on probability (not subjective likelihood), the basis of which is provided by “the conception of frequency
of errors in judgement.”(46,47)

4In 2015, the editors of Basic and Applied Social Psychology announced that they will be removing p-values
and other NHST measures from papers published in BASP.(55)

5computed on observed data drawn from a continuous distribution X ∼ f(x|θ) on support R
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significant or not. ... ...We shall not often be astray if we draw a conventional line

at 0.05 ... .(56)

[In 1926:] Personally, the writer prefers to set a low standard of significance at the

5 percent point, and ignore entirely all results which fail to reach this level.(57)

[In 1935:] It is usual and convenient for experimenters to take 5 percent as a standard

level of significance, in the sense that they are prepared to ignore all results which

fail to reach this standard... .(58)

Fisher viewed the p-value as an index of the ‘strength of evidence’ against H0. Fisher’s approach

to significance testing thus focuses on controlling type-I error alone. Although in his later work

Fisher attacked the notion of a standard or conventional threshold for type-I error, empirical

researchers continue to employ the α = 0.05 level suggested by Fisher. Fisher’s influential texts

included tabulations of exact small-sample X 2-, t- and F -test statistics. He economized on

page-space and enhanced the usability of his tables by providing only selected quantiles, key

among which being the 5% quantile. Neyman and Pearson followed suit in endorsing a fixed 5%

level – and in turning their attention to controlling type-I error and in developing their method

around a ‘rule of behavior’ – under the influence of Fisher’s 5% and 1% quantile tables.(47)

Neyman and Pearson held that one could only test a null hypothesis against an alternative

hypothesis. Thus Neyman and Pearson were concerned with type-II error as well as type-I error.

Following this concern, they introduced the concept of statistical power. They sought to supplant

the subjective element present in Fisher’s approach with a formalized decision procedure (a

behavioral rule) embodying the frequentist principle: “In repeated practical use of a statistical

procedure, the long-run average actual error should not be greater than (and ideally should

equal) the long-run average reported error.”(48) Neyman and Pearson sought to distinguish their

theory from Fisher’s ‘significance testing’, and did so by referring to their formalized decision

rule as ‘hypothesis testing’.

Statement 3.1 (Neyman-Pearson hypothesis testing).

(i) Derive type-I and type-II error probabilities α = P (t(X) ≥ c |H0) and β = P (t(X) < c |H1)

for given for simple hypotheses H0 : θ = θ0 and H1 : θ = θ1 where X ∼ f(x|θi), i = {0, 1},

θ1 > θ0, and c is a critical threshold in the codomain of t(·);
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(ii) Determine the most powerful test (in particular its critical threshold c) and the most ap-

propriate type-I error probability α∗ using α = P (t(X) ≥ c |H0), β = P (t(X) < c |H1),

X ∼ f(x|θi), and the costs associated with type-I and type-II errors;

(iii) Use the pre-chosen critical value c to reject H0 if t(X) ≥ c, else accept H0.

Notice that there are two components in Part (ii) of this statement. The first is the de-

termination of the most powerful test. This is accomplished with the Neyman-Pearson lemma.

The second is the determination of the most appropriate type-I error probability α∗. For this,

Neyman and Pearson did not provide a formal procedure, but offered clear verbal guidance. We

elaborate the Neyman-Pearson lemma first, followed by α∗, even though the latter is technically

a required input parameter for application of the Neyman-Pearson lemma. The following pre-

sentation of the Neyman-Pearson lemma is adapted from Lehmann and Romano,(59) which may

also be consulted for the associated proof.

Theorem 3.1 (Neyman-Pearson lemma). Let there be two continuous distributions X ∼ f(x|θi), i =

{0, 1}, indexed by the parameters θ1 > θ0.

(i) Existence. For testing the simple null hypothesis H0 : θ = θ0 against the simple alternative

hypothesis H1 : θ = θ1, there exists a test function φ and a constant k > 0 such that

Eθ0φ(X) = α (3.1)

and

φ(x) =















1 if f(x|θ1)
f(x|θ0) > k

0 if f(x|θ1)
f(x|θ0) < k

(3.2)

(ii) Sufficient condition for a most powerful test. If φ satisfies (3.1) and (3.2) for some constant

k, then φ is Most Powerful (MP) for testing H0 against H1 at level α.

(iii) Necessary condition for a most powerful test. If a test φ∗ is MP at level α, then it satisfies

(3.2) for some k, and it also satisfies (3.1) unless there exists a test of size strictly less

than α with power 1.

Although the Neyman-Pearson lemma is framed in terms of simple hypotheses, the test φ∗

can be shown to be Uniformly MP against a composite alternative hypothesis when the family

of distributions indexed by θi satisfies the monotone likelihood ratio property.

9



Neyman and Pearson explicitly acknowledge that the critical threshold c, which demarcates

between the null-hypothesis rejection region and the null-hypothesis acceptance region, should

be determined by the researcher. This determination is dependent upon the context:

...in some cases it will be more important to avoid the first [type-I error], in other

the second [type-II error]... ...determining just how the balance should be struck,

must be left to the investigator. ... ...we attempt to adjust the balance between the

risks [of the two types of error] to meet the type of problem before us.(44)

In this 1933 formulation, consideration of consequences – costs of error – remain implicit. With

time Neyman’s position shifted, however. In 1950 he articulated the view that controlling type-I

errors is ‘more important’ than controlling type-II errors:

Because an error of the first kind is more important to avoid than an error of the

second kind, our requirement is that the test should reject the hypothesis tested

when it is true very infrequently... ...The ordinary procedure is to fix arbitrarily a

small number α... ...and to require that the probability of committing an error of

the first kind does not exceed α.(60)

From these beginnings, inertia took hold.(61) Today, use of α = 0.05 reflects a customary,

conventional, common frame of reference:

It is customary therefore to assign a bound to the probability of incorrectly rejecting

[H0] when it is true and to attempt to minimize the other probability subject to this

condition. ... ...The choice of a level of significance α is usually somewhat arbitrary...

...Standard values, such as .01 or .05, were originally chosen to effect a reduction

in the tables needed for carrying out various test [sic]. By habit, and because of

the convenience of standardization in providing a common frame of reference, these

values gradually became entrenched as the conventional levels to use.(59)

The key feature of operating under the Neyman-Pearson lemma is accepting – as given, short

of sample-size considerations – the maximum achievable statistical power 1 − β = Eθ1φ(X)

associated with level α. This is equivalent to fixing α on the abscissa of the Receiver Operating

Characteristics (ROC) space, and accepting as given the associated power as indicated by the

ordinate of the ROC curve, i.e. the locus of all (α, 1 − β) points obtained parametrically by
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varying the cutoff threshold, given the distributions X ∼ f(x|θi), i = {0, 1}. Neither NHST

nor the Neyman-Pearson lemma supports any explicit consideration of trade-offs between type-I

and type-II errors.

3.1.2 Observations

The present paper is not intended to augment the general critique of NHST. Nevertheless we

flag three observations which also feature in that literature.

First, note that the α = 0.05 level is, ostensibly, arbitrary.(51,59) Section 3.1.1 traces the

broad outlines of how this convention arose, starting with the recommendations and statistical

tables of Ronald Fisher. In fact the α = 0.05 level is not a sufficiently demanding criterion that

it would identify only strong evidence against the null.

Second, modern commentators such as David Cox are in agreement with Ronald Fisher, who

held that drawing sharp distinctions between p-values such as 0.051 and 0.049 introduces an ar-

tificially sharp dichotomy.(62) Ceteris paribus, the evidential value of a study supplying a p-value

of 0.051 is virtually indistinguishable from that of a study supplying a p-value of 0.049. Applying

the labels ‘non-significant’ to the former and ‘significant’ to the latter facilitates dichotomous

thinking – where the underlying evidence does not in itself support such a distinction.

Third, ‘statistical significance’ is not synonymous with ‘scientific significance’.(62) The con-

nection with policy-making relevance is even more tenuous. For instance observational studies

can achieve statistical significance by virtue of sample size, but the effect size may be miniscule,

contributing little to overall scientific understanding or to the understanding of effective policy

levers for decision making.

However, as we show in the following section, these three detractions lose force when a fixed

α is abandoned in favor of a contextually optimal inferential threshold α∗.

3.2 Optimal inferential thresholds for policy decisions

Some of the problems inherent in NHST as currently practiced can be addressed through incor-

poration of a context-dependent loss function into the determination of an appropriate α level to

be used within the Neyman-Pearson lemma. Among the numerous approaches to incorporating

error costs into statistical inference, the simplest – and one which has the advantage of being

consistent with Neyman and Pearson’s frequentist approach – is known as Signal Detection The-
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ory (SDT).(63–65) The core elements of SDT, in addition to the above-mentioned ROC curve,

are (i) the misclassification cost matrix, (ii) the objective function under which the inferential

threshold is to be optimized, and (iii) the population prevalence rates of the conditions captured

in H0 and H1 respectively, i.e. the parameters in frequentist statistics which correspond to

Bayesian prior probabilities for H0 and H1.

We begin by introducing the confusion matrix, entries of which consist of True Positives

(TP), False Negatives (FN), False Positives (FP) and True Negatives (TN) counts obtained from

repeated application of a specific threshold x′ (see Table 1a). It is common to re-express these

entries as row-specific (within-hypothesis) rates: TPR = TP/(TP + FN), RNR = FN/(TP +

FN), FPR = RP/(FP + TN), TNR = TN/(FP + TN). Associated with each cell of the

confusion matrix is a corresponding misclassification cost, which is independent of the value

of the threshold x′ employed to generate the confusion matrix (see Table 1b). The essence

of ‘context’ is represented via a particular set of misclassification costs. For the purpose of

presenting SDT, misclassification costs are assumed to be measured or estimated in an unbiased

manner, reflecting overall societal concerns. This entails unbiased accounting for both atemporal

(i.e. generation-specific) as well as intertemporal (i.e. inter-generational) externalities.6

Table 1: Classification matrices.

(a) Confusion matrix (counts).

Inference under x′

¬H0 H0

Actual
H1 TP FN

H0 FP TN

(b) Misclassification cost matrix.

Inference

¬H0 H0

Actual
H1 CTP CFN

H0 CFP CTN

Letting N denote the total number of observations in the (random) sample TP+FN+FP +

TN = N , then the sample-based estimates of the population prevalence rates may be written

as P (H0) = (FP + TN)/N and P (H1) = (TP + FN)/N .

With few exceptions,(66) applications of SDT are couched in terms of minimizing expected

misclassification cost. The central results of classical SDT are all derived under this expected

misclassification cost objective function. For present purposes – including those of Section 4 –

the parsimony and tractability of this objective function serve well.

The optimally chosen cutoff threshold x∗ minimizes expected misclassification costs E(C)

6Consideration of the consequences flowing from the possibility that different interest groups may face different
misclassification costs or hold different priors is deferred to Section 4.
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subject to the constrained relationship between the TPR and the FPR, which may be rep-

resented with the twice-differentiable function G : [0, 1] → [0, 1]. This function, written as

TPR = G(FPR), captures the ROC curve. As N grows larger, limN→∞ TPR = 1 − β and

limN→∞ FPR = α, which in turn are defined by

α = P (X > x′ | θ0) =
∫ +∞

x′

f(x|θ0) dx (3.3)

1− β = P (X > x′ | θ1) =
∫ +∞

x′

f(x|θ1) dx . (3.4)

The slope at a point on the ROC curve determined parametrically by x′ is given by the derivative

at the point x′
(

dP (X > x′ | θ1)
dP (X > x′ | θ0)

)

x′

=
−f(x′|θ1)
−f(x′|θ0)

= l(x′) , (3.5)

which is the likelihood ratio at x′. We assume G′ > 0 and G′′ < 0, ensuring that the monotone-

likelihood ratio condition holds.7

Solving the constrained minimization problem

min
x′

E(C) s.t. 1− β = G(α) (3.6)

gives the optimality condition

l(x∗) =
P (θ0)

P (θ1)

[

CFP − CTN

CFN − CTP

]

=

(

d(1− β)

dα

)

C̄∗

, (3.7)

which states that the slope of the cost-minimizing iso-expect-cost line at the optimal operating

point is given by the ratio of the expected opportunity cost of misclassifying a Negative to the

expected opportunity cost of misclassifying a Positive. From (3.5) and (3.7) it is also clear that

the optimality condition defines the critical likelihood ratio l(x∗), and that (3.7) is a tangency

condition between the least-cost iso-expected-cost line and the ROC curve. From (3.3) and (3.4)

7Note thatG′′ < 0 is not satisfied by arbitrary combinations of sampling distributions. When both distributions
are Gaussian, G′′ < 0 is satisfied everywhere in the support of x only when the two sampling distributions have
the same variance.(67)
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we have that

α∗ =
∫ +∞

x∗

f(x|θ0) dx (3.8)

1− β∗ =
∫ +∞

x∗

f(x|θ1) dx . (3.9)

When the cutoff threshold is optimally determined by (3.7), the associated optimal level of the

test α∗ responds to changes in misclassification costs and population prevalence rates P (θ0)

and P (θ1). Setting θ0 = 0 WLOG and furthermore assuming Gaussian sampling distributions

X ∼ N(θi, 1), i = {0, 1}, θ1 > θ0, the optimal cutoff threshold x∗ responds to the remaining

parameters as follows:

x∗ =
1

θ1

(

ln(CFP − CTN )− ln(CFN − CTP ) + ln(P (θ0))− ln(P (θ1)) +
θ21
2

)

. (3.10)

If misclassification costs are symmetrical in the sense that CFP − CTN = CFN − CTP and the

base-rate probabilities are also symmetrical P (θ0) = P (θ1), then the optimal cutoff threshold

x∗ falls half-way between θ0 and θ1, where the two pdfs intersect f(x∗|θ0) = f(x∗|θ1). The

associated optimal operating point (α∗, 1−β∗) is that ROC-curve point that coincides with the

minor diagonal, where the slope of the iso-expected-value line is unity l(x∗) = 1. Due to the

concavity of ln(·), increasing misclassification-cost increments have a diminishing impact upon

x∗. However, the natural logarithm’s concavity and limiting value limP→0+ ln(P ) = −∞ entail

that the hypothesis with the smaller base rate has a disproportionately larger impact upon the

location of the optimal cutoff threshold. This responsiveness characteristic of x∗, α∗ and (1−β∗)

under SDT sits in contradistinction to their fixed nature under the Neyman-Pearson lemma, i.e.

1− βNP = G(0.05).

Whereas the α level is arbitrary under NHST, it is optimally adapted to base-rates and

misclassification costs in SDT. Whereas in NHST, the distinction made between p-values 0.051

and 0.049 is artificially sharp, under SDT the distinction made between p-values α∗ + 0.01 and

α∗ − 0.01 is not artificial, but anchored in real-world consequences (CFP , CTN , CFN , CTP ) and

base rates (P (θ0), P (θ1)). Finally, whereas statistical significance in NHST is not synonymous

with scientific or decision-making significance, rejecting the null hypothesis under SDT’s optimal

α∗ level is, by design, synonymous with decision-making significance.
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We conclude this section by noting that the approach embodied in SDT is consistent with

David Cox’s general exhortations concerning the use of p-values.

The P -value has, before action or overall conclusion can be reached, to be combined

with any external evidence available and, in the case of decision-making, with as-

sessments of the consequences of various actions.(62) [emphasis added]

3.3 PP for ‘as if’ optimal inference

In this section we show that application of the weak PP is observationally equivalent to a

particular corner solution in the SDT framework. Under the weak PP, absence of conclusive

evidence and the persistence of uncertainty does not constitute sufficient grounds not to proceed

with preventive intervention. Taking H0 : θ0 = θ to be the status-quo level of the critical index

variable and H1 : θ1 = θ (θ1 > θ0) to be the (irreversible) higher value of the critical index-

variable induced by a harmful commercial innovation, then we may note that the PP-based

policy decision (preventive intervention) is observationally equivalent to the SDT-based policy

decision associated with the corner solution in which 1−β∗ = 1 and α∗ = 1. This corner solution

obtains whenever the following condition holds.

Condition 3.1 (PP-mimicking corner-solution condition).

P (θ0)

P (θ1)

[

CFP − CTN

CFN − CTP

]

≤ lim
x′→−∞

f(x′|θ1)
f(x′|θ0)

= lim
α→1

G′
d′(α) . (3.11)

The limit on the right-hand side of this inequality depends on three parameters succinctly

summarized by the discriminability index:

d′ =
θ1 − θ0

σ
. (3.12)

A given θ1 − θ0 difference can be consequentially large or consequentially small, depending on

the value of σ. Small absolute effect sizes θ1 − θ0 and large standard deviations – whether

due to limited precision of scientific measurement or due to explicit gaming of the research

process by non-independent researchers8 – are associated with small Area Under the Curve,

AUC = Φ
(

d′√
2

)

, where Φ is the standard normal CDF. Along the principal diagonal of the

ROC space, where d′=0 and AUC=0.5, the SDT-based inference performs no no better than

8fully developed treatment of which is deferred to future work
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chance, as achieved e.g. with the toss of a fair coin. Larger d′ and AUC permit improvement,

in principle, over mere chance (see Figure 1a).

The limit on the right-hand side of (3.11) may be identified in Figure 1b, which plots ROC-

curve slopes for four discriminability-parameter values (.2, .5, 1, 2). The right-hand side vertical

intercept of each d′-specific curve gives limα→1G
′
d′(α). Applying Condition 3.1 to Figure 1b, it

can be seen that a PP-mimicking corner solution obtains when the slope of the iso-expected-cost

line falls within the half-open interval between zero and this right-hand side vertical intercept.

For d′ = 0.2 for instance – which corresponds to questions subject to considerable scientific

or measurement uncertainty – this interval is [0, 0.5). As d′ and AUC grow larger, the upper

boundary of this corner-solution supporting interval collapses toward zero. However, for all

non-degenerate corner-solution supporting half-open intervals [0, limα→1G
′
d′(α)) ≡ Γd′ , Γd′ 6= ∅,

P (θ0)

P (θ1)

[

CFP − CTN

CFN − CTP

]

∈ Γd′ (3.13)

is satisfied in the region of the parameter space where the expected cost of misclassifying a

True Negative is sufficiently small relative to the expected cost of misclassifying a True Positive.

Obviously, if either P (θ1) → 1 or (CFN − CTP ) → ∞, or both, then (3.13) is satisfied. But

these extreme limits are not necessary for the corner solution. It is sufficient for the slope of the

iso-expected-value line to fall within Γd′ .

The wording of the PP selects as targets for preventive intervention those commercial inno-

vations that are characterized by a large denominator in Equation (3.13). The Rio declaration,

embodying the weak PP, focuses preventive intervention “[w]here there are threats of serious

irreversible damage...”. Here ‘threats’ refers to P (θ1), while ‘serious irreversible damage’ refers

to (CFN −CTP ). Unlike the weak PP however, strong and super-strong variants of the PP can-

not be rationalized within the SDT framework without making recourse to behavioral effects.

These effects are strong and widely felt.

4 PP AS A PROJECTION OF BEHAVIORAL EFFECTS

Whereas the analysis in Sections 3.2 and 3.3 is conducted under the assumption that parameters,

distributions and misclassification costs are independently identifiable and unique at the societal

level, here we introduce the effects of subjectivity, psychology and attendant heterogeneity.
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Figure 1: ROC curve and its slope, assuming σ0 = σ1 = 1.

(a) ROC curves; four different discriminability parameters.
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As part of this broadening of the analysis, relaxation of the frequentist interpretation allows

the formal analytical representation to incorporate heterogeneity in the prior-odds component

of the optimal cutoff threshold expression. Different people, interest groups and institutions

confront societally consequential problems with potentially very different subjective priors and

perceptions concerning the costs of different eventualities. Furthermore, psychological effects

induce or accentuate asymmetries in perceived, subjective misclassification costs, and these

asymmetries are expressed differently in different people, interest groups and institutions.

17



4.1 Priors

The frequentist framework requires that the terms P (θ0) and P (θ1) in equation (3.7) be inter-

preted as base rates or population prevalence rates. Relaxing this requirement, allowing these

terms to be viewed as priors, expands SDT’s scope to embrace larger, longer-term, prospective

societal and planetary challenges. It also permits heterogeneity between individuals and interest

groups in the priors they hold. This is the case even without invoking behavioral biases. Con-

ceptual reorientation away from frequentist base rates and toward (possibly subjective) priors

is a prerequisite to bringing behavioral considerations to bear upon SDT.

Many of the consequential and controversial long-term societal, environmental, and planetary

issues facing humanity are largely prospective in nature. We do not have access to dozens or

hundreds of earth replicas that underwent hydrocarbon-fueled industrialization so that we can

establish the relative frequencies of those worlds on which catastrophic global warming took place

and those worlds on which global warming proved to be benign. Anthropogenic global warming,

like many other large- and smaller-scale threats, is a new emergent problem, rather than one

that has been experienced many times before, and for which a gold-standard test exists. For this

reason, a conception of probability that is restricted to conveying relative frequency information

is ill-suited to many of the most challenging problems to which the PP is being applied.

The priors P (θ0) and P (θ1) are most appositely understood in broadly Bayesian terms,

representing the state of knowledge or belief, integrating and summarizing available evidence.

Following Leonard Savage, “Probability measures the confidence that a particular individual has

in the truth of a particular proposition...”.(68) Reasonable individuals who conform with Savage’s

seven postulates (axioms) may hold different degrees of confidence in a particular proposition,

even after having viewed precisely the same body of evidence. Thus, another consequence of

abandoning the frequentist framework is the need to recognize and embrace the underlying

heterogeneity of subjective probabilities. Heterogeneity without discernible differentiation or

distinction does not lend itself to enlightening analysis, however. But behavioral factors –

specifically ‘affect heuristic’ effects discussed in Section 4.4 – systematically shape subjective

priors in ways that are consequential for an understanding of the discord that attends PP-based

preventive intervention.
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4.2 Omission bias

Consider a choice setting in which a decision maker is confronted with two alternatives. Both al-

ternatives lead to the same, objectively identical negative outcome. The first alternative involves

passively letting nature take its course, i.e. inaction in the sense of omission of separate observ-

able action. The second alternative involves taking an explicit, observable action. Omission bias

is the tendency to favor the first (omission, inaction) alternative over the second (commission,

overt action) alternative.(9–19,23,27)

In certain circumstances, the distinction between harm by omission and harm by commission

is not purely moral or psychological. Omission may result from ignorance or an attention

budget deployed across other considerations, while a responsible act of commission requires

effort and conscious intent, which cannot be predicated on ignorance or limited attention. If

on the other hand knowledge, intent and consequences are the same in the case of harm by

omission as in the case of harm by commission, there should be no consequentialist grounds for

distinguishing between the passively permitted harm and the actively chosen harm. For this

reason, some authors add a rider that restricts omission bias to being an overgeneralization of

distinctions between commissions and omissions to problem settings in which these distinctions

are absent.(9,10)

Omission bias as an empirical regularity has proven robust in replication studies, both in the

laboratory and in the field. Empirical studies have been situated in the context of risky medical

treatments,(9–11,14,15) financial decisions,(12,13) professional sports refereeing,(16) civil litigation

(standard of proof),(17) risky (conditional probability) lotteries,(18) Tax Credit repayment,(19) and

human or animal deaths.(23,27) Carefully designed studies have disentangled the omission-bias

effect from status-quo bias,(12) and normality bias.(14) This body of evidence notwithstanding,

there has been some work critical of the concept,(20) and other work arguing that omission is a

strategy choice (with plausible deniability) rather than a psychological bias.(19,21)

Factors ranging from feelings of regret to moral and ethical principles have been offered as

explanations for the empirical instantiation and prevalence of omission bias. In consequentialist

ethical systems – such as utilitarianism – the personal and moral assessment of choices is based

solely on the outcomes yielded by those choices. Consequentialist moral assessment excludes

the intent of the decision maker, the moral character traits of the decision maker, the nature

of the choice process, and the manner in which choices implement final outcomes (e.g. action
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or inaction). Indeed, consequentialist moral assessment excludes all aspects of a decision prob-

lem save the final outcomes. In contrast, deontological ethical systems assess choices without

reference to final outcomes. Under deontological ethics, proscribed types of action choices are

not rendered morally acceptable regardless of any possible positive outcomes – and regardless

of their magnitude, whether measured in absolute terms or in relative terms – that they bring

about. Instead, choice is guided by moral rules and moral duty. Furthermore, some kinds of

action choices are strictly permitted, regardless of whether they are outcome dominated by other

potential action choices.

Omission bias would not be observed within a purely consequentialist decision-making frame-

work. The psychology of regret(69) and the distinction between direct and indirect causation(14)

are the primary lenses through which we will understand omission bias in the present paper.

Even though we largely eschew moral philosophy – leaving this to those with competence to

address the profound philosophical issues involved – it is also clear that empirically observed

omission bias and the underlying regret aversion may derive in part from deontological moral

duty such as, “Above all, do no harm.”(13,26,27)

Common law distinguishes between acts, which one is liable for, and omissions, which one is

generally not liable for. A manufacturer owes its customers a duty of care, and is liable for harm

caused by its products. However, a manufacturer is not liable for the harm that could have

been prevented if it had produced a particular product – pharmaceutical companies are not held

liable for not producing specific vaccines, or for not producing treatments for particular diseases

(e.g. orphan diseases).(70) This asymmetry also holds for individuals. Under common law, there

is no general legal duty for a bystander to warn, prevent or assist an individual in peril.9 A

bystander can watch a child drown, or a blind man walk into the path of an oncoming vehicle,

and not be held to account.(71) However, if an individual has created a hazardous situation that

has placed another person in peril, then the legal duty to rescue does exist. Whether this legal

duty exists or not, the rescuer can be held liable for injuries caused by ill-advised actions during

the rescue attempt.10

In a classic application of decision analysis, Ronald A Howard, James E Matheson, and D

Warner North evaluated whether the U.S. government should seed hurricanes with silver iodide

9In contrast, under civil law as in e.g. continental Europe and Quebec, it is a criminal offence not to assist an
individual in an emergency.

10Good-Samaritan laws, passed in many US states, limit the extent of this liability.
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to reduce their intensity and thereby attenuate their destructive force.(4) The analysis reveals

that when a hurricane is seeded by the U.S. government, the damage it causes ceases to be purely

of a ‘natural disaster’ variety. Intervening in the development of a storm alters who subsequently

suffers damage and losses, and those conducting the intervention (seeding) become responsible

– morally and politically, perhaps even legally – for the damage that would not have occurred

without the seeding intervention (even though it is not possible to definitively determine who

these people are). The decision analysis thus has to factor in the ‘government responsibility

cost’ associated with the seeding. The analysts conclude that there is no firm legal basis for

operational seeding of hurricanes, that the sovereign immunity enjoyed by government is only

partial and unpredictable protection, and that there are substantial grounds for individuals to

recover damages where it can be proven that seeding caused harm.

4.2.1 Effect on misclassification costs

Outsider perspective: From an industry outsider’s perspective, the industry’s decision to

introduce an innovation is seen as a deliberate act. The potential harms from this act of

innovation are therefore weighted more heavily than any harms that would occur in the absence of

the deliberate introduction of the innovation, i.e. by omission of this innovation. Consequently,

the expected cost of misclassifying a positive (i.e. of classifying as non-harmful an innovation

that is in fact harmful) is biased upward relative to the expected cost of misclassifying a negative

(i.e. of classing as harmful an innovation that is in fact not harmful). This biases the slope of

the iso-expected-value line downward, making it more likely to fall within the interval Γ where

the SDT corner solution obtains.

Insider perspective: For industry, periodic if not continual innovation is a natural part

of its very existence. Hence the salient act is not innovation, but the decision to implement

protective intervention. Just as in both civil litigation(17) and professional sports refereeing,(16)

the harm associated with mistakenly undertaking this act is overweighted relative to the harm

associated with mistakenly omitting to undertake this act. Consequently, the expected cost of

misclassifying a negative (i.e. of classifying as harmful an innovation that is in fact not harmful)

is biased upward relative to the expected cost of misclassifying a positive (i.e. of classifying as

non-harmful an innovation that is in fact harmful). This biases the slope of the iso-expected-
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value line upnward, making it less likely to fall within the interval Γ where the SDT corner

solution obtains.

4.2.2 PP target selection: Which problems?

We suggest that the distinction between omission and commission also has a bearing upon

which problems trigger PP-based preventive intervention. Consider Colony-Collapse Disorder

(CCD), in which worker bees disappear from the colony, leaving the colony unviable. The United

States Department of Agriculture (USDA) has identified a number of important contributory

causal factors for CCD: insecticides, agricultural intensification, habitat loss and fragmentation,

pathogens, parasites, and other environmental changes.(38) Many of these are slow-moving, long-

existing background factors that are difficult to attribute to the actions of specific entities in the

economy. Only a subset – specific types of new insecticides, such as neonicotinoids – appear as

deliberate acts by identifiable agents. Hence, these new insecticides are viewed and evaluated

according to the ‘outsider perspective’ discussed above in Section 4.2.1. Accordingly, the slope of

the iso-expected-value line is biased downward, making it more likely to fall within the interval

Γ where the SDT corner solution obtains. Conversely, the remaining factors – agricultural

intensification, habitat loss and fragmentation, pathogens, parasites, and other environmental

changes – are viewed and evaluated according to the ‘insider perspective’ discussed above in

Section 4.2.1. Accordingly, the slope of the iso-expected-value line is biased upward, making it

less likely to fall within the interval Γ where the SDT corner solution obtains.

4.2.3 PP target selection: n ≥ 2 round effects?

When preventive intervention is implemented, why are the possible harms associated with the act

of preventive intervention not themselves subject to PP-based preventive intervention? Indeed

an infinite regress of such questions can be constructed. Why are all of these n ≥ 2 round effects

not subject to PP-based preventive intervention?

The answer lies again in the distinction between the ‘insider perspective’ and the ‘outsider

perspective’, and how these become applied across the sequence of consequent harms. From

the perspective of the pro-PP faction, the n = 1 first-round effect is the result of a conspicuous

act (i.e. the industry’s innovation) with harms that are biased in accordance with the ‘outsider

perspective’, leading to an SDT corner solution and preventive intervention. The pro-PP faction
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sees the n = 2 second-round effect not as the result of an explicit preventive-intervention action,

but as merely a preservation of the state of affairs that existed prior to the industry introducing

its innovation. Being pre-existing, the pro-PP faction applies an ‘insider perspective’, which

biases the expected cost of misclassifying a negative upward and the expected cost of misclassi-

fying a positive downward. The slope of the iso-expected-value line is biased upward, making it

less likely to fall within the interval Γ where the SDT corner solution obtains. Hence preventive

intervention is also less likely. Without preventive intervention for the n = 2 second-round effect,

there are no further rounds of consequent harms.

Thus, the self-consistency violation identified by Cass Sunstein(35) is explained with an

omission-bias augmented SDT model of the PP.

4.3 Protected values

Investigation of Protected Values (PVs) started within and emerged from the omission-bias

literature.(22–27) PVs are rooted in deontological ethical principles, and may reflect personal or

social norms. The defining characteristic of PVs is their absolute resistance to trade-offs: they

are in this sense ‘protected’ from being subject to trade-offs with other values or attributes.

This means that no amount of compensating benefit will induce an individual to make even a

small sacrifice to her PV. For an individual who views ecosystem life as sacrosanct (i.e. a PV),

there is no finite amount of compensating economic gain that could justify the extinction of a

single species. In terms of utility, PVs are associated with vertical – infinite Marginal Rate of

Substitution (MRS) – indifference curves.11

The protection in PVs is afforded against acts, not omissions, and against trade-offs with

gains in other values, not losses. The protection in PVs is absolute and non-compensatory.12

Omission bias is stronger in people with PVs.(23,24) Because PVs are seen as personal, agent-

relative moral obligations, attempts to forcibly induce diminution of a PV often triggers anger

or moral outrage.

The PVs held by individuals not aligned with industry thereby amplify the omission-bias

effect in the ‘outsider perspective’ as elaborated in Section 4.2.1. Furthermore, if the SDT

model of the PP is applied to an innovation that threatens to harm a PV, the implicit cost

11If the PV is instead represented on the vertical axis, then the associated indifference curves are horizontal,
and have zero MRS.

12Being non-compensatory, it is inconsistent with the continuity assumption of standard utility theory.
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of failing to exercise preventive intervention when it is fact warranted becomes unbounded, i.e.

CFN → ∞. Consequently, the denominator in (3.13) explodes while the numerator remains finite,

which together ensure that the SDT corner solution obtains, triggering PP-based preventive

intervention to actively protect the PV. The slope of the iso-expected-value lines approach zero

as CFN → ∞, meaning that the corner solution – and preventive intervention – is supported

for all G′(1) > 0. Whereas omission bias increases the probability of a preventive-intervention

supporting corner solution, PVs guarantee it for all ROC curves satisfying G′(1) > 0.

For individuals who are aligned with industry, the effect is reversed: PVs – concerning

free enterprize, the national importance of an industry, or merely profits and employment –

amplify the omission-bias effect in the ‘insider perspective’ as elaborated in Section 4.2.1. From

this perspective, it is preventive intervention that is seen as the overt act which threatens to

harm the PV, and the implicit cost of mistakenly undertaking this act becomes unbounded, i.e.

CFP → ∞. Hence the numerator in (3.13) explodes while the denominator remains finite. The

slope of the iso-expected-value line approaches infinity, and the (0,0) corner solution obtains for

all G′(0) < ∞. At this (0,0) corner solution, there is zero probability of implementing preventive

intervention.

4.4 Affect heuristic

If the intensity of emotions may be represented on a spectrum, then visceral emotion is located

at one extreme, while affect – i.e. the ‘faint whisper of emotion’ – is located at the other

extreme.(34) Affect refers to either the quality of ‘goodness’ or ‘badness’ (i) in feelings associated

with a stimulus, or (ii) in an experienced-feeling state. The affect heuristic in turn refers to

reliance on such feelings, which is characteristic of the intuitive, experiential, System-1 pathway

in dual-process theories of decision making.(28–34)

Whereas risk and benefit are positively correlated in nature and in the economy,13 perceptions

and judgments of risk and benefit become negatively correlated (inversely related) in the presence

of affective valence. Under positive-affect valence, high benefit is associated with low risk. Under

negative-affect valence, low benefit – or indeed harm – is associated with high risk. This is part of

the ‘risk-as-feelings’ breakthrough in psychology: that people judge risk by how they feel about

it, rather than on the basis of reasoned thought and analysis.(33) Affect influences perception

13because the coincidence of low-risk and amble benefit does not persist for long, due to scarcity brought about
by exhaustion, competition, predation, or parasitism
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and judgment directly and independently, without any pre-requisite prior priming by logical

analytical evaluation.(34)

Alhakami and Slovic’s pathbreaking study showed the empirical inverse relationship between

perceived risk and perceived benefit on a sample of 40 items, including herbicides (ρ = −.52),

DDT (ρ = −.5), asbestos (ρ = −.48), vaccinations (ρ = −.43), nuclear power (ρ = −.4), chemical

manufacturing plants (ρ = −.32), and pesticides (ρ = −.29).(28) A survey of British Toxicology

Society members confirmed that even among field experts, the affect valence perceived by the

expert mediates the strength of the inverse relationship between the hazard’s risk and benefit.(29)

Experiments have verified and extended these results. Finucane et al. showed that the inverse

relationship is strengthened in individuals subject to time pressure, who have fewer cognitive

resources available for System 2 analytical deliberation, and thereby place greater reliance on the

resource-efficient System 1 (affect-based) response.(30) And finally, Yoav Ganzach’s experiments

have shown that affect valence mediates judgments of risk and return – in the manner predicted

by the affect heuristic – for financial assets that are not already familiar to the subject.(31)

For the SDT-based model of the PP, the affect heuristic forges a link between the prior-odds

term and the misclassification-cost term in the slope expression for iso-expected-value lines.

For positive-affect valence, low prior probability is associated with high benefit – i.e. low

harm. Consequently, both the prior-probability term and the misclassification-cost term in the

denominator of (3.13) is small, entailing steep iso-expected-value lines with slopes less likely to

fall within the corner-solution interval Γ.

For negative-affect valence, high prior probability is associated with low benefit – i.e. large

harm. Consequently, both the prior-probability term and the misclassification-cost term in the

denominator of (3.13) is large, entailing flat iso-expected-value lines with slopes more likely to

fall within the corner-solution interval Γ.

The language that interest groups adopt to describe and define themselves offers an indication

as to the affect valence they are likely to associate with particular industrial innovations, e.g.

Greenpeace, Friends of the Earth, World Wildlife Foundation, Save the Whales, Center for

Biological Diversity, Royal Society for the Protection of Birds (UK), Woodland Trust (UK),

and Frack Off (UK). Through this clear articulation of identity and identification, not only are
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particular patterns of positive- and negative-affect valence associations clearly implied, but so

is the PV status of the environment and its biological diversity, as is the ‘outsider perspective’

with regard to applying omission bias to potentially harmful industrial innovations. Although

it is not as immediately apparent from the naming conventions employed by corporations and

their industry associations, the language used by officers of these associations and firms clearly

conveys the pattern of positive- and negative-affect valence associations, the PV status of the

industry and its profits, and the ‘insider perspective’ with regard to applying omission bias to

their (potentially harmful) industrial innovations. The language used by firms’ and industry-

associations’ public-relations arms and their legal representation reinforces this pattern.

4.5 Application: PP variants

Behavioral factors also shed light on the strong-form and super-strong-form variants of the PP.

The weak PP explicitly incorporates cost and resource considerations, which permits SDT-based

optimization of the cutoff threshold. Behavioral factors are external to the weak-PP definition,

but may be incorporated into the SDT-based analysis via their impact upon perceived misclassi-

fication costs and perceived prior probabilities. In contrast, the strong-PP and super-strong-PP

definitions incorporate behavioral factors directly. These PP variants hard-code not only the

behavioral factors, but the outsider perspective in particular, directly into their definitions.

The strong-PP definition places the burden of proof on proponents of the industrial in-

novation. As such, the default state of affairs is absence (non-introduction) of the industrial

innovation. Passive omission entails continued protection from the potential harms of the indus-

trial innovation. In contrast, the overt-action alternative comprises introduction of the industrial

innovation. This is precisely the outsider perspective, which entails that omission bias reduces

the slope of the iso-expected-value lines, and thereby renders the SDT (1,1) corner solution –

i.e. preventive intervention – more likely.

The strong PP’s wording falls short of being unambiguous, however. The strong-PP def-

inition excludes all references to cost, but relies on the ambiguous term ‘should’, which can

mean either ‘morally imperative’ or ‘morally desirable’. If ‘morally imperative’ is the operative

interpretation, then cost considerations cannot impinge upon the inferential threshold, and the

strong PP can be said to embody PVs. Yet if ‘morally desirable’ is the operative interpreta-

tion, then cost considerations cannot be strictly excluded from impinging upon the inferential
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threshold, and the strong PP cannot be said to embody PVs. Thus, the strong-PP definition

hard-codes the outsider perspective of omission bias, but falls short of hard-coding the outsider

perspective of PVs.

The super-strong-PP definition incorporates a further standard-of-proof stipulation so strong

(100%) that it leaves literally no scope for trade-offs of any non-zero magnitude between harm

and any other value. In other words, the super-strong-PP definition hard-codes outsider-

perspective PVs into the policy institution. Other studies have noted that a standard of proof

requiring that harm “will not occur” is “often an impossible burden to meet.”( 35) Within the

SDT framework, however, outsider-perspective PVs yield horizontal iso-expected-value lines

and the (1,1) corner solution for all ROC curves satisfying G′(1) > 0. The associated inferential

threshold systematically classifies all cases as ‘intervention required’: preventive intervention

becomes the policy verdict on all potentially harmful industrial innovations.

5 CONCLUSION

In contrast to the classical normative use of SDT, the present work employs a behaviorally

augmented SDT model for descriptive purposes. We show that the existence of the PP need

not be understood solely as a response to Knightian uncertainty. Instead, the PP may be

understood as a mental or administrative shortcut – i.e. a heuristic – for implementing SDT

corner solutions. The NHST inferential practices followed in science are intended to hold type-I

error at the fixed, conventional level of α = .05. However policy decision making requires an

inferential threshold that reflects operative cost trade-offs. SDT solves this problem of bridging

between the practices of science and the needs of practical policy decision making. Identifying

PP-based preventive intervention with SDT’s (1,1) corner solution offers a formalization of the

PP that restricts attention to (i) a small set of variables, (ii) the psychological effects that impinge

upon subjectively perceived values of these variables, and (iii) the mathematical relationships

between these variables within SDT. Hypotheses may be derived from this framework, and its

empirical descriptive value may be tested. The behaviorally enhanced SDT model explains

(retrodicts) previously puzzling aspects of PP target selection: (i) What kinds of harm sources

attract PP-based preventive intervention?, and (ii) At what impact round, and for what reasons,

is PP-based preventive intervention truncated? The influence of omission bias on perceived

misclassification costs, moderated by insider or outsider perspective, successfully resolves these
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puzzles. Our SDT framework also offers a new lens with which to examine and understand

different definitions of the PP, upon which previous analytical models of the PP have shed very

little light. Strong-form PP and super-strong-form PP are differentiated from weak-form PP in

the extent to which behavioral factors are hard-coded directly within the PP policy institution:

not at all in weak-form PP, omission bias alone in strong-form PP, and both omission bias and

PVs in super-strong-form PP.

The SDT-based model also offers new analytical traction on the interplay between the corner-

solution supporting interval Γ and variance-enhancing non-independent research. Due to Risk

Analysis’ manuscript-length conventions, this investigation, incorporating an examination of the

PP’s effect on incentives to undertake variance-enhancing research, is deferred to the future.

28



References

1. Peterson M. The precautionary principle is incoherent. Risk Analysis, 2006; 26:595–601.

2. Basili M. A rational decision rule with extreme events. Risk Analysis, 2006; 26:1721–1728.

3. NOAA. Environmental Data Management at NOAA: Archiving, Stewardship, and Access.

Washington, DC: The National Academies Press.

4. Howard RA, Matheson JE, North DW. The decision to seed hurricanes. Science, 1972;

176:1191–1202.

5. Page T. A generic view of toxic chemicals and similar risks. Ecology Law Quarterly, 1978;

7:207–244.

6. Graham JD. Decision-analytic refinements of the precautionary principle. Journal of Risk

Research, 2001; 4:127–141.

7. Wald A. Contributions to the theory of estimation and testing hypotheses. Annals of Math-

ematical Statistics, 1939; 10:299–326.

8. Wald A. Statistical Decision Functions. New York, NY: Wiley, 1950.

9. Ritov I, Baron J. Reluctance to vaccinate: Omission bias and ambiguity. Journal of Behav-

ioral Decision Making, 1990; 3:263–277.

10. Spranca M, Minsk E, Baron J. Omission and commission in judgment and choice. Journal

of Experimental Social Psychology, 1991; 27:76–105.

11. Asch DA, Baron J, Hershey JC, Kunreuther H, Meszaros J, Ritov I, Spranca M. Omission

bias and pertussis vaccination. Medical Decision Making, 1994; 14:118–123.

12. Ritov I, Baron J. Status-quo and omission biases. Journal of Risk and Uncertainty, 1992;

5:49–61.

13. Baron J, Ritov I. Reference points and omission bias. Organizational Behavior and Human

Decision Processes, 1994; 59:475–498.

14. Baron J, Ritov I. Omission bias, individual differences, and normality. Organizational Be-

havior and Human Decision Processes, 2004; 94:74–85.

29



15. Brown KF, Kroll JS, Hudson MJ, Ramsay M, Green J, Vincent CA, Fraser G, Sevdalis

N. Omission bias and vaccine rejection by parents of healthy children: Implications for the

influenza A/H1N1 vaccination programme. Vaccine, 2010; 28:4181–4185.

16. Moskowitz TJ, Wertheim LJ. Scorecasting: The Hidden Influences Behind How Sports Are

Played and Games Are Won. New York, NY: Crown Archetype, 2011.

17. Zamir E, Ritov I. Loss aversion, omission bias, and the burden of proof in civil litigation.

Journal of Legal Studies, 2012; 41:165–207.

18. Kaivanto K, Kroll EB, Zabinski M. Bias-trigger manipulation and task-form understanding

in Monty Hall. Economics Buletin, 2014; 34:89–98.

19. Hallsworth M, List JA, Metcalfe RD, Vlaev I. The making of homo honorarius: From

omission to comission. NBER working paper no. 21210, http://www.nber.org/papers/

w21210.

20. Connolly T, Rb J. Omission bias in vaccination decisions: Where’s the “omission”? Where’s

the “bias”? Organizational Behavior and Human Decision Processes, 2003; 91:186–202.

21. DeScioli P, Christner J, Kurzban R. The omission strategy. Psychological Science, 2011;

22:442–446.

22. Baron J, Spranca M. Protected values. Organizational Behavior and Human Decision Pro-

cesses, 1997; 70:1–16.

23. Ritov I, Baron J. Protected values and omission bias. Organizational Behavior and Human

Decision Processes, 1999; 79:79–94.

24. Baron J, Leshner S. How serious are expressions of protected values? Journal of Experi-

mental Psychology: Applied, 2000; 6:183–194.

25. Tetlock PE, Kristel OV, Elson SB, Lerner JS, Green MC. The psychology of the unthinkable:

Taboo trade-offs, forbidden base rates, and heretical counterfactuals. Journal of Personality

and Social Psychology, 2000; 78:853–870.

26. Tanner C, Medin DL, Iliev R. Influence of deontological versus consequentailist orientations

on act choices and framing effects: When principles are more important than consequences.

European Journal of Social Psychology, 2008; 38:757–769.

30



27. Baron J, Ritov I. Protected values and omission bias as deontological judgments. Psychology

of Learning and Motivation, 2009; 50:133–167.

28. Alhakami AS, Slovic P. A psychological study of the inverse relationship between perceived

risk and perceived benefit. Risk Analysis, 1994; 14:1085–1096.

29. Slovic P, MacGregor DG, Malmfors T, Purchase IFH. Inuence of affective processes on

toxicologists judgments of risk. Eugene, OR: Decision Research, 1997.

30. Finucane ML, Alhakami A, Slovic P, Johnson SM. The affect heuristic in judgments of risks

and benefits. Journal of Behavioral Decision Making, 2000; 13:1–17.

31. Ganzach Y. Judging risk and return of financial assets. Organizational Behavior and Human

Decision Processes, 2000; 83:353–370.

32. Slovic P, Finucane ML, Peters E, MacGregor D. The affect heuristic. In: Gilovich T, Griffin

D, Kahneman D (eds). Heuristics and Biases: The Psychology of Intuitive Judgment. New

York, NY: Cambridge University Press, 2002:397-420.

33. Slovic P, Finucane ML, Peters E, MacGregor DG. Risk as analysis and risk as feelings: Some

thoughts about affect, reason, risk and rationality. Risk Analysis, 2004; 24:311–322.

34. Slovic P, Peters E. Risk perception and affect. Current Directions in Psychological Science,

2006; 15:322–325.

35. Sunstein C. Laws of Fear: Beyond the Precautionary Principle. New York, NY: Cambridge

University Press, 2005.

36. Graham JD, Wiener JW. Risk Versus Risk: Tradeoffs in Health and Environmental Protec-

tion. Cambridge, MA: Harvard University Press, 1995.

37. Cross F. Paradoxical perils of the precautionary principle. Washington and Lee Law Review,

1996; 53:851–925.

38. USDA. Colony Collapse Disorder Progress Report. Washington, DC: CCD Steering Com-

mittee, United States Department of Agriculture, 2010.

39. deFur PL, Kaszuba M. Implementing the precautionary principle. Science of the Total En-

vironment, 2002; 288:155–165.

31



40. I.L.M. Second international conference on the protection of the North Sea: Ministerial

declaration calling for reduction of pollution [London, November 25, 1987]. International

Legal Materials, 1988; 27:835–848.

41. I.L.M. United Nations Conference on Environment and Development: Rio Declaration on

Environment and Development [Rio de Janeiro, June 14, 1992]. International Legal Materi-

als, 1992; 31:874–880.

42. Blackwelder B. Testimony by Dr. Brent Blackwelder (President, Friends of the

Earth) before the Senate Appropriations Committee, Concerning the Cloning of Hu-

mans and Genetic Modifications. January 24, 2002. Available from the Institute for

Agriculture and Trade Policy, http://www.iatp.org/files/Testimony-By_Dr_Brent_

BlackwelderBefore_the_Se.htm

43. Schweizer M. Loss aversion, omission bias and the civil standard of proof. In Mathias K

(ed). European Perspectives on Behavioural Law and Economics. New York, NY: Springer,

2015:125–145.

44. Neyman J, Pearson ES. On the problem of the most efficient tests of statistical hypotheses.

Philosophical Transactions of the Royal Society of London, Series A, 1933; 231:289–337.

45. Fisher RA. Statistical Methods and Scientific Inference (2nd ed.) New York, NY: Hafner

Publishing, 1959.

46. Neyman J. Discussion of Fisher (1935a). Journal of the Royal Statistical Society, 1935;

98:74–75.

47. Lehmann EL. The Fisher, Neyman-Pearson theories of testing hypotheses: One theory or

two? Journal of the American statistical Association, 1993; 88:1242–1249.

48. Berger JO. Could Fisher, Jeffreys and Neyman have agreed on testing? Statistical Science,

2003; 18:1–32.

49. Yates F. The influence of Statistical Methods for Research Workers on the development of

the science of statistics. Journal of the American Statistical Association, 1951; 46:19-34.

50. Nickerson RS. Null hypothesis significance testing: A review of an old and continuing con-

troversy. Psychological Methods, 2000; 5:241-301.

32



51. Sterne AC, Smith GD. Sifting the evidence – what’s wrong with significance tests? British

Medical Journal, 2001; 322:226–231.

52. Ziliak ST, McCloskey DN. The Cult of Statistical Significance: How the Standard Error

Costs Us Jobs, Justice and Lives. Ann Arbor, MI: University of Michigan Press, 2008.

53. Ioannidis PA. Why most published research findings are false. PLoS Medicine, 2005; 2:696–

701.

54. Kruschke JK. Bayesian data analysis. Wiley Interdisciplinary Reviews: Cognitive Science,

2010; 1:658–676.

55. Trafimow D, Marks M. Editorial. Basic and Applied Social Psychology, 2015; 37:1–2.

56. Fisher RA. Statistical Methods for Research Workers. Edinburgh, UK: Oliver & Boyd, 1925.

57. Fisher RA. The arrangement of field experiments. Journal of the Ministry of Agriculture of

Great Britain, 1926; 33:503–513.

58. Fisher RA. The Design of Experiments. Edinburgh, UK: Oliver & Boyd, 1935.

59. Lehmann EL, Romano JP. Testing Statistical Hypotheses, 3rd edition. New York, NY:

Springer, 2005.

60. Neyman J. First Course in Probability and Statistics. New York, NY: Holt, 1950.

61. Cowles M, Davis C. On the origins of the .05 level of statistical significance. American

Psychologist, 1982; 37:553–558.

62. Cox DR. Statistical significance tests. British Journal of Clinical Pharmacology, 1982;

14:325–331.

63. Egan JE. Signal Detection Theory and ROC Analysis. London: Academic Press, 1975.

64. Green DM, Swets JA, Signal Detection Theory and Psychophysics. London: Wiley, 1966.

65. Macmillan NA, Creelman CD. Detection Theory: A User’s Guide. Cambridge: Cambridge

University Press, 1991.

66. Kaivanto K. The effect of decentralized behavioral decision making on system-level risk.

Risk Analysis, 2014; 34:2121–2142.

33



67. Hills SL, Berbaum KS. Using the mean-to-sigma ratio as a measure of the improperness of

binormal ROC curves. Academic Radiology, 2011; 18:143–154.

68. Savage LJ. The Foundation of Statistics. New York, NY: John Wiley and Sons, 1954.

69. Kahneman D, Miller DT. Norm theory: Comparing reality to its alternatives. Psychological

Review, 1986; 93:136–153.

70. Inglehart JK. Compensating children with vaccine-related injuries. New England Journal of

Medicine, 1987; 316:1283–1288.

71. Feldbrugge FJM. Good and bad Samaritans: A comparative survey of criminal law provi-

sions concerning failure to rescue. American Journal of Comparative Law, 1966; 14:630–657.

34


