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Abstract

We provide a theoretical link between the two most prominent ways of modeling
individual and collective contests as proposed by Tullock (1980) and Nitzan (1991)
respectively. By introducing Nitzan’s sharing rule as a way of modeling individual
contests we obtain a contest success function nesting a standard Tullock contest
and a fair lottery. We first provide an equivalence result between the proposed
contest and Tulllock’s contest for the two-player set-up. We then employ this
nested contest as a way of introducing noise in multi-player contests when in the
Tullock contest a closed form solution for the equilibrium in pure strategies does
not exist. We conclude by comparing the proposed contest with the existing ones
in the literature.
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1 Introduction

In a contest individuals or groups exert costly effort in order to increase their chances of

winning a prize. One of the most famous and prolific ways of modeling individual contests

was introduced by Tullock (1980). Some years later, Nitzan (1991) focused on collective

action and significantly contributed to the literature by modeling contests among groups.

His particular interest was in alternative ways of allocating the contested prize among the

members of the winning group. While these seminal studies proposed alternative contest

designs that significantly contributed in the evolution of the individual and collective

contests literature, a theoretical link between these two strands is missing.

In this study we link these two models of individual and collective contests by intro-

ducing Nitzan’s sharing rule as a way of modeling individual contests with noise. This

approach leads to a contest nesting a standard Tullock contest and a fair lottery. Once

this nested contest is further transformed to a Tullock contest with transfers, we use the

results of Hillman and Riley (1989) and Stein (2002) to provide an equivalence result

for Tullock’s and Nitzan’s methods in a two-player contest. Moreover, and in contrast

to the standard Tullock contest, this nested contest guarantees a closed form solution in

pure strategies for the asymmetric N players contest that may be used in several applica-

tions. As we show, this solution significantly differs to the ones described in the literature

(Amegashie, 2006; Dasgupta and Nti, 1998). While the current mechanism is closer to

the one proposed by Tullock under different criteria of equivalence, the existing ones are

closer to the Tullock contest in terms of axiomatic properties.

Providing the theoretical link to the studies of Tullock (1980) and Nitzan (1991) and

proposing the use of a collective contest mechanism in individual contests is important

for a number of reasons. First, and most importantly, it is well known that under certain

conditions a pure strategy equilibrium does not exist for the Tullock (1980) contest.

We show that in such cases one can employ our results to consider a dual problem in

the Nitzan (1991)-equivalent collective contest in which an equilibrium in pure strategies

always exists. Second, our results will be of use for contest designers who look for optimum

mechanisms under constraints and can now implement a particular type of mechanism

that works the best. Third, Baye and Hoppe (2003) show that a Tullock contest can

represent various general situations other than only rent-seeking (as initially proposed by

Tullock, 1980) and provide relevant equivalence conditions. Hence, the link we establish

allows the application of our results in various areas of contests.

The rest of the paper progresses as follows. In Section 2 we provide the structure

of the analysis. We establish the link between the two types of contests in Section 3,

starting with the two-player case in Section 3.1 and extending our set-up to N -players in
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Section 3.2. Section 4 concludes.

2 Model set-up

2.1 Individual contests

Let N players compete for a prize of common value V by exerting non-negative levels of

effort. A contest success function (CSF), fi, maps the vector of efforts to the probability

that player i ∈ N wins the prize (i.e., fi : RN
+ → [0, 1] such that

∑
i∈N fi(.) = 1).

Arguably, the most popular CSF is the one proposed by Tullock (1980), in which the

probability of player i winning the prize when exerting effort ei ≥ 0 is

f ri (e1, ..., eN) =
eri∑N
j=1 e

r
j

if
N∑
j=1

erj > 0 and 1/N otherwise (r-CSF)

where ej denotes the effort exerted by player j and r ≥ 0 determines the noise level in the

contest. If r = 0 then the noise is maximum and players face a fair lottery. If r →∞ then

there is no noise and players compete under an all-pay auction in which the highest effort

wins with certainty. Let the cost functions be linear and ci > 0 denote the marginal cost

of player i. Without loss of generality, let ci be increasing in i, i.e., c1 ≤ c2 ≤ ... ≤ cN .

Player’s i payoff is then given by1

πri =
eri∑N
j=1 e

r
j

V − ciei (1)

2.2 Collective contests

In a collective contest several groups compete for a prize that has to be further allocated

to the N group members. If the prize is non-divisible, then group members also compete

in an intragroup contest (see, for example, Choi et al., 2015 and the references therein).

If the prize is divisible, then it is distributed among the group members following a

predetermined sharing rule. Arguably, the most famous sharing rule is the one proposed

1For the reasons of interpretability when we use Nitzan’s sharing rule in an individual contest, players’
heterogeneity is introduced through cost asymmetries. This is equivalent to asymmetries in terms of
valuations or in the effort impact (Gradstein, 1995; Corchón, 2007).
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by Nitzan (1991) where the share of the prize allocated to player i is given by2

fλi (e1, ..., eN) = λ
ei∑N
j=1 ej

+ (1− λ)
1

N

If λ ∈ [0, 1], as in most of the literature on collective contests, then a fraction λ of the

prize is allocated proportional to players’ effort. The remaining fraction of the prize is

allocated in an egalitarian manner across the N group members. Given that λ ∈ [0, 1],

it holds that fλi (e1, ..., eN) ∈ [0, 1] and the λ-CSF can be interpreted as a nested contest

that is a convex combination of the most common version of a Tullock CSF where r = 1

and of a fair lottery (i.e., r = 0).3 Note that λ can be interpreted as the degree of noise

(or meritocracy) in the competition and clearly resembles to the effect of r in the r-CSF.

In an N-player λ-contest, the payoff of player i is given by

πλi = [λ
ei∑N
j=1 ej

+ (1− λ)
1

N
]V − ciei (2)

Note λ need not be restricted in the [0, 1] interval. However, when λ > 1 the proposed

function fλi may take values outside [0, 1] and therefore it can not be interpreted as a CSF

representing probabilities. If λ > 1 then the proposed sharing rule allows for transfers

among group members.4 For individual contests, this is similar to the idea proposed by

Appelbaum and Katz (1986) and Hillman and Riley (1989).

3 Link between the two contests

The payoff of player i in the proposed nested contest (2) can be rewritten as:

πλi =
ei∑N
j=1 ej

Ṽ − ciei + (1− λ)
V

N
(3)

where Ṽ = λV . Hence the proposed nested contest is now transformed to a propor-

tional Tullock contest (i.e., r = 1) with an additional exogenous parameter (1− λ)V/N .

The exogenous parameter clearly does not affect the solution, and resembles a Tullock

contest with transfers (Hillman and Riley, 1989). Therefore, as long as λ > 0, solving the

2Nitzan (1991) was the first to use this sharing rule in modelling collective contests. This sharing
rule was previously introduced in the cooperative production literature by Sen (1966). For a survey on
sharing rules in collective rent-seeking see Flamand and Troumpounis (2015).

3Amegashie (2012) proposes a similar nested two-player contest that ranges from a Tullock to an
all-pay auction.

4For group contests allowing this possibility see, for example, Baik and Shogren (1995); Baik and Lee
(1997, 2001); Lee and Kang (1998); Gürtler (2005); Balart et al. (2015).
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proposed nested contest is equivalent to solving the most tractable and therefore most

frequently implemented version of a Tullock contest (i.e., r = 1). Consequently, one can

follow Stein (2002) to solve the λ-contest and obtain the unique equilibrium (as shown

by Matros, 2006). Denoting individual prize valuations by Vi = Ṽ
ci

, the equilibrium effort

in the unique equilibrium of the λ-contest is:

ei =

(
1− 1

Vi

(M − 1)∑M
j=1

1
Vj

)
(M − 1)∑M

j=1
1
Vj

(4)

where M is the number of active players. Player M is the highest marginal cost player

for whom the condition VM > (M−2)P
i≤M−1

1
Vj

is satisfied.

Given this link, in order to analyze the relationship between the λ and r-contests, we

first consider a two-player case in the next sub-section and then extend the analysis to

N players in Section 3.2. In the continuation, we make use of the definitions coined by

Chowdhury and Sheremeta (????) regarding equivalence of contests.

Definition 1. k

• Contests are effort equivalent if they result in the same equilibrium efforts.

• Contests are strategically equivalent if they result in the same best responses.

• Contests are payoff equivalent if in equilibrium they result in the same payoffs.

3.1 The two-player case

The two-player case is the most common in the literature since it allows one to provide

with closed form solutions, clear comparative statics and a graphical representation of the

results. Baik (1994) and Nti (1999) solved the two-player r-contest when an equilibrium

in pure strategies exists (Baye et al., 1994; Alcalde and Dahm, 2010; Ewerhart, 2014) for

the equilibrium in mixed strategies). As shown by Nti (1999), as long as V r
1 + V r

2 > rV r
2

(letting V1 ≤ V2 then r < 1 is a sufficient condition, while r < 2 is a necessary condition),

the two-player r-contest has a unique equilibrium in pure strategies where both players

are active (i.e., they exert strictly positive effort) with:

ei =
rV r+1

i V r
j

(V r
1 + V r

2 )2
(5)

with i 6= j, i = 1, 2 and Vi = Ṽ
ci

.
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By comparing the solutions of the λ and r-contest presented in equations (4) and (5)

as well as the best responses and the equilibrium payoffs in the two contests, the following

equivalence results arise.

Proposition 1. For any two-player r-contest with an equilibrium in pure strategies (i.e.,

r such that V r
1 + V r

2 > rV r
2 ):

1. There exists an effort equivalent λ-contest with λ = r(V1V2)r(V1+V2)2

V1V2(V r
1 +V r

2 )2
.

2. There exists no strategically equivalent λ-contest (except for r = λ = 0 and r = λ =

1 when the two contests coincide).

3. There exists no payoff equivalent λ-contest (except for r = λ = 0, r = λ = 1 when

the two contests coincide and the symmetric case, c1 = c2).

Proof: See the appendix.

� �

������ ���	
����
������������
���

Figure 1: Best response functions and effort equivalence on the left (r = 0.5 and
λ = 0.524729) and payoff equivalence on the right. For both graphs V1 = 20 and V2 = 12.

Figure 1 illustrates the result for asymmetric players. On the left, best responses are

different for the λ and r-contests but they intersect at the same effort equivalence point.

On the right panel, it is clear that the value of λ that guarantees payoff equivalence for

player 1 only coincides with that providing payoff equivalence for player 2 when the two

contests coincide (i.e., r = λ = 1 and r = λ = 0).

For the symmetric case, effort equivalence is obtained when λ = r. This also translates

into payoff equivalence.

By means of comparative statics we can describe several interesting equilibrium prop-

erties of the two-player λ-contest and compare them with those of the r-contest:
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Proposition 2. In the two-player λ-contest equilibrium:

1. A unique equilibrium in pure strategies exists for any λ.

2. Aggregate equilibrium effort is increasing in λ.

3. Aggregate equilibrium effort is decreasing in the players’ asymmetry.

Proof: See the appendix.

The first two properties substantially differ between the two contests. First, an equi-

librium in pure-strategies always exists in the λ-contest, while this is only true for certain

parametric restrictions in the r-contest. This difference is attributed to the fact that while

zero effort guarantees a zero payoff in the r-contest, this is not true in the λ-contest. In

the λ-contest, zero effort may result in negative payoffs since losers have to make a trans-

fer to the winners (Hillman and Riley, 1989). These transfers in the λ-contest make the

condition ei ≥ 0 non-binding. This guarantees an interior solution, and consequently an

equilibrium in pure strategies always exists.

! !

!"#

Figure 2: Effort equivalence value of λ, given any r such that an equilibrium in pure
strategies exists V r

1 + V r
2 > rV r

2 (with V1/V2 = 10).

Second, while in the r-contest the comparative statics of aggregate effort with respect

to r depend on the degree of asymmetry among the players, in the λ-contest the level

of aggregate effort is strictly increasing in λ. As a consequence, the value of λ that
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guarantees an effort equivalent λ-contest, is not monotonic in r (Figure 2).5 Finally, the

third property linking the asymmetry with aggregate equilibrium effort is in line with the

standard result of the r-contest (Nti, 1999).

Before proceeding further, let us focus on an important difference between the λ and r-

contests. A well known feature of the r-contest is that it satisfies participation constraint,

namely players having a non-negative expected utility in equilibrium. Recall that in the

effort equivalent λ-contest the presence of transfers as in Hillman and Riley (1989) may

be required (i.e., λ > 1, as in Figure 2 for r belonging to [0.41, 1]). These transfers in

turn may violate individuals’ participation constraint, as it always happens in their setup.

While any competition involving a policy change with “winners” and “losers” does not

entail voluntarily participation and hence the participation constraint does not apply,

the latter is crucial in situations where agents compete for preexisting rents (Hillman

and Riley, 1989). Overall, while the existence of a pure strategy equilibrium for any

level of noise is a desirable characteristic of the λ-contest compared to the r-contest,

the possible violation of the participation constraint by the λ-contest may challenge its

implementability under some particular settings.

Remark 1. In any λ-contest the participation constraint is satisfied if and only if

λ ≤ (V1 + V2)
2

V 2
1 + 2V1V2 − V 2

2

Hence, for any r, although a λ-equivalent contest always exists, the latter fails to satisfy

participation constraint if

r(V1V2)
r(V1 + V2)

2

V1V2(V r
1 + V r

2 )2
>

(V1 + V2)
2

V 2
1 + 2V1V2 − V 2

2

As the first inequality describes, as long as λ is low, meaning that either no transfers

are involved (i.e., λ ≤ 1) or transfers are present but are not too punishing for low

contributors, all individuals will obtain a non-negative payoff in equilibrium and hence

the participation constraint is satisfied. Once the transfers become high enough (i.e.,

λ > (V1+V2)2

V 2
1 +2V1V2−V 2

2
), then low contributors are severely punished and therefore are better

off not participating in the contest.6 The conditions under which the λ-equivalent contest

5Note that, even for r < 1, the level of λ that ensures effort equivalence between the two contests
might involve transfers as in Hillman and Riley (1989). This depends on the exact level of asymmetry.

6This remark follows immediately when guaranteeing non-negative expected utility for player 2 and
isolating λ. Since V1 > V2 the same condition also guarantees that the expected utility of the highest
valuation player is also non-negative. Notice that participation constraint means not participating in
the contest with transfers whatsoever, and is different to an individual being inactive and exerting zero
effort. Zero effort is allowed in the solution of the λ-contest as presented in (4), but the presence of
inactive players violates the participation constraint.
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Figure 3: Effort equivalence value of λ and participation constraint.

does not satisfy the participation constraint depends on the specific combination of cost

asymmetry and noise level.

In the two upper panels of Figure 3, we provide a graphical representation of two

different scenarios regarding the satisfaction of the participation constraint. The lower

horizontal line at value 1 reminds the reader that above this value the λ equivalent

effort contest requires the presence of transfers. The upper horizontal line of these two

first panels, represents the upper bound on the values of λ for which the participation

constraint is satisfied. In the left upper panel, for a low level of asymmetry such that

V2 = 3V1, for any r we can find an equivalent λ-contest that satisfies the participation

constraint, even if the latter requires some transfers. In contrast, in the right upper panel,

we observe how the effort equivalent λ-contest violates the participation constraint for

some values of r when the level of asymmetry is high enough such that V2 = 9V1.

The darkest area in the lower panel plots the combinations of asymmetry V1/V2 and

r for which the effort equivalent λ-contest does not satisfy the participation constraint.

While the equivalent λ-contest satisfies the participation constraint for any level of r

when players asymmetry is low, for higher levels of asymmetry the region of r’s for which
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an equivalent λ-contest satisfies the participation constraint shrinks.

3.2 Extension to N players

Well known difficulties, in terms of non-existence of a closed form solution for the pure

strategy Nash equilibrium, arise while extending the r-contest to set-ups with more than

two heterogeneous players and r 6= 1. In contrast, the biggest advantage of employing a

λ-contest is that closed form solutions are still obtained by expression (4). Given that for

values of λ ∈ [0, 1] no transfers are involved, parameter λ can be interpreted as a measure

of the noise level. Hence, when the effect of noise is of interest one can employ the λ-CSF

as a way of modelling contests with more than two asymmetric players. The following

proposition summarizes the properties of the λ-contest with more than two-players.

Proposition 3. In any N-player λ-contest with N > 2:

1. A unique pure strategy equilibrium with a closed form solution, given by (4), exists.

2. In equilibrium individual and aggregate equilibrium effort are increasing in λ.

3. A strategically or effort equivalent r-contest may not exist (except for r = λ = 0

and r = λ = 1 when the two contests coincide).

Proof: See the appendix.

Representing and solving the N -player asymmetric contests with non-proportional

noise level (i.e., r 6= 1) in a tractable way constitutes an important advantage of the

λ-contest. Another alternative in this area was proposed by Amegashie (2006) while

proposing a CSF with tractable noise parameter. He employed the structure of Dasgupta

and Nti (1998) in which they propose the α-CSF:

fαi (e1, ..., eN) =
ei + α∑N

j=1 ej +Nα

where α > 0 is the introduced “tractable” noise level parameter. The higher α is, the

more noise is introduced, with the case of α→∞ representing a fair lottery (r = 0 for a

Tullock CSF and λ = 0 for the nested contest presented above).

Note that the α-contest and the λ-contest coincide for the pairs (α → ∞, λ = 0)

and (α = 0, λ = 1). Therefore the λ-contest without transfers (i.e., λ ∈ [0, 1]) can

represent the same levels of noise as the α-contest.7 As it turns out the α-contest and the

7Fu and Lu (2007) show that the three types of contests considered here are strategically equivalent to
a noisy ranking contest with a type I extreme-value (maximum) distributed noise. However, a different
production technology of effort, g(ei) is associated with each type of contest. In particular, g(ei) = er

i

in the r-contest, g(ei) = ei in the λ-contest and g(ei) = ei + α in the α-contest.
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λ-contest are never effort equivalent for such intermediate levels of noise (i.e., λ ∈ (0, 1)

and α ∈ (0,∞)). In the following corollary we highlight the main differences that arise

in terms of equilibrium results.

Corollary 1. .

• For N = 2 there exists a λ such that the λ-contest is effort equivalent to an r-

contest for any r that guarantees an equilibrium in pure strategies (Proposition 1).

An α-contest is never effort equivalent to an r-contest.

• For N > 2 and symmetric players there exists a λ such that the λ-contest is effort

equivalent to an r-contest for any r that guarantees an equilibrium in pure strategies

(Proposition 3). In the α-contest this is only true for r ∈ [0, 1].

• In an N-symmetric-players contest adding an additional player increases total effort

in the r-contest with an equilibrium in pure strategies and in the λ-contest while it

may decrease total effort in the α-contest.

• The λ-contest and r-contest can not sustain an equilibrium where all players are

inactive while this may occur in the α-contest.

The statements in Corollary 1 arise directly from Proposition 1 and 3 and Amegashie

(2006). Amegashie (2006) also discusses the axiomatic properties satisfied by his proposal

compared to the ones of Tullock (1980) as provided by Skaperdas (1996) and Clark and

Riis (1998). For our proposal and when the λ-contest represents a contest success function

(i.e., λ ∈ [0, 1]) the following characteristics are of interest.

1. As Clark and Riis (1998) show the axioms of imperfect discrimination (A1), mono-

tonicity (A2), Luce’s axiom (A4’) and homogeneity of degree zero (A6) hold if and

only if fi(e1, ..., eN) = aie
r
i/
∑N

j=1 aje
r
j where r > 0 and ai, aj > 0 are constants (i.e.,

an augmented version of the r-CSF). While the axioms of imperfect discrimination

and monotonicity are satisfied both by the λ- and α-CSF, Luce’s axiom is satisfied

only by the α-CSF and homogeneity of degree zero is satisfied only by the λ-CSF.

2. Both for the λ- and α-CSF and in contrast to the r-CSF, (i) it does not hold that

if ei = 0 for any player i then the probability of winning the price is zero; and (ii)

these functions are continuous at ei = ej = 0 for all i 6= j.

In terms of axiomatic properties the λ-CSF does not satisfy Luce’s axiom while it

satisfies homogeneity of degree zero. Whereas, the α-CSF satisfies Luce’s axiom, but it

does not satisfy homogeneity of degree zero. Hence, while in terms of equilibrium results

the λ-contest is closer to the results of an r-contest than the ones of an α-contest, the

latter performs better than the λ-CSF in terms of axiomatic properties.
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4 Discussion

In this study we provide with a theoretical link between the individual contest (Tullock,

1980) and the collective contest (Nitzan, 1991); and derive the sufficient conditions for

effort equivalence among the two. Since an equilibrium in pure strategies always exists

with a collective contest framework, this link allows one to to implement the same as an

appropriate mechanism for N -asymmetric-players individual contests. We further provide

the relationship with the contest proposed by Amegashie (2006) in solving the same issue.

The λ-CSF we propose can be implemented in applications where the absence of

closed form solutions induces focus only on r = 1. Franke (2012), for instance, analyzes

the effect of affirmative action policies on aggregate effort. While in the two-player case

different noise level is allowed, the analysis is restricted to r = 1 for the N -players

contest. By considering the λ-CSF one can generalize the results to investigate whether

the affirmative action condition to maximize effort are also true for lower levels of noise.

A typical feature of the λ-CSF is that exerting zero-effort does not necessarily result

in a zero payoff. A similar result is obtained in multi-winner contests for which a noisy

winner selection mechanism is implemented (Berry, 1993; Chowdhury and Kim, 2014).

That is because in these multi-winner contests only one prize is allocated through the

effort outlays whereas others are allocated randomly - which resembles the nested prize

allocation feature of the λ-CSF. It would be of much interest to understand and analyze

the links between these two types of contest mechanisms.

The λ-CSF can also be of interest for experimental work and the effort equivalence

result can be tested. Since λ ∈ [0, 1] can be interpreted as noise, one can study the

effect of the latter on individual behavior (Millner and Pratt, 1989). The attractiveness

of the λ-CSF comes from the intuitive manner it can be introduced in the laboratory.

Experimenters could split (1 − λ) fraction of the prize in an egalitarian manner and let

subjects compete for the remaining part λ through a standard Tullock contest.
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5 Appendix

5.1 Proof of Proposition 1

1. When N = 2 the condition for a player being active active in the λ-contest is always

satisfied. From (4) the equilibrium effort of player i is ei =
V 2

i Vjλ

(V1+V2)2
for i = 1, 2,

j 6= i. To prove effort equivalence we just need to equalize these equilibrium efforts

with the ones of the r-contest as presented in expression (5). Equilibrium efforts of

the λ-contest coincide with the ones of the r-contest for λ = r(V1V2)r(V1+V2)2

V1V2(V r
1 +V r

2 )2
.

2. Note that when r = λ = 0 or r = λ = 1 the λ-contest and the r-contest coincide,

hence strategic equivalence follows immediately in these cases. The best response for

player i in the λ-contest is ei(ej) = max{−ej +
√
ejViλ , −ej−

√
ejViλ} while it is not

possible to find a closed form solution for the best response of the r-contest. How-

ever, as shown in Chowdhury and Sheremeta (????) effort equivalence is a necessary

condition for strategic equivalence. Therefore, strategic equivalence is guaranteed

only if the first order conditions of the r-contest are satisfied for any value of ej

after substituting the best responses of the λ-contest with λ = r(V1V2)r(V1+V2)2

V1V2(V r
1 +V r

2 )2
. This

is true if and only if
er
jrVi(A)r−1

(er
j+(A)r)2

= 1, where A = −ej +
√
ejVi

√
r(ViVj)r−1(Vi+Vj)2

(V r
i +V r

j )2
which

is not true for all values of ej (only for the equilibrium one).

3. By plugin equilibrium efforts in the payoff of player 1 we obtain that the λ-contest

induces the same payoff as the one in the r-contest for λ =
(V1+V2)2(V 2r

1 −V 2r
2 −2r(V1V2)r)

(V 2
1 −2V1V2−V 2

2 )(V r
1 +V r

2 )2
=

λ1. Similarly, the λ-contest induces payoff equivalence for player 2 if and only if

λ =
(V1+V2)2(V 2r

1 −V 2r
2 +2r(V1V2)r)

(V 2
1 +2V1V2−V 2

2 )(V r
1 +V r

2 )2
= λ2. Normalizing V2 = 1 and V1/V2 = v we see that

λ1 = λ2, i.e., payoff equivalence, is only obtained for V1 = V2 or r = {0, 1} (when

the two contests coincide).

5.2 Proof of Proposition 2

1. The existence of an equilibrium in pure strategies for any λ arises directly from the

conditions in Nti (1999). Uniqueness is shown in Matros (2006).

2. Total effort in the λ-contest is V1V2λ
V1+V2

. Consequently, aggregate equilibrium effort is

increasing in λ.

3. Assuming without loss of generality that V1 ≥ V2 and by normalizing V1 = 1 and

v = V2/V1 ∈ [0, 1], we obtain that the derivative of total effort with respect to v is
λ

(1+v)2
> 0, therefore aggregate equilibrium effort is strictly increasing in symmetry.
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5.3 Proof of Proposition 3

Parts 1 and 2 of the proposition arise directly from (4) and the arguments presented by

Stein (2002). For part 3 if an effort equivalent λ-contest exists then we should be able to

find a relationship between λ and r such that the first order conditions of all active players

in the r-contest are satisfied by the equilibrium expressions in the λ-contest. However,

we can show that this is not true with a counterexample. Assume that V1 = 4, V2 = 3

and V3 = 2. Then, λ = 0.8046 guarantees that the first order condition of player 1 in the

r-contest is satisfied. However, this value of λ does not satisfy the first order conditions

of players 2 and 3 in the r-contest. As effort equivalence is not guaranteed, strategic

equivalence is neither. When r = λ = 0 or r = λ = 1 the λ-contest and the r-contest

coincide, hence strategic and effort equivalence follows immediately in these cases.
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