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Abstract

Neoclassical economic theory assumes that when agents tackle dynamic decisions un-

der ambiguity, preferences are represented by Expected Utility and prior beliefs are up-

dated according to Bayes rule, upon the arrival of partial information. Nevertheless, when

one considers non-neutral ambiguity attitudes, either the axiom of dynamic consistency or of

consequentialism should be relaxed. We report the results of a new experiment, designed to

investigate how people behave in a dynamic choice problem under ambiguity, where deci-

sions are made both before and after the resolution of some uncertainty. We study which of

the two rationality axioms people violate, along with the question of whether this violation

is part of a conscious planning strategy or not. The combination of the two, allows us to

classify subjects to three behavioural types: resolute, naı̈ve and sophisticated. Using data

from a portfolio choice experiment where ambiguity is represented in a transparent and

non-manipulable way, we cannot reject the hypothesis of Bayesian updating for half of our

experimental population. For ambiguity non-neutral subjects, we find that the majority are

sophisticated, a few are naı̈ve and few are resolute.

JEL classification: C91, D81, D83, D90

Keywords: Ambiguity, Subjective Beliefs, Dynamic Consistency, Consequentialism, Portfo-

lio Choice, Experiment

∗Department of Economics, Lancaster University Management School, LA1 4YX, Lancaster, U.K.
B k.georgalos@lancaster.ac.uk, � +44 (0)15245 93170
I am grateful to John D. Hey and Glenn Harrison for their valuable comments. I am also thankful to Xueqi Dong
and Hushuan Li for their assistance during the experimental sessions. This research was funded by a Research and
Impact Support Fund awarded by the Department of Economics at the University of York (RIS 39). The financial
aid of the Greek Scholarships Foundation (IKY) is gratefully recognised. All errors and opinions are mine.



1 Introduction

Underlying much of economic theory are three key assumptions. These are that economic

agents: (1) use probabilities to describe risky and ambiguous situations; (2) behave in a dynam-

ically consistent way; and (3) update probabilities according to Bayes rule, upon the arrival of

partial information. Subjective Expected Utility theory (SEU, Savage (1954)) binds these three

assumptions together in a logically and intellectually satisfying manner. Nevertheless, since

the seminal thought experiments proposed by Ellsberg (1961), challenging the first assump-

tion, a vast literature of theoretical models emerged, aiming to accommodate Ellsberg-type

preferences1. The direct consequence of this, was the rapid development of a large body of

experimental work, that either tests the attitudes towards ambiguity or performs horse-race

comparisons to identify the model that best describes data2.

However, as it is highlighted in Gilboa and Schmeidler (1993), if one wants to confirm

the theoretical validity of any model of decision making under uncertainty, this model should

be able to successfully cope with the dynamic aspect of the choices. When SEU is extended

to its dynamic dimension, the independence axiom (often called the “sure thing principle”)

is equivalent to two rationality axioms, namely dynamic consistency (DC) and consequentialism

(C), along with other conventional assumptions. DC requires that the ex-ante preferences coin-

cide with the ex-post ones, while C dictates that past decisions play no role and only available

options matter3. Ghirardato (2002), provides the elegant result that when both DC and C are

satisfied, preferences are represented by SEU and the agent’s beliefs are updated according to

Bayes rule4. However, given that most of the non-SEU models relax the independence axiom,

modelling dynamic choice requires the theoretician to abandon either DC or C and conse-

quently, to abandon Bayes rule. Al-Najjar and Weistein (2009) classify the literature into four

broad categories, dealing with inconsistencies in dynamic choice, namely naı̈veté, sophistica-

tion, distortion of updating rules and restriction of information structures, where in almost all

cases one of the two axioms is relaxed5.
1See among others Gilboa and Schmeidler (1989), Schmeidler (1989), Tversky and Kahneman (1992), Ghirardato

et al. (2004), Klibanoff et al. (2005), Maccheroni et al. (2006), Gajdos et al. (2008), Siniscalchi (2009). For an extensive
review of the models see Etner et al. (2012).

2See Halevy (2007), Hayashi and Wada (2010), Hey et al. (2010), Abdellaoui et al. (2011), Charness et al. (2013),
Hey and Pace (2014), Ahn et al. (2014), Stahl (2014), Baillon and Bleichrodt (2015). Trautmann and van de Kuilen
(2015).

3Consequentialism was first proposed in Hammond (1988) and it requires that the conditional preferences to
remain unaffected by the outcomes outside the conditional events. Representing the dynamic problem with a
decision tree, consequentialism is satisfied when the decision maker (DM) does not take into account states that are
not available anymore and thinks of the rest of the decision tree as being a new problem.

4Klibanoff and Hanany (2007) claim that dynamic consistency is the primary justification for Bayesian updating
and under the view that Bayesian updating should be taken as given, DC comes “for free” under Expected Utility.

5We briefly expand on these notions in section 2.
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Even though there exist plenty of experimental studies that report extensive deviations

from Bayesian updating (El-Gamal (1995), Charness and Levin (2005), Charness et al. (2007),

Holt and Smith (2009)), all focus on choice in risky environments (existence of objective proba-

bilities) and their results are usually based on the conventional assumption of risk neutrality. In

a recent study by Antoniou et al. (2015), where the authors investigate how accounting for risk

attitudes alters inferences on deviations from Bayes rule, they conclude that “Previous anal-

yses of subjective Bayesian decision-making, including our own here, have assumed that the

subject is neutral towards the uncertainty that is involved in the use of an inferred posterior

probability. To address this hypothesis one would need theoretical, experimental and econo-

metric extensions of our approach”. In the present study we apply the extensions indicated

in Antoniou et al. (2015) so that we can test for deviations from Bayes rule, when the DMs

are characterised by non-neutral ambiguity attitudes and have non-SEU preferences. Our gen-

eral aim is to provide insights on how people behave in a dynamic decision problem under

ambiguity and decisions are made before and after the resolution of some uncertainty. De-

composing the above idea and using an experimental design (a portfolio choice problem) that

diverges from the traditional Ellsberg-urn type experiments, we aspire to investigate three

main questions. First, do people behave according to the predictions of the SEU model and

therefore, update beliefs in a Bayesian way? Second, when people deviate from SEU, which of

the two rationality axioms do they violate? Third, when subjects violate the axioms of SEU, are

they aware of this violation? In other words, is this violation the consequence of a conscious

planning strategy? To address the first question, we propose a new experimental design that

allows to directly test for violations of the SEU model. Regarding the second question, there is

already evidence of extensive violation of DC (Dominiak et al. (2012)), in the framework of the

dynamic Ellsberg urn6. We provide new evidence of violation of the two axioms, using alterna-

tive decision tasks and ways to represent ambiguity in the lab. Furthermore, previous studies

of dynamic choice under ambiguity were constrained in answering whether subjects violate

DC or C. Although this distinction is useful to inform theory and provide future directions, it

does not clarify whether divergence from SEU is intended or not. We extend this analysis and

test if this violation is part of the subjects’ planning strategy by assuming three behavioural

types, the resolute, the naı̈ve and the sophisticated. We assume a particular model of decision

making under ambiguity, the α-Maxmin Expected Utility preferences (α-MEU, Ghirardato et al.

(2004)) and by making appropriate assumptions, we fit preference functionals to our data and

6To save space, we do not describe the dynamic Ellsberg urn problem here. The interested reader can consult
Epstein and Schneider (2003), Klibanoff and Hanany (2007) and Dominiak et al. (2012). An illustration of this
extension is also provided in the supplementary material.
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compare decisions to the predictions of the SEU model that we use as a benchmark. Moreover,

we further investigate issues that studies of static choice under ambiguity usually focus on (i.e.

ambiguity attitudes and correlation between risk and ambiguity attitudes). Overall, we find

substantial heterogeneity in behaviour. Almost half of our experimental population behaves

according to SEU. For the ambiguity non-neutral subjects, the majority are best described by

the sophisticated type, few by the naı̈ve and the remaining by the resolute. To the best of our

knowledge, this is the first study that experimentally investigates dynamic decision making

under ambiguity in a portfolio choice experiment and considers behavioural heterogeneity in

planning strategies.

2 Relevant Literature

Al-Najjar and Weistein (2009), classify theories to four different categories, depending the as-

sumptions they make on how DMs tackle dynamic problems and update their beliefs upon the

reception of partial information. The first category includes theories that abandon DC and are

labeled as “naı̈ve updating” theories since it is not necessary for the decisions at the present to

take into consideration future preferences. This includes Gilboa and Schmeidler (1993), Pires

(2002), Wang (2003), Eichberger et al. (2007) and Eichberger et al. (2010)7. In this approach,

each of the stages is faced independently of the other, strategy that may lead to dynamic in-

consistencies and dominated results. The second category, includes theories that require the

DM to behave in a sophisticated way, violating DC This approach is mainly represented by

Siniscalchi (2011), who does not assume any particular preference functional or update rule.

The idea is based on the notion of consistent planning, where the ex-post preferences are taken

into account when the ex-ante choices are made. An alternative way to model dynamic choice,

involves the relaxation of C. This family of models proposes the use of a set of distorting updat-

ing rules that ensure DC. This includes Klibanoff and Hanany (2007), Hanany and Klibanoff

(2009) and Klibanoff et al. (2009), who have axiomatised and extended few of the most com-

monly used ambiguity models to their dynamic version. Finally, there is a category of models

in the literature that maintains both C and DC in the framework of multiple-priors represen-

tation of beliefs. To this end, these models require the restriction of information sets and allow

the updating only of the set of beliefs that do not reverse the ex-ante choices based on the

rectangularity condition. A representative model of this approach is presented in Epstein and

Schneider (2003)8.
7Ozdenoren and Peck (2008) in a game theoretical framework, show that violating DC is the rational course of

action, when suspicion is perceived regarding the composition of the Ellsberg urn.
8An exhaustive review of the theoretical literature is beyond the scope of this study. Al-Najjar and Weistein
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Early experimental evidence on violations of DC in a risky framework includes Tversky

and Kahneman (1981), Cubitt et al. (1998), Busemeyer et al. (2000) and Nebout and Dubois

(2014). More recently, Hey and Panaccione (2011) and Nebout and Willinger (2014), categorise

their subjects to behavioural types according to the planning strategies and the axioms they

satisfy when they tackle dynamic problems9. As far as ambiguity is concerned, although there

is a rich experimental literature on static ambiguity preferences, this is not the case when one

considers dynamic choice and updating where the literature is surpisingly limited. Our work

is closer to the studies by Cohen et al. (2000), Dominiak et al. (2012) and Corgnet et al. (2013),

which all focus on dynamic choice under ambiguity. Cohen et al. (2000) study the descriptive

validity of the main two updating rules that have been axiomatised for the multiple-priors fam-

ily, the Maximum Likelihood Updating (MLU) rule and the Full Bayesian Updating (FBU) rule10.

Using a design based on the dynamic Ellsberg urn, they confirm the Ellsberg type behaviour

and show that the FBU rule is applied more often. They assume separability (an assumption

close to C), fact that does not allow for a direct test of which axiom subjects satisfy. In addition,

the experiment was not incentivised in monetary terms. Dominiak et al. (2012), use a similar

design as in Cohen et al. (2000). They test whether subjects satisfy DC or C, providing evidence

of extensive violation of C and they also find supporting evidence for the FBU rule. Finally,

Corgnet et al. (2013) study trader reaction to ambiguity when dividend information is sequen-

tially revealed in an experimental asset market. They find that the role of ambiguity cannot

explain financial anomalies.

The experiment we report here differs from the aforementioned studies in various ways.

Both Cohen et al. (2000) and Dominiak et al. (2012) use the same experimental design, while we

use a dynamic portfolio task along with an alternative device to represent ambiguity (a Bingo

Blower) in a way that can potentially generate less suspicion vis-à-vis the Ellsberg urn (see

Charness et al. (2013, p. 3), Ozdenoren and Peck (2008)). Furthermore, in the previous studies,

the inference is based on a constrained set of four pairwise choice questions per participant.

In order to eliminate possible confusion, but also to estimate preference functionals, we ask

our participants a large set of allocation questions that allows us to gather potentially more

informative data, since the choice variable now is continuous rather than binary ((Loomes and

Pogrebna, 2014)). An additional aspect of our study is that we do not constraint the analysis

to the question of which axiom is violated by ambiguity non-neutral agents, but instead, we

estimate structural ambiguity models which permit the identification of various behavioural

(2009), Klibanoff et al. (2009) and Siniscalchi (2011), provide excellent reviews of the various approaches on mod-
elling dynamic preferences under ambiguity.

9For an overview see Hammond and Zank (2014).
10We present the two update rules in Section 4.
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types regarding their planning strategies. In other words, we do not only test for violations of

DC, but we extend the analysis and try to understand whether subjects are aware of this viola-

tion and take it into consideration when they make choices. We also account for the stochastic

part of decision making, allowing for heterogeneity in choices within subjects by adopting an

appropriate error story. Finally, Corgnet et al. (2013), focus on experimental asset markets and

are interested in aggregated decisions while we are interested in behaviour at the individual

level and the heterogeneity in choices between the participants. Moreover they do not test any

particular decision model or updating rule neither do they take into consideration heterogene-

ity in planning strategies. To summarise, our study contributes to the ambiguity literature and

more specifically, to the literature of dynamic choice under ambiguity and updating of am-

biguous beliefs. Using a new experimental design that diverges from the standard Ellsberg

urn, and asking subjects a series of portfolio allocations, we provide new evidence of violation

of SEU and Bayesian updating.

3 The Experimental Design and the Portfolio Choice Problem

In this paper we use experimental data to estimate models of decision making under ambi-

guity in a dynamic framework. We need to jointly elicit risk and ambiguity attitudes of the

participants, as well as subjective probabilities (beliefs). In the literature there have been pro-

posed various ways to elicit and measure subjective beliefs (scoring rules, matching probabili-

ties, stated beliefs) which either require several assumptions regarding the risk attitudes of the

DM or are difficult to explain to subjects. Instead, we elicit beliefs and strategies based on a

revealed preference argument. To achieve this, we ask our subjects a series of 2-stage portfolio

allocation questions, an experimental design inspired by Loomes (1991), who used allocation

type questions and simply asked subjects to allocate experimental income between two risky

alternatives. This allocation procedure, seems to provide more informative data, and it has

been generally applied to the literature in various contexts11. Using allocation data allows

us to parametrically estimate latent specifications of theoretical decision making models and

to further test for deviations from Bayesian updating, as well as for the existence of different

planning strategies.

Our design shares similarities with Ahn et al. (2014) and extends it in two ways. We use

11Studies that use allocation problems include Choi et al. (2007) in a portfolio choice experiment under risk, Char-
ness and Gneezy (2010) studying portfolio choices, Hey and Panaccione (2011) on dynamic decision making under
risk, Ahn et al. (2014) in a portfolio choice experiment under ambiguity, Hey and Pace (2014) comparing different
static models of choice under ambiguity and Loomes and Pogrebna (2014) studying individual risk attitudes. See
Loomes and Pogrebna (2014) for an extensive discussion on the allocation procedure.
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a simple two-stage portfolio allocation task, with three possible states of nature. At each state

s, corresponds a state-contingent Arrow security, the return of which equals es if state s occurs

and 0 otherwise, where es is the rate of return of asset s (henceforth exchange rate) for every

unit of income allocated to this asset. Contrary to Ahn et al. (2014) who represent ambiguity

using the 3-colour Ellsberg urn, we are representing ambiguity with the aid of a transparent

and non-manipulable device, a Bingo Blower12. The Bingo Blower consists of a transparent

box that contains colourful table tennis balls. At the bottom of the box, there is a motor that

generates a stream of air, which makes the balls to continuously move inside the box. The

advantage of this device, is that when the number of the balls is sufficiently high, one is not

able to count their exact number, distinguishing this environment from one with objective

probabilities. What is possible to do, is to distinguish that there is at least one ball of each

colour (lower bound probabilities) and to obtain a rough idea of the maximum number of the

balls (upper bound) preserving always some ambiguity.13 In other words, while there exist

objective probabilities (known only to the experimenter), the subjects are not able to precisely

construct an objective probability distribution. Inside the Bingo Blower there are balls of three

different colours blue (B), red (R) and yellow (Y), to represent the three different Arrow assets.

The use of the Bingo Blower helps us avoid two main drawbacks of the Ellsberg urn. The first,

as was mentioned earlier, is related to the suspicion that the subjects raise regarding the actual

composition of the urn. Another important drawback, as is explained in Ahn et al. (2014, p.

209), is that in this particular framework, it is not possible to identify the ambiguity attitude

parameter separately from the set of priors. As we are interested in both the attitude an the

set of priors, using three ambiguous states rather two permits, as we explain later, the joint

identification of the parameters.

The most important difference with Ahn et al. (2014) is that we extend this framework to

its dynamic version. At time t = 0, an agent is endowed with experimental income m and is

asked to allocate it between the three assets, given the vector of exchange rates e and satisfying

the budget constraint. The demand for the assets is a function of the preferences of the DM,

the exchange rates, the available income and the beliefs of the DM. At t = 1, nature moves and

a state of the world is realised (a ball is drawn from the Bingo Blower). At this point, the actual

state of the world is not yet revealed to the subject. Instead, partial information is provided

to the agent that one of the states of the world has not occurred in the form “the ball is not

s”. The DM is consequently loosing the proportion of the income that has been allocated to

12A similar Bingo cage has been used by Andersen et al. (2012) and the Bingo Blower has been used by Hey et al.
(2010) and Hey and Pace (2014), all in static choice problems.

13Roughly, when the number of balls is more than 10, the environment becomes ambiguous enough, otherwise it
is possible that subjects might be able to count the exact number of balls, transforming the problem to a risky one.
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that state and at the second stage, she is asked to allocate the remaining experimental income

to the two available assets based on her preferences, the exchange rates and her now updated

beliefs. At t = 2, all ambiguity is resolved, the actual state of the world is revealed and the DM

is paid the state-contingent dividend. We ask our subjects a series of 60 two-stage allocation

questions, where an allocation question consists of an amount m of experimental income and

a vector e containing the exchange rates for the three assets. Every question involves different

levels of income and exchange rates. During the experiment, the draws from the Bingo Blower

were hypothetical14 for the simple reason that we wanted to focus purely on updating15. Al-

lowing continuous sampling from the Bingo Blower, could potentially generate learning effects

regarding the actual probability distribution, that would transform the problem to a risky one

(objective probabilities)16. A drawback of this experimental design is that we need to assume

that the subjects are either risk averse or risk neutral. A risk neutral person would allocate ev-

erything to the asset with the highest expected payoff whereas, a risk seeking person, would

be willing to allocate negative amounts to some of the assets17. As a result, it is not possible

to distinguish behaviour between a risk seeking and a risk neutral subject. Nevertheless, the

analysis shows that the number of seeking or neutral subjects was very limited.18

4 Theoretical Framework and the Different Types

In this section we present the latent structural models of decision making that we fit to our

data, as well as the various behavioural types of DMs that we assume. First we provide few

definitions needed to characterise the different types, namely dynamic consistency, consequen-

tialism and consistent planning.

Dynamic Consistency. An agent satisfies dynamic consistency (DC) whenever her ex-ante choices

coincide with her ex-post.

While in a pairwise choice context, DC dictates the lack of reversals, in the allocation con-

14This form of hypothetical signals has been previously applied in the literature in Griffin and Tversky (1992)
and Kraemer and Weber (2004).

15To generate the appropriate signals, we adopted the following procedure. The software was programmed to
perform i.i.d. draws for every allocation problem, based on the actual probability distribution of balls inside the
Bingo Blower. For each problem a virtual ball was drawn. Imagine, that for a given problem, this ball is red. Then,
a signal was sent to the participants, where with probability p=0.5 they were informed that the ball is not yellow,
otherwise they received the signal that the ball is not blue. To ensure credibility, the virtual draw did not define the
winning colour of the experiment. We return to this point in section 5.

16See for example Trautmann and Zeckhauser (2013), Ert and Trautmann (2014) and Baillon et al. (2015)
17Allowing subjects to do so, would require to consider negative payoffs, something that we would like to skip

at this point and investigate in future research.
18Gneezy et al. (2015) have recently designed an experiment that allows joint estimation of risk and ambiguity

attitudes and allows for risk seeking behaviour. Their results confirm that a large proportion of subjects can be
characterised as risk averse.
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text, we need to slightly adapt this definition. Let u : R → R a standard von Neumann-

Morgenstern utility function, that satisfies the usual assumptions of being twice differentiable,

strictly increasing and strictly concave and X a non-negative portfolio allocation X = (xR, xB, xY.

Then DC should guarantee that the unconditional marginal rate of substitution between two as-

sets (e.g. R and B) is equal to the conditional one, given the information that Y has not hap-

pened. Thus, DC requires that:19

∂u0/∂xR

∂u0/∂xB
=

∂u1/∂xR
¬Y

∂u1/∂xB¬Y (1)

Consequentialism. An agent satisfies consequentialism (C) when her preferences conditional on a

non-null event E are not affected by the outcomes outside the conditional event.

More specifically, this axiom requires that no weight is placed on the consequences of acts

that are not available any more and the conditional preferences depend only on the infor-

mation provided by the conditioning event E20. It naturally follows that an ambiguity non-

neutral, consequentialist DM will not always satisfy Equation 1. Finally, the last definition is

needed for the DMs who although violate DC, they are aware of this violation. It is based on

the notion of consistent planning, first introduced in Strotz (1955-56) in the context of determin-

istic dynamic choice.

Consistent Planning. An agent adopts the consistent planning (CP) strategy, if at each decision node,

the best plan among those that will be actually followed is chosen.

This concept borrows elements from the game theoretical literature, where the dynamic

problem is represented by a game played by multiple selves of the same individual. The DM

applies backward induction and her planning strategy requires to first consider the terminal

choice node of a decision tree and choose the optimal course of action at this point. Then, by

“folding back”, she calculates the optimal choice in the previous nodes, taking into consider-

ation her future preferences. Siniscalchi (2011) formally axiomatises this concept for dynamic

choice under ambiguity by deriving ex-ante conditional preferences over decision trees rather

than over acts21. We next derive the behaviour for each of the specifications that we consider.

We start by presenting the benchmark model of SEU with Bayesian updating and then, we

subsequently relax the assumption of ambiguity neutral attitudes. We present the strategies

assuming a generic form regarding the utility representation22.

19It is easy to show that Bayesian updating requires Equation 1 to be satisfied.
20Al-Najjar and Weistein (2009) refer to this type of updated preferences as fact-based updated preferences.
21We expand on this notion in Section 4.4.3.
22Since the problem is restricted to a 2-period model, it is possible to obtain solutions in a closed form. In the

supplementary material, we provide the analytical solutions we used for the analysis, for all the specifications.
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4.1 Subjective Expected Utility

The DM is assumed to hold a unique set of subjective, additive priors π = {π(R), π(B), π(Y)}

regarding the three possible states of the world such that π(R) + π(B) + π(Y) = 1. As already

highlighted, a convenient feature of the SEU model is that the DM satisfies both DC and C and

consequently, the beliefs of the agent are updated according to the Bayes rule which ensures

that the ex-ante allocation coincides with the ex-post. Hence, it suffices to solve the problem as

if it was a static one with three possible states of the world. Assuming a utility function u(.),

the objective of the DM is to calculate the optimal portfolio X, based on her subjective beliefs,

that maximises the expected utility, subject to the budget and the non-negativity constraints.

The optimal allocation is given by solving:

max
X

π(R)u(eRxR) + π(B)u(eBxB) + π(Y)u(eYxY)

s.t. xR + xB + xY = m

The first order conditions of this optimisation program require that:

πReR
∂u(eRxR)

∂xR
= πBeB

∂u(eBxB)

∂xB
= πYeY

∂u(eYxY)

∂xY

Assuming a particular form of the utility function, we obtain closed-form solutions regarding

the demand of each asset of the form x∗s = f (π, m, e, l), where π is the set of subjective beliefs,

m is the experimental income, e is the vector of exchange rates, l is a vector of individual

characteristics (e.g. risk aversion) and s ∈ {R, B, Y}. By definition, a DM that holds additive

subjective beliefs is characterised by a neutral attitude towards ambiguity.

4.2 The α-Maxmin Model

In this section we relax the assumption of additive beliefs and we introduce non-neutral am-

biguity attitudes assuming that the DM has α-Maxmin preferences (α-MEU, Ghirardato et al.

(2004)). In this model the agent believes that the true probabilities over the state space lie

within a continuous, closed and convex set of subjective priors Π (multiple-priors representa-

tion). This set includes all the possible scenarios regarding the future states of the world, in

the form of subjective probability distributions (beliefs). Figure 1 illustrates this set Π using a

two-dimensional unit simplex (known as the Marschak-Machina Triangle (MMT)23) where the

probability that the state of the world is R (Y) is represented in the horizontal (vertical) axis. As-

suming that there exist non-zero low bounds of the DM’s subjective beliefs (π(R), π(B), π(Y)),

we are able to draw the interior triangle, the size of which illustrates the degree of ambiguity

23This representation of prior beliefs in the MEU model first appeared in Hey et al. (2010) and then broadly used
in the ambiguity literature (see Kothiyal et al. (2014), Burghart et al. (2015)).
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perception of the agent. When this interior triangle coincides with the simplex, the DM per-

ceives ambiguity at its maximum level whereas, when it shrinks to a single point inside the

simplex, then all ambiguity vanishes, the set Π is a singleton and the model reduces to SEU.

In the general case, a portfolio X = (xR, xG, xB) is evaluated as a convex combination of its

minimal and its maximum expected utilities over this set Π:

U(X) = α min
π∈Π

[
∑
s∈S

π(s)u(xs)

]
+ (1− α)max

π∈Π

[
∑
s∈S

π(s)u(xs)

]
(2)

with Π = {π(s) : π(s) ≥ π(s)} and s ∈ {B, R, Y}24. The α coefficient can be interpreted as a

measure of the agent’s aversion to this perceived ambiguity. When α = 1 the model collapses to

the MEU preferences (Gilboa and Schmeidler, 1989) where maximal aversion to ambiguity is

expressed. In contrast, when α = 0, all the weight is put to the optimistic outcome. Intuitively,

α > 0.5 implies that the DM is ambiguity averse, whereas α < 0.5 implies ambiguity seeking

attitude. Notice that in the particular framework of our study, α = 0.5 does not imply ambigu-

ity neutral attitudes and the model does not collapse to SEU as is the case in Ahn et al. (2014).

Neutral attitudes are expressed by the uniqueness of the set Π. When this set is a singleton,

the model is equivalent to the SEU and the parameter α cannot be identified.

Before presenting the different types of the DMs we present how this model can be ex-

tended to its dynamic form. As is common in the ambiguity literature, this model satisfies the

property of separating subjective beliefs from tastes (ambiguity attitudes). Therefore, when

updating takes place, only the belief part of the preferences’ representation is affected, while

utility remains intact.

4.3 Updating Beliefs in Multiple-priors Models

We first present the updating rules for MEU, the special case of α-MEU when α = 1. Then

these rules can be naturally extended for the Hurwicz α criteria family. In the literature there

have been suggested two ways to update beliefs in multiple-priors models, one that satisfies

DC (Epstein and Schneider (2003), Hanany and Klibanoff (2009), Hanany et al. (2011)) and

one that satisfies C (Gilboa and Schmeidler (1993), Pires (2002), Eichberger et al. (2007)). In

the former case, it suffices to solve the problem as a static one and the allocation in the first

period will determine the conditional allocation of the second period, respecting always the

MEU preferences of the DM. The interesting case is when C is assumed which allows the

agent to behave in a dynamically inconsistent manner. The two most commonly updating

24We summarise the various sets of priors in Table 1.
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rules include the Maximum Likelihood Update (MLU) and the Full Bayesian Update (FBU)25

rule. According to the MLU rule, only the set of priors that maximise the probability of the

conditional event are updated according to the Bayes rule. In the FBU rule , all the sets of

priors are updated in a Bayesian way and the set of posteriors is used to evaluate the different

acts. In the supplementary material, we show that in our framework with three ambiguous

assets, MLU and FBU coincide. Therefore, in our analysis we assume that beliefs are updated

according to the MLE rule. We now define the three behavioural types we consider and we

describe how the update rules are extended to accommodate α-MEU type of preferences (when

updating takes place).

4.4 Taxonomy of the Types

We classify DMs based on two criteria: (1) which axiom do they satisfy and (2) if they are

time inconsistent, whether they are aware of this inconsistency or not. We follow Machina

(1989) who defines four different types of DMs in dynamic choice under risk: the so called

α-people, the dynamically consistent agents that maximise EU preferences, the β-people that are

non-EU agents and apply consequentialism, acting in a dynamically inconsistent way (myopic

behaviour), the γ-people who are non-EU agents but are dynamically consistent and finally,

the δ-people who are characterised as sophisticated and satisfy consistent planning26. We adopt

the terminology of Hey and Panaccione (2011) and we define the naı̈ve, the resolute and the

sophisticated type that correspond to the β-people, γ-people and δ-people respectively27.

4.4.1 The Resolute Type

The resolute type, first introduced in Hammond (1988), and later formalised in McClennen

(1990) and Machina (1989) in risky contexts, embraces the simplest strategy. A resolute DM,

satisfies DC and the allocations at both stages coincide. This may happen for two reasons,

as either the DM is dedicated to somehow commit to the first stage allocations regardless the

available information at t = 128, or one can assume that beliefs are updated in a dynamically

consistent manner as in Epstein and Schneider (2003). In either case, the resolute strategy with

commitment is behaviourally equivalent to the dynamically consistent updating of beliefs, and

25See Gilboa and Schmeidler (1993) for an axiomatisation of the rules and for references. They refer to these rules
as pseudo-Bayesian rules.

26A similar classification has been also applied first in hyperbolic discounting contexts (O’Donoghue and Rabin
(1999)) and later in Hey and Panaccione (2011) and Barberis (2012), in contexts of dynamic decision making under
risk. Houser et al. (2004) study heterogeneity in planning strategies in a dynamic stochastic decision problem under
certainty.

27Barberis (2012) considers two types of sophistication, one without commitment and one with. These types
correspond to our sophisticated and resolute respectively.

28This strategy is also known as aversion to information.
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to find the optimal solution, it suffices to solve the first stage problem. The optimal allocation

is calculated by optimising Equation 2 subject to the budget constraint, given the DM’s indi-

vidual characteristics and subjective beliefs. We denote with zs the return of asset s which is

defined as the product between the exchange rate of the asset (es) and the amount of income

that has been allocated to this asset (xs): zs = es × xs with s ∈ {R, B, Y}. Then, in order to

calculate the optimal allocation, one needs to take into consideration the relative ranking be-

tween the returns of the three assets. Take for example the ranking zR ≥ zB ≥ zY
29 where red

is the best possible outcome and yellow the worst. The maximum expected utility occurs at the

point where the probability of the best outcome to happen is maximised (point A in Figure

1). Similarly, the minimum expected utility is obtained at the point where the probability of

the best outcome R is minimised or stating it differently, where the probability of the worst

outcome Y is maximised (point C). Then the α-Maxmin utility from a portfolio X is:

U(X) =α[(1− π(B)− π(Y))u(eRxR) + π(B)u(eBxB) + π(Y)u(eYxY)]

+ (1− α)[π(R)u(eRxR) + π(B)u(eBxB) + (1− π(R)− π(B))u(eYxY)]

and writing the utility from the portfolio in its general form, the objective of the DM is to

find an allocation X that optimises U(X) = ∑s∈S π(s)u(esxs), subject to the budget and the

non-negativity constraints. Here π(s) is defined as π(s) = απmin(s) + (1− α)πmax(s) where

πmin (πmax) stands for the set of priors where the probability of the best outcome to happen is

minimised (maximised). The solution of this program will provide the optimal demand for the

three assets in the form x∗s = f (π, m, e, l), where π are now the non-additive subjective beliefs

and l includes both the risk and the ambiguity attitude, which will coincide with the optimal

conditional demand.

4.4.2 The Naı̈ve Type

The naı̈ve or myopic behaviour was first introduced in the literature in Strotz (1955-56) and

later in Pollak (1968) indicating an agent who fails to understand the sequential nature of the

problem. As a consequence, each of the stages is faced independently of the other, strategy that

may lead to dynamic inconsistencies and dominated results. The allocation at each stage is

based on the optimisation of the objective function at the current stage, or stating in a different

way, the DM solves a series of static problems and maximises utility at present. A naı̈ve DM

ignores that she is time inconsistent and as a result, the decisions that are made can potentially

differ from those that had been planned. At the first stage, this type behaves in the same way

29In the supplementary material, we enumerate all the possible 13 rankings including both weak and strict in-
equalities. We also describe how our algorithm calculates the optimal allocation.
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as a resolute does and solves the problem as if it is a static one, leading to the unconditional

portfolio X = (x∗R, x∗B, x∗Y). Then, at stage 2, she receives the partial information that one of

the states did not occur, updates her prior beliefs, and based on these posteriors, she solves

the maximisation problem that now involves the two remaining states subject to the available

income. Consider again the ranking zR ≥ zB ≥ zY. The DM chooses a portfolio allocation

for the first period. Now assume that the partial information that the ball is not yellow (¬Y)

is revealed. Using the MLU rule, the DM updates those priors that maximise the probability

of the event π(¬Y) (or π(R ∪ B)). In Figure 1, this occurs in both the prior sets A and B. In

addition, since the ranking of the outcomes requires that zR ≥ zB
30, for the evaluation of the

α-Maxmin utility it holds that πmax = πA and πmin = πB. We denote with xR
¬Y, xB

¬Y the

allocations to assets R and B respectively, conditional on the information that the state is not

Y. The utility of the DM of this conditional portfolio is:

U(X) = π(R|¬Y)u(eRxR
¬Y) + π(B|¬Y)u(eBxB

¬Y) (3)

with π(R|¬Y) = απB(R|¬Y) + (1− α)πA(R|¬Y) (π(B|¬Y) is defined in a similar way31). The

problem now requires to find the conditional allocation that optimises this α-MEU, subject to

both the non-negativity constraint and the new budget constraint m̂¬Y = m − x∗Y where m

is the initial endowed income and x∗Y is unconditional allocation to asset Y. The conditional

demand will be of the form x∗s
¬q = f (π̂, m̂¬Y, e, l) for s ∈ S\q and s 6= q, where π̂ is now the

set of the updated beliefs.

4.4.3 The Sophisticated Type

Strotz (1955-56) and later Pollak (1968) were among the first to recognise that pre-commitment

(resolute type) is not always the optimal strategy. More specifically, the idea is that a DM who

is not able to commit to her future behaviour, would prefer to adopt a strategy of consistent

planning and then pick up the optimal plan that will be actually followed, sketching the profile

of a sophisticated type. A sophisticated DM applies backward induction in order to figure out the

optimal strategy for every given problem. As Hammond and Zank (2014) describe, sophisti-

cation is like the sub-game perfect Nash equilibrium of an extensive form game, between the

future and present self of the DM, as in Selten (1975). Starting from the final decision nodes of

a decision tree (the last period) a DM anticipates an event E to occur and therefore, the future

course of action is determined by the conditional preferences of the ex-post self. Working back-

30Notice that for the naı̈ve DM, it is not necessary for the ranking between the returns of two assets to be the
same in both stages. Our estimation algorithm takes this possibility into consideration.

31The interested reader can consult the supplementary material where we extensively present how all the up-
dated beliefs are calculated.
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wards and applying the same principle to all the previous decision nodes, always satisfying

the preferences of the ex-post self, she can define the optimal path that will lead her from the

start of the tree to the most preferable node. In this way, an optimal plan of action for the whole

problem is chosen. Following this process, the DM will violate DC, as the second period opti-

mal allocation is based on the conditional beliefs which have been updated in a dynamically

inconsistent way32. Nevertheless, the agent is aware of this inconsistency and as is described

in Pollak (1968), “succeeds to adopt a strategy of consistent planning and choose the best plan

among those that he will actually follow.” The above idea has been axiomatised and applied

in dynamic choice under ambiguity in Siniscalchi (2011).

The optimal solution for the sophisticated type requires two steps. Let again the same or-

dering of the outcomes zR ≥ zB ≥ zY. As the solution requires the DM to work backwards,

she first solves all the three conditional problems (¬R,¬B,¬Y), using her conditional beliefs

and satisfying the budget and non-negativity constraints. For instance, when the information

is ¬Y, the optimisation problem is to find the conditional allocation for assets R and B, taking

into consideration the conditional beliefs, that they have now been updated based on the rel-

evant information, and always satisfying the outcome ranking (zR ≥ zB) and the conditional

budget constraint m̂¬Y = m − x∗Y. The conditional allocations x∗R
¬Y and x∗B

¬Y can be written

in the general form x∗s
¬q = f (π̂, e, m̂, l) for s ∈ S\q and s 6= q (similarly we solve for the con-

ditional allocations for ¬B and ¬Y). These demands are calculated in the same way as the

second-stage decisions of the naı̈ve DM (see section 4.4.2) and they indicate to the agent what

would be the optimal course of action for each of the conditional states (last stage of the deci-

sion problem). The second step of the solution, requires to solve the first stage unconditional

problem taking into consideration the optimal conditional allocations, the non-negativity and

budget constraint, as well as the relevant ranking constraint between the outcomes. The α-

Maxmin utility of this two-stage portfolio is given by:

U(X) =
1
2

π(¬Y)
[
π(R|¬Y)u(eRx∗R

¬Y) + π(B|¬Y)u(eBx∗B
¬Y)
]

(4)

+
1
2

π(¬B)
[
π(R|¬B)u(eRx∗R

¬B) + π(Y|¬B)u(eYx∗Y
¬B)
]

+
1
2

π(¬R)
[
π(B|¬R)u(eBx∗B

¬R) + π(Y|¬R)u(eYx∗Y
¬R)
]

with π(R|¬Y) = απB(R|¬Y) + (1− α)πA(R|¬Y) and π(¬Y) = απB(¬Y) + (1− α)πA(¬Y)

where πA = πmax and πB = πmin are the sets of priors that satisfy the ranking of the out-

comes (similarly we define the probabilities for the cases ¬R and ¬B). The probability of each

conditional event is multiplied by 1/2 since the subjects were informed in advance that the par-

32Otherwise the sophisticated strategy is identical to the resolute one.
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tial information to be revealed, is randomly chosen from the two available states with equal

chances33. This also ensures that π(S) = 1. Notice that the conditional demands are a func-

tion of the conditional income m̂¬s = m− x∗s which in turn is a function of the unconditional

optimal demand for the asset s at stage 1. To calculate the unconditional demand for the three

assets, it suffices to substitute the conditional income to Equation 4 and optimise with respect

to the unconditional demands x∗s . Given these demands and plugging-in to the formulas of

conditional income, we derive the conditional demands.

Suffice to say that if the agent is probabilistically sophisticated (holds additive beliefs) then

the three types are behaviourally indistinguishable compared to SEU.

5 Experimental Procedures

Upon arrival to the lab, subjects were randomly assigned to a computer terminal and were

provided with written instructions34. After reading the instructions, the participants were able

to go through a slide-show presentation which was available at each computer terminal and

contained simplified instructions and examples, which could navigate at their own pace. Then,

they were free to go near the Bingo Blower, which was located in the middle of the lab, and

observe its composition regarding the three assets. During the experiment a live image of the

Bingo Blower was projected through two large screens in the lab and in addition, the subjects

were free to walk around and physically observe it at all times. The actual composition of the

Bingo Blower consisted of 4 blue (20%), 6 red (30%) and 10 yellow (50%) balls out of the total

2035. The participants were then presented with the 60 2-stage allocation questions36. As men-

tioned before, an allocation problem consisted of a specific amount of experimental income

and the exchange rates of the three assets. The income ranged from 9 to 110 units, expressed

in tokens, and the exchange rates between experimental income and money, ranged from 0.1

to 1.8. All subjects faced the same set of allocation questions, presented in a randomised order

to each participant in an effort to eliminate any potential order effects.

The experimental interface was developed in Python.37 Each allocation question that the

33This was defined by the experimental software by an independent, random draw from a uniform distribution
for each of the allocation problems.

34The instructions are available in the supplementary material.
35From two pilot studies we ran, it seems that changing the colour with the highest likelihood, does not affect

the results.
36The questions have been chosen after extensive Monte Carlo simulations that would ensure three issues: (1)

that for a simulated dataset using a given set of parameter values, it is possible to estimate (recover) the value of the
actual parameters; (2) that it is possible to identify between the different specifications and; (3) that our estimation
programs work efficiently. See Section 6 for details on the econometric analysis.

37Python Software Foundation. Python Language Reference, version 2.7. Available at http://www.python.org.
Screenshots of the experimental framework can be found in the supplementary material.
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subjects were required to answer had two stages. In the first stage screen, the subjects could see

three sliders, one for each respective asset, and information on the allocation question (the total

income to allocate and the exchange rates of the three assets). The sliders were programmed

to be inter-connected with each other, so at any time, the budget constraint would be satisfied

with strict equality (there was no possibility to allocate money to a safe asset or to allocate

negative amounts). In addition, information was provided regarding the allocated income

to each asset and the respective second-stage potential income that this allocation implied,

depending on the conditional state of the world. Subjects were required to spend at least 10

seconds before submitting their preferred allocation and they had 90 seconds available for

each stage38. Pushing the “next” button at stage 1, the software was programmed to reveal

some hypothetical partial information based on a uniform distribution. In the second stage,

the subjects could only see two sliders for the remaining states of the word, along with all the

relevant information (available conditional income, exchange rates and expected payoffs). The

choices were recorded in integer steps in the range [0,m].

The experiment was conducted at an experimental economic lab in the UK, known to pro-

hibit deception between May and June 2013. 58 subjects were recruited from a standard stu-

dent experimental population using the ORSEE system (Greiner (2004)). The majority of the

subjects were undergraduate students from several different majors and 52% were females.

The experiment lasted for less than one hour and the subjects were paid privately and in cash

directly after the end of the experiment. The average payment was £14.16 including a show-up

fee of £3. The maximum payment was £25.5. The payment was determined by applying the

random incentive mechanism, where one out of the 60 problems was randomly chosen (different

for each participant) to be played for real. The computer then recovered the actual choices of

the participant at that problem, as well as the partial information that was revealed (i.e. the

state is not s). Then, the subject was continuously drawing balls, till a ball that is not s came

out. That ball determined the actual state of the world and the participant was paid the amount

that was allocated at this state, at the specific problem.

6 Econometric Analysis

We estimate the specifications presented in section 4, based on a subject-level analysis. Adopt-

ing this approach, allows to introduce between and within subjects heterogeneity in three dif-

ferent dimensions. First, instead of assuming a representative agent, we individually estimate

38Subjects were informed that if they have not submitted their allocation before the 90 seconds, the computer
would allocate zero amounts to the three assets. This happened only three times out of the total 6960 observations.
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the values of the preference parameters (risk and ambiguity attitudes, beliefs, precision) for

each of our subjects without requiring any uniform pattern of behaviour. In addition to the

parameter heterogeneity, we account for heterogeneity regarding the planning strategies of

the agents by fitting the individual data to both the SEU model and the three different type

specifications. Finally, we allow for heterogeneity within the participants by incorporating a

random (stochastic) part in choices so as to capture within-person variability (noise).

We need to make few structural assumptions regarding the shape of the utility function, the

ambiguity model and the stochastic structure of our data in order to be able to jointly estimate

all the parameters of interest. We assume that the subjects receive utility from a power utility

function that is characterised by Constant Relative Risk Aversion (CRRA) of the following

form:

u(x) =

 x1−r

1−r if r 6= 1

ln(x) if r = 1

where x is the respective payoff and r is the coefficient of risk aversion. The reasons why we

favour the power form of utility are twofold. On the one hand, there is extensive evidence

that the CRRA utility function provides a good fit to experimental data (Wakker (2008), Stott

(2006), Balcombe and Fraser (2015)). Then, assuming a power utility naturally satisfies the

non-negativity constraint that was imposed by our experimental protocol, as the CRRA rep-

resentation does not allow for boundary portfolios (allocating everything or nothing to one

asset)39. Regarding the ambiguity model, we adopt the α-MEU specification mainly for five

reasons: (1) it provides a parsimonious way to capture perceived ambiguity; (2) in contrast to the

MEU model which is characterised by pessimism, the α-MEU takes into consideration both

the worst and the best case scenario, providing a measure of attitude towards ambiguity; (3)

there have been well-established updating rules for the multiple-priors family of models, for

both the dynamically consistent and inconsistent DM; (4) combining α-MEU with power utility

provides elegant, closed-form solutions for the optimal allocations and; (5) kinked specifications

have been shown to fit experimental data better compared to smooth ones (Ahn et al. (2014)).

Finally, we need to adopt an appropriate model to capture the stochastic part of decisions.

In the literature there have been proposed various ways to model noise and variability in

choices (see Wilcox (2008), Bardsley et al. (2009, chap. 7)). Since our data are continuous and

constrained by definition to the interval [0, m], a convenient way to model noise in choices

is to follow Hey and Panaccione (2011) and consider the ratio xs/m at a specific allocation

question. This amount is constrained to the unit interval and therefore, we can assume that

39Only a risk neutral or risk loving agent would choose a boundary portfolio in this particular framework.
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the ratio xs
m is distributed according to a Beta distribution, a continuous probability distribution

defined in the interval [0, 1]. A Beta distributed variable, is characterised by two positive shape

parameters α and β and the moments (mean and variance) of this distribution are given by

Ex = α
α+β and Var(x) = αβ

(α+β)2(α+β+1) respectively. By setting α = x∗s
m (σ − 1) and β = (1−

x∗s
m )(σ − 1), it is guaranteed that E( xs

m ) = x∗s
m and

x∗s
m (1− x∗s

m )
σ , where xs is the actual allocation

observed in the experiment, x∗s is the optimal constrained allocation for asset s, for a given

allocation problem and σ is an indicator of the precision of the distribution of the random

variable xs
m .40 The former expression implies that the random variable xs

m is centered to x∗s
m ,

while the latter, implies that the variance becomes smaller at the bounds 0 and 1 and larger

near 0.5. We then need to specify the likelihood function that will be maximised. As there

are two stages, with 3-way allocations in the first stage and 2-way in the second, it suffices

to consider two of the allocations in the first stage and one at the second. For instance, let

for a given allocation problem the unconditional allocation xR, xB, xY to red, blue and yellow

and assume the conditional state ¬Y that will lead to the conditional allocation xR
¬Y, xB

¬Y

and the conditional income m̂¬Y. Using the allocations at the first stage, we assume that xR
m is

Beta distributed, with the appropriate shape parameters that satisfy the properties above. As

the actual allocations are recorded in integer values during the experiment, we approximate

the contribution to the likelihood function from a continuous Beta distribution. Thus, for the

above example and for a given allocation problem i, the contribution to the likelihood function

by the allocation to the red asset is given by:

g1 =


if xR = 0, Prob( xR

m = 0)= ln(Φ( 0.5
m , α, β));

if xR = m, Prob( xR
m = 1)= ln(1−Φ(m−0.5

m , α, β));

if 0 < xR < m, Prob( xR
m =

x∗R
m )= ln(Φ(

x∗R+0.5
m , α, β)−Φ(

x∗R−0.5
m , α, β));

Then, we consider the remaining available income and we assume that xB
m−xR

is also Beta dis-

tributed. Again the contribution to the likelihood function by the blue asset is given by:

g2 =


if xB = 0, Prob( xB

m−xR
= 0)= ln(Φ( 0.5

m−x∗R
, α, β));

if xB = m− xR, Prob( xB
m−xR

= 1)= ln(1−Φ(
m−x∗R−0.5

m−x∗R
, α, β));

if 0 < xB < m− xR, Prob( xB
m−xR

=
x∗B

m−x∗R
)= ln(Φ(

x∗B+0.5
m−x∗R

, α, β)−Φ(
x∗B−0.5
m−x∗R

, α, β));

Finally, at the conditional stage, we assume the same for the conditional allocation to red with

respect to the conditional income, xR
¬Y

m̂¬Y .

g3 =


if xR

¬Y = 0, Prob( xR
¬Y

m−xY
= 0)= ln(Φ( 0.5

m−x∗Y
, α, β));

if xR
¬Y = m− xY, Prob( xR

¬Y

m−xY
= 1)= ln(1−Φ(

m−x∗Y−0.5
m−x∗Y

, α, β));

if 0 < xR
¬Y < m− xY, Prob( xR

¬Y

m−xY
=

x∗R
¬Y

m−x∗Y
)= ln(Φ(

x∗R
¬Y+0.5

m−x∗Y
, α, β)−Φ(

x∗R
¬Y−0.5

m−x∗Y
, α, β));

40The higher the value of σ, the more precise are the choices.
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where xs is the actual observed choice, x∗s is the optimal allocation for a given allocation ques-

tion i and Φ stands for the cumulative distribution function (cdf) of the Beta distribution. We

consider the remaining two conditional states in a symmetric way. The likelihood function to

maximise is defined as:

ln(L(r, α, π, σ, X)) =
60

∑
i=1

3

∑
j=1

gi(r, α, π, σ, X)) (5)

We then jointly estimate the values of the parameters by maximising Equation 5 using Max-

imum Likelihood Estimation techniques. As the problem is quite complex in nature, it is ex-

pected that the likelihood surface will not be smooth and consequently, a global maximum

will not be easy to reach. To ensure that the solution is not trapped to a local optimum, and

that we instead reach a global one, we use a general nonlinear augmented Lagrange multiplier

optimisation routine that allows for random initialisation of the starting parameters as well as

multiple restarts of the solver.41 We conclude this section by commenting on the number of

parameters for all the specifications, as well as on the lower and upper bounds that we apply

in our estimation codes. For the SEU specification there are four parameters to estimate, the

coefficient of risk attitude r, the subjective beliefs for two out of the three states πR and πB and

the precision parameter σ. For the α-MEU specifications, we need to estimate on top of r and

σ, the set of non-additive priors π (the lower bounds) for the three states and the coefficient

of ambiguity attitude α, giving in total 6 parameters. As was mentioned before, we assume

either risk aversion or risk neutrality therefore, r ≥ 0. The set of non-additive beliefs should

satisfy the constraint π(R) + π(B) + π(Y) ≤ 1 and α is constrained to the interval [0,1], with 0

expressing extreme ambiguity seeking and 1 extreme ambiguity aversion.

7 Results

Before presenting the results, it is important to stress the fact that all the analysis, directly

depends on the structural assumptions concerning the functional forms and the stochastics, as

those presented in section 6. In addition, an assumption that is implicitly made is that the type

of the subjects remains stable during the experimental session and the same holds for their

preferences.

To obtain a general idea of our results, we first plotted the portfolios of the subjects for each

of the conditional states. Figure 2 illustrates the choices for three42 subjects for all the questions

41The estimation was conducted using the R programming language for statistical computing (The R Manu-
als, version 3.0.2. Available at: http://www.r-project.org/). For the multiple-restarts routine, the package rsolnp
(Ghalanos and Theussl (2012)) was used. The estimation codes are available upon request.

42The full set of scatter plots, for all the conditional states and all the subjects is available upon request.
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where the information ¬B was revealed. The horizontal (vertical) axis represents the payoff

if the ball is yellow (red). The 45° line stands for all the portfolio allocations that guarantee

the same payoff, regardless the actual state of the world43. The hollow (solid) dots correspond

to portfolios at period 0 (1). Two points in this Figure worth noticing. First, it is apparent

that there is extensive violation of DC, since for a dynamically consistent agent, the portfolio

allocations for the two periods should coincide. On top of that, these violations do not seem

to follow a uniform pattern, indicating the existence of a variety of planning types.44 Along all

the datasets, we find extensive heterogeneity, with subjects’ choices sharing similarities with

one of the three types shown in Figure 2, fact that calls for further structural investigation.

For each of the 58 participants, we fitted all the possible types that we described in section

4.45 For each subject and for each type, we have estimates of their subjective beliefs, the co-

efficient of risk and ambiguity attitudes (r and α), the precision parameter σ and the value of

the maximised log-likelihood. Based on the value of the maximised log-likelihood, we can detect

which type best explains data (provides the best fit to the data) for each subject and there-

fore, classify subjects to different types. The first column in Table 2 reports the mean and the

standard deviation of the fitted log-likelihoods across all subjects. On average, the likelihood

is highest for the sophisticated type. Nevertheless, since SEU has 2 degrees of freedom less

compared to α-MEU, every α-MEU specification is bound to perform at least as well as SEU

due to overfitting. Thus, this comparison is meaningful only when we compare across the three

types. To take this difference into consideration, we correct for the degrees of freedom by cal-

culating both the Bayesian Information Criterion (BIC), that controls for the different number

of parameters and the Akaike Information Criterion (AIC), that accounts for both the number

of the parameters and the size of the dataset46. The values of AIC and BIC are reported in

columns 2 and 3 respectively, in Table 2. On average, it seems that the sophisticated type is the

best, followed by the naı̈ve, the resolute and then the SEU.

In Table 3 we use the values of the maximised log-likelihood, the AIC and the BIC, to

classify types at the individual level. The first column of the Table reports the classification

based on the fitted log-likelihood. As expected, SEU has always the worst performance. For

the rest of the types, the sophisticated is the best for 50% of our subjects, followed by the

naı̈ve and the resolute with roughly the same proportions. Columns 2 and 3 report the same
43An extremely risk averse agent would always choose portfolios along this line.
44Indeed, subsequent econometric analysis confirmed that the left panel in Figure 2 belongs to a resolute subject

(subject 13), the middle to a naı̈ve (subject 17) and the right to a sophisticated one (subject 27).
45The subject-level analysis created a large dataset that contains the estimated parameters for each individual

and for all the specifications. We do not report it here, but full details are available upon request.
46BIC = −2 ln(L(θ̂|x)) + k ln(n), AIC = −2 ln(L(θ̂|x)) + 2k where ln(L(θ̂|x)) is the value of the maximised

log-likelihood, k is the number of the free parameters in the model and n the number of observations. As is the case
with the value of the log-likelihood, a lower value indicates a better fitting.
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information based on the corrected log-likelihoods. When AIC is used to interpret the data,

the prominent type is the sophisticated one (34%), followed by the SEU (28%), the naı̈ve (21%)

and the resolute (17%). However, when BIC is used, the majority of the subjects are classified

as SEU (53%), followed by the sophisticated type (24%) and a minority of naı̈ve (12%) and

resolute (10%) DMs. Depending on the two information criteria, it seems impossible to make

a safe inference regarding the classification of the types. Hence, we proceed by testing the

statistical significance of the difference between the values of the fitted log-likelihoods of the

different types. In other words, we test whether the maximised log-likelihood for the best-

fitting type, is significantly higher compared to SEU. To this end, we conduct likelihood ratio

tests. These tests have been used to compare two nested models where the null model is a

special case of the alternative model47. The test statistic is given by the ratio of the two fitted

likelihood functions

LRT = −2 ln

(
Ls(θ̂)

Lg(θ̂)

)

where Ls is the maximised likelihood of the simpler model (the nested model) while Ls is the

maximised likelihood of the general model (the nesting model). The LRT statistic follows a

Chi-square distribution with degrees of freedom d fg − d fs, with d fg and d fs being the number

of free parameters for the nesting and the nested model respectively. With 4 parameters of

the SEU and 6 of the α-MEU, the test statistic is distributed with 2 degrees of freedom. Table

4 reports the classification of the subjects to types, based on the significance of the LRT. SEU

best describes behaviour for 53.4% (46.5%) of our experimental population at 1% (5%) level of

significance. For the remaining non-SEU population, the majority can be classified as sophisti-

cated 51.9% (52.6%), followed by the naı̈ve DMs 25.9% (25.8%) and the resolute 22.2% (22.6%).

This finding contradicts Hey and Panaccione (2011) who find that a significant proportion of

DMs are resolute. Nevertheless, they study dynamic choice in risky environments, using a

different decision task, so it is not possible to directly compare the results.

Finding 1. For the majority of the subjects, we cannot reject the null hypothesis at 1% significance

level, that they are behaving according to the SEU model and therefore comply with Bayesian updating.

Focusing on the non-SEU subjects, the sophisticated type best explains behaviour for more than half of

the population, followed by the naı̈ve and the resolute type.

The above classification provides evidence to the question of which axiom do the subjects

satisfy when they tackle dynamic decisions under ambiguity. When we consider the non-SEU

47Two models are nested, if the first model can be transformed into the second model by imposing constraints
on the parameters of the first model. In our framework, when the beliefs are additive, the α-meu is transformed to
the SEU, so the SEU model is nested within the α-MEU.
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subjects, 77.4% of the subjects satisfy C, while only 22.6% satisfy DC48, which confirms the

results in Dominiak et al. (2012). In the total population, 53.4% (46.5%) satisfy both DC and C,

10.3% (12.1%) satisfy only DC and 36.2% (41.4%) satisfy C.

Finding 2. Less than 1/4 of the experimental population with non-neutral ambiguity attitudes satisfies

DC, while the vast majority satisfies C. In the total experimental population, more than half of the

participants satisfy both axioms.

We now turn to the estimates of our structural models. Table 5 reports a summary of the

mean and the standard deviation of the estimated values of the parameters, for all the specifi-

cations and types. We also report the median, especially for the risk aversion and the precision

parameter, as the existence of extremely risk averse subjects or subjects with high levels of

precision, inflates the value of the average49. On aggregate, there is extensive heterogeneity

regarding the values of the parameters. We illustrate this by providing the density plots for

the parameters under investigation. Figure 3 shows the distribution of the risk aversion coeffi-

cient which confirms the lack of a uniform level of risk aversion, a commonly observed pattern

in experiments of choice under risk. Figures 4, 5 and 6 show the distribution of the estimated

subjective probabilities for the blue, red and the yellow states respectively, for all the types

(the vertical dashed line indicates the objective probability of each state). Two aspects in these

distributions worth noticing. First, it seems that the distribution of the estimated beliefs when

SEU is assumed, is characterised by less fat tails compared to the non-SEU types. Then, when

the value of subjective beliefs is compared to the objective probabilities that were actually ap-

plied during the experiment, it seems that subjects over-estimate low probability events and

under-estimate high probability events. Evidence for this finding is provided by both Table 5

and Figures 4-6. In all four cases, both the median and the average of the low probability event

(B) is significantly higher compared to the actual one (the distribution in Figure 4 is skewed

to the right). Similarly, the estimates for the high probability event (Y) are significantly lower

compared to the objective probability (the distribution in Figure 6 is skewed to the left). This

result is in line with similar findings with a commonly observed over (under)-weighting of

low (high) probability events, confirming the existence of likelihood insensitivity50. Various ex-

periments have demonstrated the existence of this insensitivity in both student and general
48The results are identical at both 1 and 5% level of significance.
49In theory, the value of risk aversion for an extremely risk averse subject tends to infinity. In our estimation

program, we set the upper bound for risk aversion equal to 10 and for the precision parameter 100. The logic
behind this choice is that when risk aversion is significantly high, it is impossible to behaviourally distinguish
choices (allocations tend to equalise payoffs at every state). For the precision parameter, we set it sufficiently high,
so that it can accommodate behaviour for most of the subjects.

50As is explained in Trautmann and van de Kuilen (2015), likelihood insensitivity appears when people cannot
distinguish between events bounded away from zero and one and transform subjective likelihoods towards fifty-
fifty, resulting to an over-weighting of unlikely events and under-weighting of highly likelihood events.
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populations, all in static frameworks (see among others Wakker (2010) and Abdellaoui et al.

(2011)). The present study, verifies the existence of this component of ambiguity attitudes, in

dynamic choice frameworks. Finally, Figure 7 illustrates the distribution of the sum of sub-

jective beliefs for each of the three types51 since the family of multiple-prior models is based

on the assumption of non-additive beliefs. The Figure confirms the existence of non-additivity

showing that for the majority of the subjects, the sum of beliefs is distributed in the interval

[0.80-1). This finding is in line with the results in Baillon and Bleichrodt (2015) who report

extensive violation of probabilistic sophistication.

Finding 3. There is a systematic over-weighting of the low probability event and similarly, an under-

weighting of the high probability event.

Based on the above estimations, we can classify subjects according to their attitudes to-

wards ambiguity. Notice that all SEU subjects are automatically classified as ambiguity neu-

tral. For the non-SEU subjects, the classification is based on the value of the α parameter, where

for α > 0.5 the subject exhibits ambiguity averse attitude, while for α < 0.5 ambiguity seek-

ing. For the classification of the non-SEU subjects, we consider the estimated value of α for the

best fitting type. 53.4% (46.6%) of the subjects are characterised as ambiguity neutral, 24.1%

(27.6%) ambiguity seeking and 22.4% (25.9%) ambiguity averse at 1% (5%) level of significance

respectively. These results are in line with Charness et al. (2013), Hey and Pace (2014), Ahn

et al. (2014) and Stahl (2014), all accounting for ambiguity attitudes in static frameworks.

Finding 4. For more than half of the population we cannot reject the null hypothesis of neutral ambi-

guity attitudes and therefore, SEU preferences. For the non-SEU agents, ambiguity seeking and averse

attitudes are observed in roughly equal proportions.

At this point we have classified the subjects based on the significance of the LRT. In order

to provide an indication of how much better the best-fitting type is, relative to the others, we

adopt a Bayesian approach and we calculate the posterior probabilities of the resolute, naı̈ve

and sophisticated types being the actual ones, assuming that the ex-ante probability was equal

to 1/3 for each type. Denoting by ll(r), ll(n) and ll(s) the fitted log-likelihood values for the

resolute, naı̈ve and sophisticated type respectively, the posterior probability that type i is the

correct one, is given by

P(i) =
exp(ll(i))

exp(ll(r)) + exp(ll(n)) + exp(ll(s))
(6)

with i ∈ {r,n,s}. To illustrate this with an example, for subject 8 we obtained the follow-

ing values for the log-likelihoods: ll(r) = −424.84, ll(n) = −426.39 and ll(s) = −423.59.

51By definition, in the SEU model the beliefs add up to 1.
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Substituting these values to Equation 6, the posterior probabilities for the three types are

P(r) = 0.21, P(n) = 0.04 and P(s) = 0.74 indicating that the probability of the subject being

sophisticated is almost three times higher than being resolute, while it is quite unlikely that

this subject is naı̈ve. Figure 8 presents these posteriors graphically. Since we consider three

types, it is possible to represent the probabilities with a triangle. The horizontal (vertical) axis

represents the probability of the sophisticated (resolute) being the correct type while the prob-

ability of the naı̈ve is simply the residual. The triangle is divided in three equally-sized areas,

with the top one being where the resolute type is most probable, the bottom-left being where

the naı̈ve is the most probable and the bottom-right indicating the area where the sophisticated

is the most probable. Figure 8a illustrates the posteriors for all the participants, while Figure

8b only for the subjects with non-neutral attitudes. Notice that in the first case (all subjects),

there is both concentration towards the vertices of the triangle, where the probability of being

type i is maximised, and concentration around the middle point which corresponds to being

one of the types with equal probability. When we focus only on the ambiguity non-neutral

subjects, the posteriors clearly tend towards the vertices, confirming the robustness of our re-

sults. We conclude by noting that there is a significant concentration of posterior probabilities

in the neighborhood of 1 for the naı̈ve and the sophisticated type, indicating that these types

perform significantly better compared to the resolute type.

Finally, since we have estimated parameters at the individual level, we investigate whether

there is any kind of correlation between risk and ambiguity attitudes. A similar test is mean-

ingful only for the subset of subjects with non-neutral attitude towards ambiguity. For this

set, we use the estimated parameters of risk and ambiguity attitude of the best fitted type for

each individual. Using a Pearson product-moment correlation test, we find that there is virtu-

ally no correlation between the two measures (ρ=-0.065, p-value = 0.727). This result confirms

the findings in Cohen et al. (2011) who find no correlation between the risk and ambiguity

attitudes. Moreover, this finding raises interesting methodological issues that call for further

investigation. In the experimental literature of ambiguity preferences, there is still no consen-

sus of whether there is correlation or not between the two measures of attitude. Trautmann

and van de Kuilen (2015) provide a review of the various studies that test for the existence

of correlation and conclude that the majority of the studies that report positive correlation,

are based on elicitation methods that measure risk and ambiguity attitudes separately. Recent

experimental evidence suggests that risk elicitation procedures are likely to be highly context-

specific (Loomes and Pogrebna, 2014) and therefore, joint elicitation of risk and ambiguity

attitudes may be more informative regarding the actual relation between the two.
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Finding 5. There is no significant correlation between risk and ambiguity attitudes.

8 Conclusion

In this study we report the results of a simple two-period portfolio allocation experiment,

where we study heterogeneity in dynamic decision making under ambiguity. Based on which

rationality axiom people satisfy in combination with assumptions of their planning strategy,

we categorise subjects to resolute, naı̈ve and sophisticated. Our results are summarised as: (1)

almost half of the subjects behave according to the SEU model and comply with Bayesian up-

dating; (2) there is extensive violation of dynamic consistency by the non-SEU subjects; (3) the

majority of the non-SEU subjects are sophisticated, few are naı̈ve and a few are resolute; (4) am-

biguity neutrality is prevalent while ambiguity seeking and aversion are observed in roughly

the same proportions and; (5) there is no correlation between risk and ambiguity attitudes.

Our results provide support to those theories that promote the idea of sophistication and

therefore, reject the axiom of dynamic consistency as in Siniscalchi (2011). Then support is

provided, to a lower degree, to theories that assume naı̈ve updating (Gilboa and Schmeidler

(1993), Pires (2002), Eichberger et al. (2007), Eichberger et al. (2010)) and very little evidence

is provided in favour of theories that assume dynamic consistency (Epstein and Schneider

(2003), Klibanoff et al. (2009)). The importance of the above needs to be highlighted for two

reasons. Recent empirical research in dynamic financial decision making based on field data52,

models behaviour by implicitly assuming dynamic consistency (the model that the minority of

our subjects comply with) whereas, recent theoretical studies on dynamic asset markets under

ambiguity53, assume heterogeneity in planning strategies and behaviour. Hence, accounting

for heterogeneity could potentially provide better insights of how people actually behave in

dynamic, ambiguous environments, fact that calls for further empirical investigation. Our pa-

per is a first step towards studying behavioural heterogeneity regarding planning strategies in

dynamic environments under ambiguity. Extensions are needed in order to capture behaviour

in more complicated environments that include different representations of ambiguity (e.g.

natural events), longer time horizons, effects of social interaction or connect it with the decision

from experience literature54 as well as with the time preferences literature.

52See Thimme and Völkert (2015), Jeong et al. (2015).
53See Easley and O’ Hara (2009), Mele and Sangiorgi (2015).
54See Ert and Trautmann (2014).
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Table 1: Prior beliefs in the MMT

π π(R) π(B) π(Y)
A 1− π(B)− π(Y) π(B) π(Y)
B π(R) 1− π(R)− π(Y) π(Y)
C π(R) π(B) 1− π(R)− π(B)

Table 2: Average values of goodness of fit

Type LL AIC BIC

SEU -451.06 910.11 921.26
(108.49) (216.99) (216.99)

Resolute -448.31 908.62 925.35
(108.07) (216.14) (216.14)

Naı̈ve -446.91 905.81 922.54
(108.6) (217.21) (217.21)

Sophisticated -444.04 900.08 916.80
(107.5) (214.99) (214.99)

Obs 58 58 58

Table 3: Classification based on goodness of fit

Type LL AIC BIC

SEU 0 16 31
% (0) (0.28) (0.53)
Resolute 14 10 6
% (0.24) (0.17) (0.10)
Naı̈ve 15 12 7
% (0.26) (0.21) (0.12)
Sophisticated 29 20 14
% (0.50) (0.34) (0.24)

Total 58 58 58
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Table 4: Classification based on LRT significance

Type
Number
of subjects with
highest LL

Significantly different
from SEU at 1%

Significantly different
from SEU at 5%

SEU 0 31 27
Resolute 14 6 7
Naı̈ve 15 7 8
Sophisticated 29 14 16
Non-EU 58 27 31
Total 58 58 58

Table 5: Summary of Estimates

Parameter SEU Resolute Nave Sophisticated

πB

Mean 0.279 0.255 0.242 0.225
Median 0.295 0.283 0.272 0.257
St. Dev (0.084) (0.092) (0.107) (0.104)

πY

Mean 0.372 0.347 0.335 0.337
Median 0.357 0.338 0.334 0.339
St. Dev (0.068) (0.058) (0.081) (0.102)

πR

Mean 0.348 0.321 0.298 0.329
Median 0.335 0.324 0.317 0.320
St. Dev (0.07) (0.087) (0.107) (0.082)

r
Mean 1.486 1.428 1.422 1.268

Median 0.882 0.841 0.849 0.915
St. Dev (1.94) (2.021) (1.966) (1.596)

a
Mean - 0.437 0.491 0.527

Median - 0.208 0.475 0.530
St. Dev - 0.411 0.408 0.379

s
Mean 31.854 32.187 32.557 32.783

Median 15.773 15.816 15.370 16.370
St. Dev (35.074) (35.073) (35.199) (35.107)
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