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Abstract

We study a principal-agent model wherein the agent is better in-

formed of the prospects of the project, and the project requires both

an observable and unobservable input. We show (1) Performance pay

may not be optimal, even if output is the only informative signal of

an essential input; (2) Total surplus tends to be higher if one input is

unobservable than if both inputs are observable; and (3) Bunching may

arise amongst low and intermediate types. We explore the implications

for push and pull programs used to encourage R&D activity, but our

results have applications beyond this context.
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1 Introduction

To what extent should incentives be tied to performance? This question is

relevant in a number of areas, including worker compensation – where it relates

to the debate on salaries vs. piece rates (see, e.g. Lazear, 1986, 2000) – and

innovation incentives, where it pertains to the efficacy of “push” and “pull”

programs (see, e.g., Kremer, 2002). Push programs, such as research grants,

or R&D tax credits, subsidize research input; payments are not contingent on

results. Pull programs, such as innovation prizes, or patent buyouts, directly

tie rewards to research output.

Adverse selection (AS) and moral hazard (MH) are inherent challenges in

the provision of incentives. Given these problems, Kremer raises the concerns

that push programs may reward researcher’s unlikely to succeed, and provide

weak incentives for unobservable inputs. Indeed, the literature on MH stresses

the importance of performance pay. In the canonical MH model,1 the agent’s

effort is unobservable by the principal, but output, a noisy signal of effort, is

observable. In that model, compensation must be at least partially tied to

output to provide an incentive for greater effort. More generally, Hölmstrom’s

(1979) “informativeness principle” implies that it is valuable for the principal

to condition rewards on any signal – including output – that provides addi-

tional information about the agent’s effort.

Despite these concerns, “low-powered” incentive schemes, in which com-

pensation is weakly, or not at all tied to performance, are commonly used in

practice. In this paper, we offer a new justification for the use of such schemes.

We show that when AS and MH interact, and at least some of the agent’s ac-

tions are observable, performance pay may not be optimal, even if output is

the only informative signal of an essential input.

For concreteness, we present our model in the context of R&D funding, but

our results are relevant in other contexts. We study a principal-agent model

wherein a risk-neutral funder (he; the principal) incentivizes a risk-neutral

researcher (she; the agent) to undertake an R&D project, which may yield a

1See, e.g., Grossman and Hart (1983); or Bolton and Dewatripont (2005) ch. 4.
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new technology. The likelihood of success depends on the researcher’s privately

known type, and two essential and complementary inputs – “investment” and

“effort”. Investment is observable by the funder; effort is not.2 If she succeeds,

the researcher earns a profit by marketing the technology, but this incentive,

alone, may be insufficient to elicit R&D activity.3 To ensure the researcher has

an incentive to truthfully reveal the project’s outcome, the funder is subject

to a “free-disposal” constraint, stipulating that the reward for success is no

less than the reward for failure.

The contracts offered by the funder consist of a transfer independent of

performance – a “grant” – and a payment for success – a “prize”. The prize

and grant may depend on investment, but neither can depend on effort. We

show (i) Performance pay may not be optimal; (ii) Total surplus tends to

be higher when effort is unobservable, than when it is observable; and (iii)

Bunching may arise amongst low and intermediate types.4

We briefly describe the intuition for our results. (i) The prize creates

a strong incentive for effort, but generates costly information rent for the

researcher due to AS. As a result of this tradeoff, the prize may be zero for all,

or a subset of types. In these cases, the researcher’s compensation is completely

independent of her performance. Effort is induced indirectly, through the

grant. The grant is used to encourage greater investment, which increases

the productivity of effort. The researcher’s product-market profit may then

provide a sufficient incentive for effort.

(ii) If both inputs are observable, then investment is distorted below the

first-best to limit the researcher’s information rent. When effort is unobserv-

able, a larger investment and/or a prize may be necessary to induce effort. But

it is advantageous for the funder to raise investment closer to the first-best.

Doing so increases the researcher’s rent, but increases total surplus, which

2Throughout this analysis, we use the terms “observable”, “contractible”, and “verifi-
able” interchangeably.

3In a more general setting, this incentive might reflect the prospect of a future outside
job opportunity, or some intrinsic motivation.

4Bunching refers to a situation where the principal offers the same contract to multiple
different types.
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partially offsets the additional cost to the funder. A prize, in contrast, simply

transfers surplus from the funder to the researcher. For this reason, investment

and total surplus are (weakly) greater when effort is unobservable than when

it is observable.

(iii) Bunching may arise amongst low and intermediate types due to a

tension between rent extraction, effort inducement, and the second-order in-

centive compatibility constraint. As this is a more technical point, we defer a

discussion of this finding to Section 4.4.

The main contributions of our analysis are twofold. First, we add to the

literature on contracting. Following the tradition of the canonical MH model,

most mixed models assume a production process that depends only on unob-

servable actions.5 But this premise is rather extreme. The mental or physical

effort of an agent may be prohibitively costly to monitor, or even quantify. But

investments by a firm in large-scale capital, or the time a worker spends at

work, are quantifiable, and likely easier to verify. We add to this literature by

providing a full characterization of the optimal incentive scheme in a setting

with AS, and inputs that consist of both an observable and unobservable com-

ponent. We show that the partial observability of these inputs has dramatic

consequences for the structure of optimal incentives, and interesting welfare

implications.

If only output is observable then rewards cannot depend on actions(s), and

performance pay is essential. A payment received independent of performance

affects the agent’s overall utility, but will not generate greater marginal incen-

tives. This need not be the case when actions are partially observable. If, for

instance, a researcher’s investment in capital is observable, then rewards can

be directly tied to this input, and greater investment can be encouraged. But

it may be that the researcher’s effort is more productive when she has better

equipment with which to work. If so, then as long as there is some benefit to

success, greater investment increases the marginal returns to effort, and thus,

5Early examples in the literature include Sappington (1982) and Picard (1987). Studies
closer to our analysis include Laffont (1995), Lewis and Sappington (2000a,b) Ollier and
Thomas (2013), and Gottlieb and Moreira (2015). There are, of course, notable exceptions,
which will be discussed in Section 2.

4



effort is encouraged without tying rewards to performance.6 This observation

relates closely to findings by Hölmstrom and Milgrom (1991). When the agent

undertakes multiple tasks and efforts are complements, the authors show that

a stronger incentive for effort on one task, simultaneously induces a higher

effort on some other task.

Hölmstrom and Milgrom provide an alternative explanation for rewards

independent of performance. Their finding relies on actions being substitutes,7

and the lack of an informative signal associated with some action. Our result

relies on a complementarity between actions, the presence of an observable

action, and the interaction between AS and MH. Additionally, the “fixed wage”

in Hölmstrom and Milgrom’s model is a transfer independent of any signal

received by the principal, while the grant depends on the observable action,

but is independent of output. This grant structure better captures the design

of many incentive schemes used in practice. The U.S. R&D tax credit system,

for example, rewards firms independently of performance, but the value of the

credit is directly tied to R&D investment. Similarly, an hourly worker’s wage

may not be contemporaneously tied to performance, but she is only paid for

the time she spends at work.

Meng and Tian (2012) study a multitasking model with AS and MH, and

provide conditions under which lower-powered incentives arise, as compared to

pure MH. We provide conditions under which optimal incentives are completely

independent of performance. When the principal faces a multidimensional AS

problem, Meng and Tian also show that optimal compensation may be inde-

pendent of some performance measures. But their result differs fundamentally

from our’s. In their model the agent undertakes multiple tasks, each of which

contribute to the principal’s payoff. For those tasks where the performance

measures are ignored, the agent exerts no effort. Thus, Meng and Tian’s result

explains why an agent may be lead to specialize on certain tasks. In our model

6In the context of worker compensation, it might be that the (unobservable) mental effort
the worker devotes to her job is more productive when she spends more time at work.

7The so-called “effort substitution problem”. In this case, a stronger incentive for effort
on one task reduces the agent’s effort on the other task. See also Laffont and Tirole (1993,
Ch. 4).
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there is a single task that requires multiple inputs. We show why incentives

might be independent of the outcome of that task, even if this is the only

verifiable signal associated with an essential input.

Our results also shed new light on the welfare implications of AS and MH.

As this literature is quite extensive, we provide only a brief summary here; a

more thorough overview may be found in Laffont and Martimort (2009, Ch.

7). In some models, adding MH creates no further welfare losses, as compared

to pure AS.8 In many other settings, the AS and MH problems exacerbate one

another, leading to greater welfare losses than pure AS or pure MH. Laffont

and Martimort emphasize that this is a quite common feature of models, such

as our’s, where “MH follows AS”.9 Basov and Bardsley (2005) present an

example that follows a similar setup to our model, but without an observable

action. They show that the first-best can be achieved under pure AS or pure

MH, but distortions arise in the combined case.10 In contrast, we show that

there may be welfare gains to adding MH (relative to pure AS) in these models

when actions are partially observable.

Laffont and Martimort discuss another class of models – those where AS

follows MH11 – in which adding MH may improve welfare, relative to pure

AS. In these models, with pure AS distortions arise to limit the agent’s rent.

But when MH is added, it is this rent at the AS stage that motivates greater

effort at the MH stage. So, under AS and MH, the principal may reduce

distortions in order to raise the agent’s rent, and encourage greater effort. In

our model MH follows AS, so it is not the rent captured at the AS stage that

motivates greater effort. Rather, the agent’s optimal effort depends directly on

her investment; to elicit effort under AS and MH, investment is raised closer

to the socially optimal level.

Our second contribution is to the literature on innovation incentives. Many

8See, e.g., Laffont and Tirole (1986); Picard (1987); Guesnerie et al. (1989); Caillaud
et al. (1992). Basov and Bardsley (2005) show that independence between the agent’s type,
and the noise in the production function is the basic assumption that lead to these findings.

9That is, the agent learns her type prior to choosing her unobservable action.
10See, also, Lewis and Sappington (2000b) and Gottlieb and Moreira (2015).
11In these models, the agent chooses an unobservable effort that stochastically determines

her privately observed type.
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studies have explored the optimal design of pull programs (e.g., optimal patent

design),12 or compared the performance of different pull programs (e.g., prizes

vs. intellectual property).13 Fewer studies have examined the optimal design

of push programs, or attempted to justify their use, taking MH into account.

Our results are useful in both respects. Further, we connect our results to the

U.S. R&D tax credit system, and comment on its design.

Maurer and Scotchmer (2003) argue that repeated interaction between

grantees and grantors resolves the MH problem. Our explanation for how

a push program might overcome MH complements their’s, as it is relevant

in a static setting. This is important because some push programs, such as

R&D tax credits, do not condition eligibility for rewards based on past perfor-

mance. Fu et al. (2012) show that grants may be useful for facilitating greater

competition in a research contest where researchers have asymmetric capital

endowments. We abstract from the effects of competition, in order to focus

on the role of information.

A number of other explanations for the emergence of low-powered incentive

schemes have been posited in other contexts. Baker (1992) shows that perfor-

mance pay may be muted if output is not contractible, and weakly correlated

with the available performance measure. Baker’s result may be important in

settings where “success” and “failure” are difficult to define. Risk-sharing is

also an important consideration. Pay-for-performance schemes place consid-

erable risk on the agent when outcomes are uncertain. Push programs may

serve as a means of risk sharing.14 We abstract from such considerations, as

both the researcher and funder are risk neutral. Still, in the canonical MH

model, risk aversion, alone, cannot explain the emergence of a push program,

where rewards are independent of performance. Prendergast (2002) shows

that output-based pay may be beneficial if the principal is uncertain of the

“correct” action an agent should take, while input-based pay is more relevant

in less uncertain environments. But Prendergast allows costly monitoring of

12See Hall (2007) for an overview.
13See Maurer and Scotchmer (2003) for an overview.
14See, e.g. Prendergast (1999, 2002) for a more in-depth discussion of risk and incentives.
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effort; we stick closer to the traditional MH paradigm, and assume effort is

prohibitively costly to monitor.

2 Additional Related Literature

Others have examined the role of observable actions in MH models. Zhao

(2008) studies a multitasking model where some actions are observable and

shows, in stark contrast to our findings, that optimal compensation depends

solely on output signals. But in Zhao’s model, efforts and outcomes are inde-

pendent, and the observable actions are not verifiable, which places restrictions

on feasible contracts. In a setup similar to Zhao, Chen (2010) shows that if the

observable actions are verifiable, then optimal compensation depends on both

the observable actions and output signals. Chen (2012) generalizes this find-

ing, allowing multiple agents and complementarities between efforts; Chen’s

results are consistent with our findings in a pure MH setting. Crucially, neither

Zhao nor Chen incorporate AS.

Other models have allowed for AS and both observable and unobservable

actions. For instance, in a large class of models following Laffont and Tirole

(1986), the agent exerts unobservable effort to reduce marginal cost, and then

chooses an observable level of production. But these models are quite distinct

from our setup. First, many of these models involve “false moral hazard” (see

Laffont and Martimort, 2009, ch. 7). Second, in these models, the technology

through which the agent reduces cost depends only on an unobservable action.

It is not until after the MH problem is resolved, that the observable action

is chosen. In our model, the production process depends on both types of

actions, and they are chosen simultaneously. In a quite general framework

with AS and observable/unobservable actions, Caillaud et al. (1992) provide

conditions under which a mechanism can be implemented via a menu of linear

contracts. Meng and Tian’s framework can accommodate observable actions,

but they focus on the case where actions are all unobservable; none of their

results explicitly depend on the existence of an observable action.

Lewis and Sappington (2000b) (henceforth, LS) study an environment with
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AS, MH, and a direct contractible input from the principal. LS’s framework

differs from ours in several important respects. First, in LS there are multiple

agents (at least two).15 Second, each agent in LS’s model faces a wealth con-

straint, which translates to a capital constraint in our model. In particular, if

the agent has zero “wealth”, the grant must reimburse the full cost of invest-

ment. We don’t impose a capital constraint; this is important, as we show that

the optimal grant typically does not fully reimburse investment. Third, our

model explicitly takes into account an incentive outside the principal-agent

relationship that can motivate effort.

3 The Model

3.1 The Primitives

We study a principal-agent model between a funder and a researcher. The

researcher undertakes a single R&D project, which may or may not lead to

the development of a new technology. The inputs are investment, x ∈ R+,

and effort, y ∈ {0, 1}; where, y = 1 indicates working hard and y = 0 denotes

shirking. Investment is observable by the funder; effort is not.

The researcher’s type, θ, is a random variable drawn from a continuous

distribution according to CDF, F , corresponding (smooth) PDF, f , with sup-

port, Θ = [θ, θ] ⊂ [0, 1], where θ > θ > 0. The researcher knows the true θ

while the funder knows only its distribution. θ may capture some privately

known characteristic of the project and/or the researcher’s innate ability. Let

h(θ) = 1−F (θ)
f(θ)

denote the inverse hazard rate; assume, for all θ ∈ Θ, h′(θ) < 0

and f(θ) > 0.

Given x, y, and θ, the probability of success is θp(x, y). The function,

p : R2
+ → [0, 1], is increasing in each argument, and twice continuously differ-

entiable, with p(0, ·) = p(·, 0) = 0, and for all x, y > 0, p12(x, y) > 0. That

is, investment and effort are both essential for success, and they are comple-

15This provides the principal with an additional instrument that we do not consider;
namely, the probability with which the project is allocated to any one particular agent.
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ments. We let ρ(x) denote p(x, 1), and we may then write, θp(x, y) = θyρ(x).

We assume ρ is strictly increasing, but there are diminishing marginal returns

to investment: ρ′ > 0 and ρ′′ < 0. It is useful to point out that ρ′ contains

some information about the complementarity between x and y. Specifically,

the stronger is the complementarity between x and y, the larger will be ρ′.

If the researcher invests x and chooses effort, y, she incurs a total cost of

x+cy. If the project succeeds she earns a profit in the product market of π > 0,

and the funder captures a benefit, W > 0. Otherwise both receive nothing.

W might represent, for example, the consumer surplus associated with the

technology. Absent intervention, a type-θ researcher’s expected payoff is,

Π(x, y, θ) = θyρ(x)π − x− cy.

We let (x(θ), y(θ)) = arg maxx≥0,y∈{0,1}Π(x, y, θ) denote the researcher’s opti-

mal no-intervention investment and effort; and we let Π(θ) = Π(x(θ), y(θ), θ)

denote her maximized profit. We assume throughout that if the researcher

is indifferent between working hard and shirking, she will choose to work; to-

gether with the strict concavity of ρ, this means x(θ) and y(θ) are unique. Note

that π may or may not provide a sufficient incentive to elicit R&D activity

(i.e., it may be that x(θ), y(θ),Π(θ) > 0 or x(θ) = y(θ) = Π(θ) = 0).

3.2 Feasible Contracts and the Funder’s Problem

The funder designs contracts to motivate greater R&D activity from the re-

searcher. A contract specifies a grant, g ∈ R, a prize, v ∈ R, and an invest-

ment, x ∈ R+. The grant is received by the researcher independent of success

or failure, while the prize is a received only if the project succeeds.16

The outcome of the project is initially observed only by the researcher,

who reports the result to the funder. If she reports success, the outcome is

16Note that g < 0 or v < 0 represent transfers from the researcher to the funder. Further-
more, note that it is without loss of generality that we focus on grants and prizes. In general,
an optimal mechanism will specify a transfer, ts, in the event of success, and a transfer, tf , in
the event of failure. However, as both parties are risk neutral, this is equivalent to specifying
a grant, g ≡ tf , and a prize, v ≡ ts − tf .
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verifiable at zero cost. But, we assume that the researcher may shroud her

success from the funder, if it is in her interest to do so. To avoid creating

this incentive, we follow Innes (1990), and more recently, Poblete and Spulber

(2012), and impose a free-disposal constraint, which requires that the reward

for success is no less than the reward for failure, i.e., v ≥ 0.17

We focus, without loss of generality, on “investment-forcing contracts”,

where the researcher is only eligible for the grant/prize if she follows through

on the agreed-upon investment. Note that if the researcher deviates from the

agreed-upon investment, x′, and instead chooses x 6= x′, and effort, y, then her

payoff is Π(x, y, θ) ≤ Π(θ). So, as long as her payoff when she follows through

on x′ exceeds Π(θ), it is never optimal to deviate from this investment.

By the Revelation Principle, it suffices to consider direct mechanisms. The

funder commits to a menu of contracts, m = {v(θ), g(θ), x(θ)}θ∈Θ, where v :

Θ→ R+ denotes a prize schedule, g : Θ→ R denotes a grant schedule, and x :

Θ→ R+ denotes an investment schedule. Throughout this analysis we restrict

attention to continuous, and piecewise differentiable prize/grant/investment

schedules. The researcher observes the menu, and if she participates, reports

her type, θ̂, to the funder. The funder then specifies an investment level, x(θ̂),

a prize, v(θ̂), and a grant, g(θ̂), according to the menu. If the researcher does

not participate, she earns Π(θ).

After the contract is formed, the researcher chooses investment and effort,

the outcome of the project is realized, and transfers are made accordingly.

For a particular contract, {v, g, x},18 the researcher’s payoff is,

y[θρ(x)(v + π)− c]− x+ g

Let y∗(v, x, θ) denote the researcher’s optimal effort choice: y∗(v, x, θ) =

arg maxy∈{0,1}{y[θρ(x)(v + π)− c]− x+ g}. It holds,

17 Note that when the free-disposal constraint is satisfied and the researcher behaves
optimally, the environment is equivalent to one in which the funder may observe the outcome
of the project directly. We therefore do not explicitly model the outcome-report game.

18Where it does not cause confusion, we will liberally abuse notation, and sometimes
let v ∈ R+, g ∈ R, and x ∈ R+ denote particular prize, grant, and investment amounts,
respectively.
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y∗(v, x, θ) = 1 ⇐⇒ θρ(x)(v + π)− c ≥ 0. (1)

When it is clear, we suppress the arguments of the researcher’s optimal choice

of effort, and simply write y∗. For a given menu, m = {v(θ), g(θ), x(θ)}θ∈Θ,

the payoff to a researcher of type θ who reports θ̂ is,

u(θ̂|θ) = θy∗ρ(x(θ̂))
[
v(θ̂) + π

]
− x(θ̂)− cy∗ + g(θ̂).

We let u(θ) ≡ u(θ|θ). If the researcher reports her type truthfully, the funder’s

payoff is,

φ(m) =

∫ θ

θ

[
θy∗ρ(x(θ)) [W − v(θ)]− g(θ)

]
f(θ)dθ

If one interprets W as the consumer surplus associated with the innovation,

then the funder’s payoff can be interpreted as expected consumer surplus, less

the expected cost of funding.19

For a given θ, x, and y, let total (or social) surplus, S(x, y, θ), be defined

as the sum of the researcher’s and funder’s payoffs:

S(x, y, θ) = θyρ(x)(W + π)− x− cy

Replacing g(θ) by u(θ) we can write the funder’s payoff as follows:

φ(m) =

∫ θ

θ

[
S(x(θ), y∗, θ)− u(θ)

]
f(θ)dθ (2)

Equation (2) makes clear that the funder’s payoff is expected total surplus less

the expected payoff of the researcher. The funder’s problem is then,20

19In this R&D context, the funder might also value the profit to the researcher. The
qualitative nature of our conclusions generalize to such an environment, provided there is
some social cost to raising funds, as in Laffont and Tirole (1986, 1993), or the funder values
firm profits less than consumer welfare. The important point is that transfers from the
funder to the researcher are costly to the funder.

20Note that y∗(·) is a single-valued function, and so we do not need to include an effort
recommendation as part of the funder’s strategy.
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max
m

φ(m)

s.t. for all θ, θ̂ ∈ Θ :

u(θ) ≥ Π(θ) (IR)

u(θ) ≥ u(θ̂|θ) (IC)

x(θ) ≥ 0; v(θ) ≥ 0

The first constraint is individual rationality (IR), the second is incentive

compatibility (IC), the third gives the non-negativity constraint on investment,

and the free-disposal constraint.

We will assume throughout that W is sufficiently large such that the funder

would like to induce effort from a researcher of any type. To ensure that this is

optimal for the researcher, using (1), we impose the constraint, θρ(x(θ))(v(θ)+

π) − c ≥ 0, on the funder’s problem. Under this constraint, it holds that

y∗(v(θ), x(θ), θ) = 1 for all θ. Then, using standard techniques (see, e.g.,

Laffont and Tirole, 1993, pp. 64 and 121), it can be shown that IC is satisfied

if and only if, for all θ ∈ Θ:

u′(θ) = ρ(x(θ))(v(θ) + π) (IC-F)

d

dθ

[
ρ(x(θ))(v(θ) + π)

]
= ρ′(x(θ))(v(θ) + π)x′(θ) + ρ(x(θ))v′(θ) ≥ 0 (IC-S)

θρ(x(θ))(v(θ) + π) ≥ c (IC-E)

Where (IC-F) and (IC-S) give, respectively, the first and second order

conditions for the researcher’s type-report problem; (IC-E) ensures that it is

optimal for the researcher to exert effort, when she reports her type truthfully.

As stated, the IC and IR constraints do not rule out the possibility of a

profitable deviation where the researcher misreports her type, and shirks on
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effort. Appendix A shows that the IC and IR constraints provided above are

sufficient to rule out such a profitable deviation if x(θ) ≥ x(θ) or Π(θ) = 0.

In many contexts, it seems reasonable to think that the principal would like

to induce greater activity on the project than what the agent would otherwise

choose. One might expect this to be the case in the context of R&D, since

the social value of an innovation often far exceeds the private value to the

innovator (see, e.g., Hall et al., 2009). In this regard, it is natural to assume

that W is large, relative to π. Specifically, we assume for all θ ∈ Θ,

W >
h(θ)

θ
π (A1)

It will be seen that Assumption (A1) is sufficient to ensure that, in equi-

librium, the funder’s desired level of investment exceeds x(·).
Assumption (A1) is also useful for dealing with the possibility of “counter-

vailing incentives”,21 which may arise when the agent’s outside option is type

dependent (as it is in our model). These issues are explored by Lewis and

Sappington (1989),22 but under (A1), the issue does not arise in our model.

The following lemma proves useful in establishing this fact.

Lemma 1. Let {v(θ), g(θ), x(θ)}θ∈Θ satisfy (IC-F), free disposal: v(·) ≥ 0,

and suppose x(θ) ≥ x(θ) for all θ. If u(θ) ≥ Π(θ), then u(θ) ≥ Π(θ) for all θ.

The significance of Lemma 1 is that IC and free-disposal are sufficient to

ensure that IR is satisfied so long as (i) IR is satisfied for the lowest type, and

(ii) the funder desires an investment level greater than what the researcher

would otherwise choose. We will show that when W is sufficiently large, and

(A1) holds, point (ii) is satisfied. So, IR is satisfied if u(θ) ≥ Π(θ) (and IC

is satisfied). In this case, the IR constraint resembles the usual one that is

independent of the agent’s type. Note that as the funder’s payoff is strictly

decreasing in u(·), this IR constraint binds at the optimum: u(θ) = Π(θ).

21Many AS models are structured in such a way that the agent has a systematic incentive
to either under or over report her type. Countervailing incentives refers to a situation where
some types have an incentive to under report, while others have an incentive to over report.

22See also, Maggi and Rodriguez-Clare (1995), and Jullien (2000).
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For convenience, we assume Π(θ) = 0; but it is straightforward to generalize

our results to the case where Π(θ) > 0, so long as (A1) is satisfied. Integrating

both sides of (IC-F), and setting u(θ) = Π(θ) = 0, we obtain,

u(θ) =

∫ θ

θ

ρ(x(t))(v(t) + π)dt (3)

Taking expectations (with respect to θ) over both sides of (3), and integrating

the RHS by parts yields,

∫ θ

θ

u(θ)f(θ)dθ =

∫ θ

θ

ρ(x(θ))(v(θ) + π)h(θ)f(θ)dθ.

Substituting the expression above into (2), we obtain the following relaxed

version of the funder’s problem,23

max
x(·),v(·)

{∫ θ

θ

[
θρ(x(θ))[W + π]− x(θ)− c− ρ(x(θ))(v(θ) + π)h(θ)

]
f(θ)dθ

}
[P ]

Subject to (IC-S), (IC-E), x(θ) ≥ 0, and free-disposal, v(θ) ≥ 0.

4 Results

This section provides a full characterization of the optimal funding contracts.

We first study three benchmark settings: complete information, pure MH, and

pure AS. Throughout the analysis we use lower-case letters (x, v, g, etc.) to

denote arbitrary investments, prizes, grants, etc. and upper-case letters (X,

V, G, etc.) to denote optimal solutions. We will say that a funding contract

is a pure grant if v = 0 and g > 0, and we analogously define a pure prize.

23This problem is a relaxation of the funder’s true problem, as it does not fully incorpo-
rate the IR constraint. Moreover, this problem does not explicitly rule out simultaneous
profitable deviations by the researcher in both her type report, and effort choice. But by
Lemma 1 IR is satisfied if the solution to [P ], X(·), satisfies X(·) ≥ x(·). Moreover, as we
assume Π(θ) = 0, the analysis in Appendix A ensures that simultaneous deviations in type
report and effort choice are not profitable.
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We will say that a funding contract is a hybrid if v > 0 and g > 0. Finally,

define a type-θ’s information rent as u(θ) − Π(θ). But note that as her rent

is strictly increasing in u(·) (for a fixed Π(θ)), we will often just refer to u(·)
when discussing the researcher’s rent.

4.1 Complete Information

With complete information, the funder observes the true θ, and investment and

effort are both observable. Given θ ∈ Θ, the funder offers a forcing contract,

m = {v, g, x, y}, stipulating both investment and effort to solve,

max
m
{θyρ(x)(W + π)− x− cy − u(θ)} s.t.

u(θ) ≥ Π(θ) and v ≥ 0

We let (XFB(θ), YFB(θ)) denote the first-best investment and effort level,

which solve the problem above. Since the funder’s payoff is decreasing in u(θ),

the IR constraint, u(θ) ≥ Π(θ), binds at the optimum. Then, straightforward

maximization yields, for W sufficiently large, YFB(θ) = 1, and XFB(θ) > 0

given by the solution to the following first-order condition:

θρ′(XFB(θ))(W + π) = 1 (FB)

Note that (XFB(θ), YFB(θ)) maximize total surplus at θ: The LHS of (FB)

is the marginal social gain from investment, while the RHS is the marginal

social cost of investment. Applying the implicit function theorem to (FB), the

concavity of ρ implies X ′FB(θ) > 0.

With complete information, there are many ways the funder can induce the

researcher to take the first-best investment/effort levels. He offers a contract

specifying, XFB(θ) and YFB(θ), and calculates the prize/grant combination,

V (θ) ≥ 0 and G(θ), that leaves the researcher with zero rent:

u(θ) = θρ(XFB(θ))(V (θ) + π)−XFB(θ)− c+G(θ) = Π(θ)
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The expression above leaves open the possibility of a pure prize, a pure grant,

or a hybrid scheme.

4.2 Pure Moral Hazard

This section studies the case of pure MH: Assume effort is unobservable by the

funder, but he observes θ. Given θ, the funder offers a contract, m = {v, g, x},
to solve,

max
m
{θρ(x)(W + π)− x− c− u(θ)} s.t.

u(θ) ≥ Π(θ), θρ(x)(v + π)− c ≥ 0, and v ≥ 0

The distinction between the funder’s problem with pure MH, and and complete-

information, is the (IC-E) constraint: θρ(x)(v + π) − c ≥ 0, in the problem

above. This reflects the fact that a choice of y = 1 must be optimal for the

researcher. We now show that under pure MH the optimal means of funding

is, in general, a pure prize scheme.

Proposition 1.

In the model with pure MH, there exists an optimal means of funding that

is a pure prize; moreover, the funder attains the first best: X(θ) = XFB(θ),

G(θ) = 0 and V (θ) > 0 satisfies,

u(θ) = θρ(XFB(θ))(V (θ) + π)−XFB(θ)− c = Π(θ).

Under pure MH, there always exists an optimal means of funding that is

a pure prize scheme. Intuitively, by only rewarding success, the prize creates

a stronger incentive for unobservable effort than does a grant. In fact, the

researcher’s effort choice is completely independent of the grant.

Even so, it is important to emphasize that a grant can be used to en-

courage effort. The key point is that the researcher’s effort depends both on

the prize and on investment. As investment is observable, the funder may
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condition the grant on this variable,24 and in this way, elicit greater invest-

ment. Then, greater investment increases the returns to effort, and through

this complementarity, effort can be encouraged. We stress this point in our

next proposition, which shows that there may be an optimal means of funding

that is a pure grant. Before doing so, we introduce a key piece of notation.

Definition 1. If limx→∞ θρ(x)π > c, then let xm(θ) satisfy,

θρ(xm(θ))π = c.

xm(θ) is the smallest investment necessary to induce effort from a researcher of

type θ if the prize is zero. As ρ(·) is strictly increasing, this implies x′m(·) < 0.

We will say that an investment, x, is sufficient to induce effort at θ if x ≥
xm(θ); i.e., if it is optimal for the researcher to exert effort when the prize is

zero: y∗(0, x, θ) = 1.25

For a fixed θ, xm(θ) provides a useful summary of the strength (or severity)

of the MH problem, as well as the complementarity between investment and

effort. If the researcher’s effort cost is high, relative to her product market

profit – i.e., c
π

is large – then a greater incentive is necessary to induce effort.

When this is the case, we say that the MH problem is more severe. It is

straightforward to show that, for any θ, xm(θ) is strictly increasing in this ratio.

Moreover, if the complementarity between investment and effort is weak, then

the channel through which investment induces effort breaks down, and a higher

investment is needed to induce effort. So, the weaker the complementarity

between the inputs, the higher is xm(·), ceteris paribus.26

The next proposition provides conditions under which a pure grant is op-

timal in the model with pure MH.

24Recall from Section 3 that we focus, WLOG, on a particular form of dependence, wherein
the researcher only receives the grant if she follows through on the agreed upon level of
investment. But in general, there are many ways in which this dependence can be modeled.

25If limx→∞ θρ(x)π < c, then xm(θ) is not well-defined. In this case, no investment is
sufficient to induce effort, and a prize is necessary to elicit effort.

26Consider two probability of success functions, θp(x, y) and θp̃(x, y). Suppose, p̃12 ≥ p12
for all (x, y). It is straightforward to show that for any θ and x ≥ 0, θρ̃(x) ≥ θρ(x). This
implies xp̃(θ) ≤ xp(θ), where xp̃ corresponds to p̃, and xp corresponds to p.
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Proposition 2.

In the model with pure MH, if the researcher is of type θ, there exists an optimal

means of funding that is a pure grant if and only if xm(θ) ≤ XFB(θ).

Through the grant, the funder induces the researcher to invest XFB(θ).

But when XFB(θ) is sufficient to induce effort, the MH problem is overcome,

without the need for a prize. The key condition of Proposition 2 is thus,

xm(θ) ≤ XFB(θ).

4.3 Pure Adverse Selection

This section studies pure AS: Assume that both effort and investment are

observable by the funder, but θ is only observed by the researcher. The funder

offers a menu of contracts, m = {v(θ), g(θ), x(θ), y(θ)}θ∈Θ, stipulating both

investment and effort. The funder’s problem is exactly as in [P] (see Section

Section 3), but without (IC-E), since effort is contractible. Our next result

characterizes the optimal funding scheme under pure AS.

Proposition 3. In the model with pure AS, the optimal means of funding is

a pure grant for all types: V (θ) = 0 and G(θ) > 0 for all θ. Moreover,

(1) Investment is distorted below the first-best: For θ < θ, X(θ) < XFB(θ);

but there is “efficiency at the top”: X(θ) = XFB(θ). Specifically, for all

θ, X(θ) satisfies:

θρ′(X(θ))(W + π) = 1 + h(θ)ρ′(X(θ))π (4)

(2) The grant only partially reimburses expenditures: G(θ) < X(θ) + c and

0 < G′(θ) < X ′(θ) for all θ.

Proposition 3 shows that a pure grant scheme is optimal under pure AS;

moreover, investment is distorted below the first-best, and the grant partially

reimburses costs. To understand why the optimal prize is zero, consider a two-

type version of the model: Θ = {θ, θ}, where θ > θ. IC dictates, u(θ) ≥ u(θ|θ);
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but, in equilibrium, this constraint binds. Let x and v denote the investment

and prize (respectively) offered to the low type, then one can show,

u(θ) = u(θ|θ) = (θ − θ)ρ(x)(v + π) > 0 (5)

From (5) it is clear that u(θ) is strictly increasing in v, but it does not

depend on the grant offered to the low type. Intuitively, if the high type

imitates the low type, the high type is more likely to succeed, and therefore

more likely to receive the prize, v, than the low type would be. Therefore, the

expected value of the prize intended for the low type, θρ(x)v, is greater for

the high type than the low type. To prevent under-reporting, the high type

must be offered a rent to compensate her for this fact. A grant, in contrast,

is received independently of success or failure, so its expected value is the

same for both types. For this reason, the prize is a more expensive means of

funding than the grant. As both inputs are observable, the funder induces

effort/investment via the cheaper grant scheme.

Also from (5) it is clear that the high-type’s information rent is increasing in

x. To limit the information rent of higher types, investment is distorted below

the first best for all types below the highest type. The optimal investment

schedule balances the trade-off between rent-extraction and efficiency: The

LHS of (4) is the marginal social benefit of investment; the RHS is the marginal

social cost plus the marginal information rent cost to the funder.

Although this efficiency/rent extraction trade-off is standard in AS models,

we highlight the role played by π and the free-disposal constraint in our model.

For simplicity, in the discussion that follows, suppose Π(θ) = 0 for all θ. If

we relaxed the free-disposal constraint, or set π = 0, then the funder could

appropriate all of the researcher’s rent, and attain the first-best by setting

v(·) = −π, and g(·) = x(·) = XFB(·) (see, e.g., Lewis and Sappington, 2000b;

Bolton and Dewatripont, 2005). But π > 0, combined with free disposal,

implies that the researcher must capture at least π in the event of success. This

leaves an inappropriable rent for the researcher, and leads to the downward

distortion in investment.

As another consequence of π > 0 (and free-disposal), Proposition 3 shows
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that the grant offers less than full cost reimbursement (G < X + c), and the

cost borne by the researcher, X+c−G, increases in type (since G′ < X ′). This

structure ensures that, only a researcher that is sufficiently likely to succeed, is

willing to receive a large grant. A grant that fully reimburses investment would

lead the researcher to always behave as if she is of type θ – the type receiving

the greatest investment recommendation – in order to have the greatest chance

of success (and receiving π).

4.4 Mixed Case: Adverse Selection and Moral Hazard

We now explore the general case of AS and MH. The funder’s (relaxed) problem

is given by [P] in Section 3. Let XAS(·) and GAS(·) denote the optimal in-

vestment and grant schedules characterized in Proposition 3 under pure AS.27

Recall, that XAS(·) balances the tradeoff between efficiency and rent extrac-

tion. An investment above XAS(θ), or a prize greater than zero, generates

excessively high information rent for the researcher. It is useful to bear in

mind that when MH is also a relevant concern, the funder would like to keep

investment as close as possible to XAS(·), and the prize as small as possible,

subject to the constraint that the researcher exerts effort.

We are now ready to state our main results. It will be seen that the

structure of the optimal scheme under AS and MH depends critically on xm(·).

Proposition 4. If xm(θ) ≤ XFB(θ) then the optimal means of funding is a

pure grant for all types: V (θ) = 0 and G(θ) > 0 for all θ. Moreover,

(1) If xm(θ) ≤ XAS(θ), then for all θ: X(θ) = XAS(θ), and G(θ) = GAS(θ).

(2) If XAS(θ) < xm(θ) ≤ XFB(θ), then there exists θ′ ∈ (θ, θ) such that

(i) For θ ∈ [θ, θ′] there is bunching: X(θ) = G(θ) = xm(θ).

(ii) For θ ∈ (θ′, θ]: X(θ) = XAS(θ), G(θ) < X(θ) and 0 < G′(θ) <

X ′(θ).

27GAS(·) is fully characterized in the proof of Proposition 3.

21



✓ ✓

XFB

XAS

xm

✓

x

✓ ✓0 ✓

XFB

XAS

xm

✓

x

✓ ✓0 ✓00 ✓

XFB

XAS

xm

V

✓

x

✓ ✓

XFB

XAS

xm

V

✓

x

1

Figure 1: Investment schedules (in bold) for the cases covered in Proposition 4. Case (1) is
shown in the left panel, and case (2) in the right panel.

Proposition 4 reveals the circumstances in which optimal funding takes the

form of a pure grant scheme, despite the MH problem. The optimal investment

schedules for the two cases covered by Proposition 4 are shown in Figure 1.

Under the hypothesis of Proposition 4(1), XAS(θ) is sufficient to induce

effort at each θ, i.e. xm(θ) ≤ XAS(θ) for all θ. In this case, the MH problem

is completely resolved – without a prize – at no additional cost to the funder.

In the case covered by Proposition 4(2) there is an interval of low types

such that for each θ in this interval, XAS(θ) is not sufficient to induce effort.

For these types, the funder must raise investment above XAS(·), and/or offer a

prize to elicit effort. Either way, greater rent will be generated for higher types.

But there is an advantage to encouraging effort through greater investment. To

see why, consider the problem of encouraging effort from a researcher of type θ.

Under the hypothesis of Proposition 4(2), XFB(θ) is sufficient to induce effort

at θ, i.e., xm(θ) ≤ XFB(θ). As total surplus at any θ is strictly increasing in

x for x < XFB(θ), the funder can raise the type-θ’s investment up to xm(θ),

which induces effort and increases total surplus. This increase in total surplus

partially offsets the additional information rent cost to the funder. A prize,

in contrast, does not affect total surplus, but simply transfers surplus from
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the funder to the researcher. For this reason, effort is encouraged through

increased investment, incentivized by a grant.

The discussion above suggests that whenever XAS(θ) < xm(θ) < XFB(θ)

then it should be optimal for the funder to offer no prize, and specify the

investment, xm(θ), to induce effort. However, xm(·) is strictly decreasing, and

(IC-S) dictates that the investment schedule be non-decreasing when the prize

is zero. Therefore, this investment schedule cannot be implemented over an

interval of types, and bunching arises amongst low types.

The next result shows that if xm(θ) is larger than in Proposition 4, then a

hybrid scheme is used for some types.

Proposition 5. If XFB(θ) < xm(θ) < XFB(θ) then the optimal means of

funding is a hybrid for sufficiently low types, and a pure grant for sufficiently

high types. That is, G(θ) > 0 for all θ. While there is some θ′ ∈ (θ, θ) such

that if θ < θ′ then V (θ) > 0, and if θ ≥ θ′ then V (θ) = 0. Moreover, there

exists θ′′ ∈ (θ′, θ) such that,

(1) For θ ∈ [θ, θ′) investment is equal to the first-best, and is fully reimbursed

by the grant: X(θ) = G(θ) = XFB(θ).

(2) For θ ∈ [θ′, θ′′] there is bunching: X(θ) = G(θ) = XFB(θ′).

(3) For θ ∈ (θ′′, θ]: X(θ) = XAS(θ), 0 < G(θ) < X(θ), and 0 < G′(θ) <

X ′(θ).

The left panel of Figure 2 illustrates the prize and investment schedules

for the case covered by Proposition 5. We first provide the intuition for the

optimal hybrid scheme in the range of low types, [θ, θ′], given in Part (1).

Under the hypothesis of Proposition 5, there is a range of low types such

that for each type θ in this range, neither XFB(θ), nor XAS(θ), are sufficient

to induce effort, i.e., xm(θ) > XFB(θ) > XAS(θ). Consider the problem of

eliciting effort from the type θ. As in the case of Proposition 4(2), it is feasible

to elicit effort from this type through increased investment (i.e., set v(θ) = 0

and set x(θ) = xm(θ)). However, it is never optimal to increase investment
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Figure 2: Investment and prize schedules (in bold) for the cases covered in Proposition 5
(left panel) and Proposition 6 (right panel).

beyond first-best, as total surplus at any θ is strictly decreasing in x for x >

XFB(θ). Instead, the funder sets investment equal to the first-best, X(θ) =

XFB(θ), and offers a prize, V (θ) > 0, to induce effort.

To limit the researcher’s rent, the funder would like to keep the prize small.

The smallest prize capable of eliciting effort from all types leaves (IC-E) bind-

ing at each θ: θρ(x(θ))(v(θ) + π) = c. But for (IC-E) to bind over an interval

of types, the term, ρ(x(·))(v(·)+π), must be strictly decreasing, which violates

(IC-S). As a result, (IC-E) binds only at θ, and whenever V (θ) > 0, (IC-S)

binds. To keep the prize as small as possible, a grant is used to fully offset

the cost of investment. The optimal prize schedule, V (·), is the smallest prize

consistent with IC that is capable of inducing effort from any type.

A researcher of type θ ∈ [θ, θ′] is indifferent between reporting her type

truthfully, or any other θ̂ ∈ [θ, θ′]. If, for instance, the researcher over reports,

she receives a larger investment, which increases the likelihood of success, but

she receives a smaller prize. In equilibrium, these two effects exactly offset.

To explain the bunching of intermediate types described in Proposition

5(2), first recall that when v(·) = 0, (IC-S) requires that x(·) is non-decreasing.

Examining Figure 2, it can be seen that for each type θ ∈ (θ′, θ′′), it must hold
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that x(θ) ≥ XFB(θ′) > XAS(θ). For each type in this interval, the funder

would like to reduce investment closer to max{XAS(θ), xm(θ)}, which is not

feasible. Therefore, (IC-S) binds, and bunching arises.

Our final result in this section reveals conditions under which the optimal

means of funding is a hybrid scheme for all types.

Proposition 6. If XFB(θ) ≤ xm(θ) then the optimal means of funding is a

hybrid for all types. Moreover, investment is equal to the first-best, and is

fully reimbursed by the grant: V (θ) > 0 and X(θ) = G(θ) = XFB(θ) for all

θ ∈ Θ.28

The intuition for the funding scheme outlined in Proposition 6 is similar to

the intuition behind the hybrid scheme offered to low types in Proposition 5.

The difference here is that the prize required to induce effort from the lowest

type is large enough that, when combined with the bound on the slope of V (·)
provided by (IC-S), the prize is strictly positive for all types.

If one compares the optimal investment schedule under pure AS, XAS(·),
with the optimal investment schedules characterized in Propositions 4-6, it is

clear that for any θ, XAS(θ) ≤ X(θ) ≤ XFB(θ). Thus total surplus is (weakly)

higher at each θ when effort is unobservable, than when it is observable. The

following corollary formalizes this observation.

Corollary 1. When the funder faces an AS problem, equilibrium total sur-

plus is (weakly) higher at each θ when effort is unobservable, than when it is

observable.

As mentioned in the introduction, in mixed models where the agent’s only

action (effort) is unobservable and chosen after learning her type, effort tends

to be distorted below the first-best to a greater extent than under pure AS.

Corollary 1 shows that this is not the case when investment is observable. To

understand the role played by the observable action, note that when actions

are all unobservable, typically, the instruments that overcome MH also gener-

ate significant rent for the agent (due to AS), and do not directly contribute to

28Proposition 6 also applies when limx→∞ θρ(x)π < c, which means xm(θ) is not well
defined.
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total surplus. For instance, if investment were unobservable in our model then

greater investment/effort must be encouraged through a prize. The prize gen-

erates significant rent for the researcher; to limit these rents, weaker incentives

are provided, as compared to pure AS. In addition, the prize does not con-

tribute to total surplus. As a result, total surplus is distorted further below the

first-best, as compared to pure AS. In contrast, when investment is observable,

it can be incentivized through the grant, and greater effort can be encouraged

through the complementarity between the inputs. The grant is much more

effective in limiting the researcher’s rent, and investment contributes directly

to total surplus.

Let us make one remark as regards Corollary 1. We have assumed through-

out that the funder finds it optimal to elicit effort from a researcher of any

type. This assumption is more stringent in the model with combined AS and

MH than with pure AS.29 If we relax this assumption, the welfare comparison

becomes less clear. Nevertheless, Corollary 1 provides a useful benchmark for

comparing welfare when the social value of the project is sufficiently large.

Finally, Propositions 4 and 5 reveal that bunching may be a prominent

feature of the optimal incentive scheme in our setting. In pure AS models,

bunching is often avoided by assuming a monotone hazard rate (or inverse

hazard rate) on the distribution over types. When bunching is not ruled

out by this distributional assumption, frequently cited reasons for it to occur

are countervailing incentives due to type-dependent outside options (see, e.g.

Lewis and Sappington, 1989; Maggi and Rodriguez-Clare, 1995; Jullien, 2000),

or “non-responsiveness” (see, e.g. Guesnerie and Laffont, 1984).30 In models

that combine AS and MH, bunching may arise for other reasons. Ollier and

Thomas (2013) show that an ex post participation constraint may give rise to

countervailing incentives, and bunching may occur for this reason. Gottlieb

and Moreira (2015) show that bunching is a quite robust feature of binary

29i.e., If we relax this assumption, there may be instances where it is not optimal to elicit
effort from some low types under AS and MH, but where it is optimal to elicit effort from
all types with pure AS.

30Non-responsiveness refers to a situation in which the first-best allocation is not imple-
mentable.
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outcome models with AS, MH and limited liability. In our model, bunching

does not arise for any of the reasons previously described; but rather, it is due

to the conflict between rent extraction, effort inducement, and the second-

order incentive compatibility constraint.

5 Discussion: The Use and Design of Push

Programs

When are push programs useful?

Proposition 4 shows that a pure grant scheme is optimal (for all types) in

our model if xm(θ) ≤ XFB(θ). This condition provides insights into the cir-

cumstances that a push program may be useful in practice. In particular, we

conclude that a push program may be more relevant: (1) When AS is an issue;

(2) For a more profitable project (i.e., π is large); (3) For a researcher with

less valuable alternative endeavors, to which she can devote her time (i.e., the

opportunity cost of effort, c, is small); (4) If there is a strong complementarity

between capital and labor (i.e., p12(x, y) is large); and (5) For a project with

a high social value (i.e., W + π is large).

Point (1) gives rise to the trade-off between a push and pull program.

When AS is an issue, a pull program, while more effective in motivating un-

observable effort, is a more expensive means of funding than a push program.

Points (2)-(4) imply that the MH problem is not too severe, and that (less eas-

ily observed) labor inputs (effort) can be encouraged through greater capital

investments (which may be easier to verify). The intuition behind point (5)

is the following:31 When MH is a concern, the funder must make the project

worth the researcher’s time. This may be done either through a prize, or if

capital and labor are complements, through greater investment (incentivized

via a grant). For a project with a high social value, the funder is willing to

finance a greater investment, as doing so increases total surplus.

31Mathematically, point (5) holds since XFB(θ) is positively related to both W and π,
while xm(θ) does not depend on W , and is negatively related to π.
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These observations may help to shed light on patterns of funding observed

in practice. Let us provide one concrete example. The Bill and Melinda Gates

Foundation (GF) provides incentives for researchers to undertake projects re-

lated to the development of pharmaceuticals used to treat/prevent certain dis-

eases prevalent in the developing world. McCoy et al. (2009) offer a detailed

report on the funding pattern of GF between 1998-2007. Over this period, it

is reported that GF issued $8.95 billion in grants for global health. Of these

funds, almost 37% were allocated to non governmental or non-profit research

organizations, while less than 1% were awarded to for-profit firms.

Our results may help explain why GF uses a push program, and the distinc-

tion it makes between non-profits and for-profits. First, AS is likely an issue,

as expert researchers probably have better information than GF about the

prospects of drug development. Second, for-profits and non-profits may differ

in their natural motivations to undertake these projects. Due to a number of

market failures, the profitability of these projects is low.32 A for-profit firm, if

motivated primarily by monetary incentives, would have little incentive to de-

vote resources to these projects. A non-profit – setup specifically to undertake

these projects33 – likely has other motivations (perhaps non-monetary). Third,

for-profits and non-profits may differ in the opportunity cost of devoting their

time to these ventures: For-profits likely have other, more profitable ventures

available, while this may be less of an issue for non-profits.34 Finally, these

projects are also of tremendous social value, as health and economic produc-

tivity are intimately linked (see, e.g., Bleakley, 2010). Under these conditions,

our model predicts that a push program may be optimal for motivating a

non-profit, but it is less likely the case for a for-profit.

32See Kremer (2002) and Glennerster et al. (2006) for an overview of the issues
33The Program for Appropriate Technology in Health (PATH) is one example of this type

of non-profit (see, http://www.path.org/about/index.php). According to McCoy et al.
(2009), PATH was awarded $949 million in grants from GF between 1998-2007.

34Some of these organizations, such as the Medicines for Malaria Venture, are setup
primarily to conduct R&D related to one particular condition; this organization received
a $115 million grant from GF in 2009 (http://www.mmv.org/newsroom/press-releases/
mmv-receives-115-million-gates-foundation).
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Design of push programs: R&D tax credits and matching grants

Our results also provide insights into the optimal design of push programs. One

such program is the R&D tax credit system in the U.S. The U.S. Congress

estimated that this system cost the federal government $6.9 billion in lost

tax revenue 2013 (Hemel and Ouellette, 2013). In its simplest form, firms

are awarded with a tax credit worth 20% of qualifying expenditures above

some base amount. We show that the pure grant scheme characterized in

Proposition 4(1) bears some semblance to this system.

Proposition 7. Under the hypotheses of Proposition 4(1), the optimal funding

scheme can be implemented via a menu of linear contracts, {b(θ), r(θ)}θ∈Θ. For

each θ ∈ Θ, the grant to the researcher takes the form,

G̃(x, θ) =

0 x ≤ b(θ)

r(θ)(x− b(θ)) x ≥ b(θ)

where b′(·) > 0, r(·) ∈ (0, 1), r′(·) > 0, and if c is sufficiently small, b(·) > 0.

Proposition 7 reveals that the pure grant scheme can be implemented via

a menu of linear contracts, {b(·), r(·)}, each of which specifies a base amount,

b(θ), and a reimbursement rate, r(θ). If the researcher selects {b(θ), r(θ)},
she is reimbursed nothing for each dollar she invests up to b(θ), and she is

reimbursed at the rate of r(θ) per dollar she invests above b(θ). Higher types

select higher base levels, and receive a greater rate of reimbursement.

Under the current system of R&D tax credits, a firm’s base amount is set

according to past R&D expenditures. The logic is that the government would

only like to reward firms for investment above and beyond what it would

otherwise choose.35 Proposition 7 provides an alternative means to the same

end. Under our system, the researcher is free to choose her base amount, but

she faces a trade-off between the base and the reimbursement rate.

Note that for a given base amount, b, and investment, x > b, the marginal

value of an increase in the reimbursement rate is x− b. Therefore, the greater

35See Hemel and Ouellette for a comprehensive overview of the R&D tax credit system.
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the firm’s investment, the higher is the marginal value of an increase in the

reimbursement rate. For this reason, a particularly productive firm (i.e., a

high θ) that would like to invest more, is willing to accept a higher base, in ex-

change for a higher reimbursement rate. In contrast to the current system, our

system contemporaneously links the base amount to the firm’s desired invest-

ment (rather than relying on past behavior), and provides stronger marginal

incentives to more productive firms.

As mentioned in the introduction, one concern with the use of push pro-

grams is that they may pay for research that is unlikely to succeed. Propo-

sitions 3 and 4(1) shed light on this very issue. An important feature of the

optimal funding scheme in these cases is that, while higher types receive larger

grants, they are expected to bear a greater cost. In this way, only a researcher

that is sufficiently likely to succeed is willing to receive a large grant. This

feature of the funding scheme resembles a matching grant, which requires ex-

penditures from the recipient in excess of the grant. Matching grants, and

other cost-sharing programs, are commonly used by federal agencies in the

U.S.36 Our results suggest that such schemes may be particularly effective in

dealing with AS.

Maurer and Scotchmer (2003) also point out that a matching grant can

be an effective screening device in the presence of AS. Our results reveal the

conditions under which this is in fact the optimal means of screening in a

setting where MH is also relevant. Cost sharing policies have been advocated

in other contexts for dealing with AS and MH. Laffont and Tirole (1986),

for example, emphasize cost sharing as a way to elicit greater greater effort

devoted to cost reduction, while still limiting the firm’s rent.

Capital constraints

One potentially important consideration for the form of funding, from which

our model abstracts, is a capital constraint. Some push programs, such as

research grants, provide upfront funding. It might be argued that this is nec-

36See http://www.grants.gov for a comprehensive list of matching grants currently of-
fered by federal agencies.
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essary when the researcher has limited access to capital. As Scotchmer (2004,

Ch. 8) also points out, this explanation is not satisfactory, as an appropriately

designed pull program should be capable of attracting funding from financiers.

Indeed, this is precisely the logic behind the “Pay for Success” model run by

the U.S. Department of Labor (DOL).37 It is also worth pointing out that other

push programs, such as R&D tax credits, do not provide funding upfront.

Even so, while we do not include a capital constraint, our results may be

useful for understanding the issue. Rather than an explicit inability to raise

capital, one could alternatively imagine settings where (1) the socially-optimal

level of investment is large; (2) the researcher has a strong incentive to devote

her time and energy to a project; but (3) is unwilling to raise the necessary

capital, given her costs and benefits. In our model, this translates to a setting

where XFB is large, c
π

is small, but the marginal cost of investment (normalized

to 1) is large, relative to π. While a pull program could be used to encourage

greater investment, our results imply that a push program may be optimal

under these conditions.

6 Comparative Statics

This section compares the performance of grant and prize based funding when

the strength of the MH problem increases. We then explore the relationship

between the profitability of the project, and the optimal funding scheme.

From our results in Section 4.4, one may be tempted to draw the general

conclusion that as the strength of the MH problem increases, a prize becomes

37According to DOL (https://www.doleta.gov/workforce_innovation/success.
cfm):

Under the Pay for Success model, a government agency commits funds to pay
for a specific outcome that is achieved within a given timeframe. The financial
capital to cover the operating costs of achieving the outcome is provided by
independent investors. In return for accepting the risks of funding the project,
the investors may expect a return on their investment if the project is success-
ful; however, payment of the committed funds by the government agency is
contingent on the validated achievement of results.
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a relatively more attractive means of funding. As it happens, this conclusion

is not precisely accurate in the context of our model. In fact, when the MH

problem is weak, an increase in its severity (as measured by an increase in c)

renders prizes, in some sense, less attractive to the funder.

In order to facilitate a comparison of grant and prize-based funding, sup-

pose that the funder, for whatever reason, uses a pure prize scheme (i.e.

g(·) ≡ 0). Let φp(c) denote the funder’s optimal payoff when he encourages

R&D activity using a pure prize, when the cost of effort is c. Let φg(c) denote

the funder’s optimal payoff when he uses a pure grant scheme (i.e. v(·) ≡ 0).

Let D(c) ≡ φg(c) − φp(c) denote the difference between the funder’s optimal

pure-grant and pure-prize payoffs. Define the function h̃ as follows:

h̃(θ) =

∫ θ
θ
tf(t) dt

θ2f(θ)

For our next result, we assume that h̃′(·) < 0. Similar to the decreasing inverse

hazard rate condition, this condition ensures full separation of types when the

funder offers only a prize. This assumption is satisfied, for example, by a

uniform distribution. We also assume that the researcher’s outside option is

zero for each type: Π(θ) = 0 for all θ. Neither of these assumptions is necessary

for the next result, but we impose them for ease of exposition.

Proposition 8. Assume h̃′(·) < 0, and Π(θ) = 0 for all θ. Under the hypothe-

ses of Proposition 4(1), the difference between the funder’s optimal pure-grant

and pure-prize payoffs, D(·), is strictly positive, and strictly increasing in c.

Proposition 8 shows that, in some sense, when the MH problem is weak,

pure grant funding becomes relatively more attractive as the strength of the

MH problem increases. To convey the intuition, suppose the effort cost in-

creases slightly from c′ to c′′ = c′ + ∆, but assume the hypotheses of Proposi-

tion 4(1) are satisfied, for both costs. By Proposition 4(1), it follows that the

optimal means of funding is the pure-grant scheme. Thus, D(·) > 0.

If the funder uses a pure grant, then following increase in c, the grant of

the lowest type must increase by ∆ in order to maintain IR. To maintain IC,
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the grant then increases by ∆ for each type θ > θ. Optimal investment, and

the slope of the grant schedule, are unchanged. So following the cost increase,

the researcher’s rent is unchanged, and the the funder’s payoff decreases by ∆.

If the funder uses a pure-prize, the expected value of the prize offered to the

lowest type increases by ∆ to maintain IR. However, when the prize offered to

the lowest type increases, this creates a stronger incentive for higher types to

underreport, and generates a greater rent for these types. To maintain IC, the

expected value of the prize offered to all higher types increases by more than ∆.

That is, the slope of the prize schedule increases. Therefore, the researcher’s

expected rent increases, and the funder’s payoff decreases by more than ∆.

We now explore the comparative statics with respect to the profitability

of the project, π. Since the optimal investment schedule under AS and MH

is closely related to XAS(·) and XFB(·), we provide our comparative statics

results with respect to these two functions. In what follows, we let φ∗ denote

the funder’s ex-ante equilibrium expected payoff.

Proposition 9.

(i) For each θ ∈ Θ, ∂XFB(θ)
∂π

> 0

(ii) ∂XAS(θ)
∂π

> 0 if and only if θ > h(θ)

(iii) ∂φ∗

∂π
> 0

An increase in π increases the total surplus generated in the event of suc-

cess, and so it is intuitive that XFB(θ) is strictly increasing in π. But there

are two competing forces acting on XAS(θ): On the one hand, the funder may

want to increase XAS(θ) due to the increase in total surplus generated in the

event of success. On the other hand, an increase in π increases the marginal

cost of investment to the funder, due to the increased cost of maintaining IC.38

When θ > h(θ), the total surplus effect dominates the IC effect, and XAS(θ)

increases in π (vice-versa when θ < h(θ)). Since θ > 0 = h(θ), investment

38See discussion following Proposition 3
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increases in π for sufficiently high types. Finally, part (iii) of Proposition 9

reveals that the funder is always better off (on average) when π increases.

Interestingly, the researcher’s equilibrium payoff may be either positively or

negatively related to π. The fact that the researcher’s payoff may be decreasing

in the profitability of the project seems somewhat counterintuitive. To convey

the idea, first note that the rent of a type-θ researcher is positively related

to both π, and the investment of types just below θ. When an increase in π

leads the funder to reduce investment of some low types, the reduction in the

researcher’s available rent may outweigh the gain in the available rent caused

by the increase in π. The following example illustrates; for the purposes of the

example, we abstract away from MH, and set c = 0.

Example 1. Let c = 0, ρ(x) = 1− exp(−x), and θ ∼ U
[

1
4
, 1
]
. Using Propo-

sition 4, V (θ) = 0, X(θ) = log(θ(W + π) − h(θ)π), where h(θ) = 1 − θ.

To calculate the researcher’s equilibrium payoff, u∗(θ), we plug X(·) into (3).

Suppose W = 6 and consider a slight increase in π from π = 1 to π = 1.05.

Following the increase in π, the equilibrium investment and payoff of a type

just above θ both decrease. For a researcher of type θ = .26, for example, X(θ)

decreases from about .07696 to .05449 and u∗(θ) decreases from about .00038

to .00015. The equilibrium investment and payoff of a high type both increase

following the increase in π. Setting θ = .8, for example, X(θ) increases from

about 1.6864 to 1.69194 and u∗(θ) increases from about .3392 to .35489.

One may also wonder whether more profitable projects should receive

smaller or greater rewards from the funder. When V (θ) > 0, it holds, G(θ) =

XFB(θ) and (as shown in the proof of Propositions 5 and 6) V (θ) = c
θρ(XFB(θ))

−
π. Following an increase in π, XFB(θ) increases, so V (θ) decreases, and G(θ)

increases.

When the funder uses a pure grant scheme, the impact of a change in π on

the grant is unclear. To simplify the following discussion, assume that Π(θ) = 0

for all θ, so IR just requires u(θ) ≥ 0. The grant serves two purposes: It is

necessary to satisfy IR, and it is used to reward higher types with information

rent (to maintain IC). Following an increase in π, there are two competing
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forces on the grant related to IR. There is a direct effect: The project becomes

more profitable, and hence, a smaller grant is required to ensure participation.

But there is also an indirect effect: An increase in π may lead the funder to

either increase or decrease investment (by Proposition 9(ii)). Ceteris paribus,

an increase (decrease) in investment means a larger (smaller) grant is necessary

to satisfy IR.

Similarly, following an increase in π there is a direct effect on IC: Ceteris

paribus, an increase in π generates greater information rent for the researcher,

and a larger grant is used to maintain IC. But there is also an indirect effect

since investment around some θ may increase or decrease. All else equal, an

increase (decrease) in investment for types just below θ, increases (decreases)

the rent of the type θ, and increases (decreases) the size of the grant necessary

to maintain IC. The net effect of a change in π on the grant depends on the

balance of these forces and is, in general, ambiguous.

7 Conclusion

In this paper we fully characterized the optimal contracts in a setting where

the inputs to production consist of both an observable and unobservable com-

ponent, and the agent holds private information regarding the prospects of the

project. We provided conditions under which pay-for-performance may not be

optimal, and used our findings to shed light on push programs used in practice

to encourage R&D. Although we focus on policy implications related to R&D

funding, our model is useful for understanding the emergence of low-powered

incentive schemes in many other contexts, e.g., worker compensation.

In addition, we provided a novel explanation for the emergence of bunching

in contracts, and shed new light on the welfare implications of AS and MH.

In particular, we showed that when AS and MH interact, total surplus tends

to be higher than in a pure AS setting, which contrasts the typical finding in

models where the agent’s action is chosen after learning her type.
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Appendices

A Further Analysis of IC

In this appendix, we show that under free-disposal, and the IR/IC constraints

given in Section 3.2, it is never optimal for the researcher to choose zero effort

when Π(θ) = 0 or x(θ) ≥ x(θ). Regardless of her type, if the researcher

reports θ and shirks on effort, the project fails with certainty and her payoff

is g(θ) − x(θ). So, if x(θ) ≥ g(θ) for all θ, then the researcher’s payoff if she

shirks on effort is non-positive, and IR would ensure that this is suboptimal.
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First, we will show x(θ) ≥ g(θ) if Π(θ) = 0 or x(θ) ≥ x(θ). We then show

x′(θ) ≥ g′(θ) for all θ. Initially, suppose Π(θ) = 0. Then, u(θ) = Π(θ) = 0

means,

x(θ)− g(θ) = θρ(x(θ))(v(θ) + π)− c (6)

By (IC-E) the RHS of (6) is non negative, and hence x(θ) ≥ g(θ). Next,

suppose Π(θ) > 0 and x(θ) ≥ x(θ). It must be that y(θ) = 1, and x(θ) > 0.

After some re-arranging and simplification, u(θ) = Π(θ) means,

x(θ)− g(θ) = θ[ρ(x(θ))(v(θ) + π)− ρ(x(θ))π] + x(θ)

Since x(θ) ≥ x(θ) (by assumption), and v(θ) ≥ 0 (by free-disposal), the

term in square brackets is non-negative. Thus, the RHS of the expression

above is strictly positive. This establishes that x(θ) ≥ g(θ) if Π(θ) = 0 or

x(θ) ≥ x(θ). Next, we show x′(θ) ≥ g′(θ) for all θ. Fix θ ∈ Θ. Using the

definition of u(θ), (IC-F) can be written:

x′(θ)− g′(θ) = θ [ρ′(x(θ))(v(θ) + π)x′(θ) + ρ(x(θ))v′(θ)] (7)

By (IC-S) the RHS of (7) is non-negative, and hence x′(θ) ≥ g′(θ); combined

with x(θ) ≥ g(θ) this means that for each θ ∈ Θ, x(θ) ≥ g(θ).

B Proofs

Proof of Lemma 1

By assumption, u(θ) ≥ Π(θ); so, the result follows if u′(θ) ≥ Π
′
(θ) for all

θ. Fix θ ∈ Θ. (IC-F) implies, u′(θ) = ρ(x(θ))(v(θ) + π). By the envelope

theorem, Π
′
(θ) = y(θ)ρ(x(θ))π ≤ ρ(x(θ))π. But since v(θ) ≥ 0, x(θ) ≥ x(θ),

and ρ is strictly increasing, it holds, ρ(x(θ))(v(θ) + π) ≥ ρ(x(θ))π. Hence,

u′(θ) ≥ Π
′
(θ).
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Proof of Proposition 1

Set X = XFB(θ), G = 0, and let V satisfy θρ(X)V = Π(θ) − Π(X, 1, θ). As

XFB(θ) > x(θ), it holds that Π(θ) − Π(X, 1, θ) > 0; hence V > 0. Note,

moreover, that θρ(X)(V + π) − c = X > 0, which ensures y∗(V,X, θ) = 1.

Finally, by construction, u(θ) = Π(θ), so IR is satisfied. This contract induces

the first-best investment/effort levels, and sets u(θ) = Π(θ). Therefore, the

funder’s payoff is equal to the first-best payoff, and the specified contract is

an optimal contract.

Proof of Proposition 2

Set X = XFB(θ), and V = 0. Let G = Π(θ) − Π(X, 1, θ) > 0. Then, see

that y∗(0, X, θ) = 1 if and only if XFB(θ) ≥ xm(θ). So, this contract satisfies

IR (by construction), and induces the first-best investment/effort levels if and

only if XFB(θ) ≥ xm(θ).

Proof of Proposition 3

The funder’s relaxed problem is,

max
x(·),v(·)

{∫ θ

θ

[
θρ(x(θ))[W + π]− x(θ)− c− ρ(x(θ))(v(θ) + π)h(θ)

]
f(θ)dθ

}

Subject to (IC-S) and v ≥ 0. As explained in Section 3 (see footnote 23),

the problem above is a relaxation of the funder’s problem, as we have not

fully incorporated IR, or ruled out the possibility of simultaneous profitable

deviations in both type and effort. However, as the problem incorporates (IC-

F), and sets u(θ) = Π(θ), by Lemma 1, IR is satisfied so long as X(θ) ≥ x(θ)

for all θ. We show that this is the case under (A1). Note, moreover, that by the

analysis in Appendix A, shirking on effort is not profitable for the researcher,

regardless of her type report, since Π(θ) = 0.

For the moment, we further relax the problem above and ignore (IC-S);

we will then verify that it is satisfied. Examining the funder’s objective, it
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is clear that his payoff is strictly decreasing in v(·). Therefore, for all types,

the funder sets V (θ) = 0. Setting V (θ) = 0, pointwise maximization of the

maximand of the funder’s problem with respect to x, yields the pointwise

first-order condition,

θρ′(X(θ))(W + π)− 1− ρ′(X(θ))πh(θ) = 0 (8)

Fix θ < θ. Since h(θ) > 0, (8) implies θρ(X(θ))(W + π) − 1 > 0; by

concavity of ρ, and the definition of XFB(θ), this means X(θ) < XFB(θ).

Moreover, since h(θ) = 0, (8) implies X(θ) = XFB(θ).

We now show that X(θ) ≥ x(θ), for all θ. Fix θ ∈ Θ. Clearly, X(θ) > x(θ)

if x(θ) = 0. So, suppose x(θ) > 0. In this case, x(θ) is the unique solution to

the first-order condition, θρ′(x(θ))π − 1 = 0. Re-arranging (8), we may write:

θρ′(X(θ))π − 1 = ρ′(X(θ))[πh(θ)− θW ] < 0 (9)

Where the inequality follows by (A1). Hence, θρ′(X(θ))π − 1 < 0. Concavity

of ρ and the definition of x(θ) imply, X(θ) > x(θ).

Next, we show that (IC-S) is satisfied. When V (θ) = 0 for all θ, (IC-

S) simply requires X ′(θ) ≥ 0. Differentiating (8) with respect to θ and re-

arranging yields,

X ′(θ) = −
ρ′(X(θ))

[
W + π − πh′(θ)

]
ρ′′(X(θ))

[
θ(W + π)− πh(θ)

]
As ρ′(·) > 0 and h′(·) < 0 (by assumption), the numerator is strictly

positive. Moreover, since ρ′′ < 0, and since (A1) implies θ(W +π)−πh(θ) > 0,

the denominator is strictly negative. Hence, X ′(·) > 0 and (IC-S) is satisfied.

This establishes part (1). To establish part (2), note that equation (6) in

Appendix A implies X(θ) + c − G(θ) > 0. Next, fix θ. Since V (θ) = 0

equation (7) can be written,

G′(θ) = X ′(θ) [1− θρ′(X(θ))π] > 0

The inequality above holds since X ′(θ) > 0, and by (9) the term in square
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brackets on the RHS is strictly positive. Moreover, the term in square brackets

is also clearly less than 1; this means G′(θ) < X ′(θ). This establishes the

proposition. Note that equations (6) and (7) provide a full characterization of

the optimal grant schedule.

Proof of Propositions 4 - 6

In this section, we provide proofs of Propositions 4-6. First, we state and prove

the following lemma.

Lemma B.1. (IC-S) and (IC-E) imply that for all θ ∈ Θ, v(θ) ≥ c
θρ(x(θ))

− π.

Proof. Evaluating (IC-E) at θ yields, θρ(x(θ))(v(θ) + π) ≥ c. But (IC-S)

implies ρ(x(·))(v(·) + π) is non-decreasing, and this means, for each θ ≥ θ,

θρ(x(θ))(v(θ) + π) ≥ c. Re-arranging this expression yields the desired result.

We now derive properties of the solution to a relaxed problem through a

series of lemmas. We then show that the solution to the relaxed problem solves

[P ]. Recall, however, that [P ] itself is a relaxation of the funder’s problem.

To ensure IR is satisfied, we must still check that the solution to [P ] satisfies,

X(θ) ≥ x(θ) (see footnote 23 and the proof of Proposition 3). But see that

each investment schedule given in Propositions 4-6 has the property that, for

all θ, X(θ) ≥ XAS(θ) > x(θ), where the final inequality is shown in the proof of

Proposition 3. Thus, once we establish that the solutions given in Propositions

4-6, solve [P ], we know that IR is satisfied.

Now consider the following relaxation of [P ]:

max
x(·),v(·)

{∫ θ

θ

[
θρ(x(θ))[W + π]− x(θ)− c− ρ(x(θ))(v(θ) + π)h(θ)

]
f(θ)dθ

}
[P ′]

s.t.

(i) v(θ) ≥ c
θρ(x(θ))

− π
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(ii) v(θ) ≥ 0

[P ′] is a relaxation of [P ] since by Lemma B.1, (i) is implied by (IC-S) and

(IC-E). To establish that the solution to [P ′] also solves [P ], we must only

check that (IC-S) is satisfied at the solution to [P ′]; (IC-E) is implied by (i).

Setup the Lagrangian for the problem [P ′]:

L =

{
θρ(x(θ))[W + π]− x(θ)− c− ρ(x(θ))(v(θ) + π)h(θ)

}
f(θ)

+ µ1(θ)

[
θρ(x(θ))(v(θ) + π)− c

]
f(θ) + µ2(θ)v(θ)f(θ)

Where µ1 and µ2 are the Lagrange multipliers for the constraints given in (i)

and (ii), respectively. For each θ ∈ Θ, the (point-wise) first-order conditions

are:

∂L

∂v
= −ρ(X(θ))h(θ) + µ1(θ)θρ(X(θ)) + µ2(θ) = 0 (10)

∂L

∂x
= θρ′(X(θ))(W + π)− 1− ρ′(X(θ))(V (θ) + π)(h(θ)− µ1(θ)θ = 0 (11)

And the complementary slackness conditions:

µ1(θ)

[
θρ(X(θ))(V (θ) + π)− c

]
= 0; µ1(θ) ≥ 0; θρ(X(θ))(V (θ) + π)− c ≥ 0

(12)

µ2(θ)V (θ) = 0; µ2(θ) ≥ 0; V (θ) ≥ 0 (13)

Lemma B.2. At the solution to [P ′]: If V (θ) > 0 then V (θ) = c
θρ(X(θ))

− π,

and X(θ) = XFB(θ). Moreover, if for some θ̃ ∈ Θ, θρ(XFB(θ̃))π ≥ c then

V (θ) = 0 for all θ ≥ θ̃.
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Proof. For some θ < θ suppose V (θ) > 0. Then by (13), µ2(θ) = 0; (10) then

gives µ1(θ) = h(θ)
θ

. Plugging µ1(θ) = h(θ)
θ

into (12) yields, V (θ) = c
θρ(X(θ))

−
π. Then, plugging µ1(θ) = h(θ)

θ
and V (θ) = c

θρ(X(θ))
− π into (11) yields,

θρ′(X(θ))(W + π)− 1 = 0 ⇐⇒ X(θ) = XFB(θ).

By (13), V (θ) ≥ 0. We have shown that if V (θ) > 0 then V (θ) =
c

θρ(X(θ))
− π. So, if there exists θ̃ such that c

θρ(XFB(θ̃))
− π ≤ 0 (equivalently,

θρ(XFB(θ̃))π ≥ c), then it must be that V (θ̃) = 0. Since XFB(·) is strictly

increasing, for any θ > θ̃: c
θρ(XFB(θ̃))

− π ≤ 0 =⇒ c
θρ(XFB(θ))

− π < 0 =⇒
V (θ) = 0.

Lemma B.3. At the solution to [P ′]: If θρ(XAS(θ̃))π ≥ c for some θ̃ ∈ Θ

then for any θ > θ̃: V (θ) = 0, µ1(θ) = 0, and X(θ) = XAS(θ).

Proof. Suppose θρ(XAS(θ̃))π ≥ c for some θ̃ ∈ Θ. Then since XFB(·) ≥ XAS(·)
this means θρ(XAS(θ̃))π ≥ c =⇒ θρ(XFB(θ̃))π ≥ c, and by Lemma B.2,

V (θ) = 0 for all θ ≥ θ̃.

Next, we show θ > θ̃ =⇒ µ1(θ) = 0. Contrary to the proposition, suppose

there exists a non-empty interval I ⊂ (θ̃, θ] such that θ ∈ I =⇒ µ1(θ) > 0.

Fix θ ∈ I. By (12), θρ(X(θ))π = c, which means X(θ) = xm(θ). Plugging

V (θ) = 0 and X(θ) = xm(θ) into (11) yields,

θρ′(xm(θ))(W + π)− 1− ρ′(xm(θ))πh(θ) = −µ1(θ)θ < 0.

By concavity of ρ, the expression above implies xm(θ) > XAS(θ), which implies

θρ(xm(θ))π > θρ(XAS(θ))π > c, which contradicts the definition of xm(θ).

Note that the final inequality holds since XAS(·) is strictly increasing, θ > θ̃,

and by assumption, θρ(XAS(θ̃))π ≥ c. So, it must be that µ1(θ) = 0. Plugging

µ1(θ) = V (θ) = 0 into (11) yields θρ′(X(θ))(W + π) − 1 − ρ′(X(θ))h(θ)π =

0 ⇐⇒ X(θ) = XAS(θ).

Lemma B.4. At the solution to [P ′]: If for some θ̃ ∈ Θ, θρ(XFB(θ̃))π ≤ c,

then for all θ < θ̃: µ1(θ) > 0, V (θ) = c
θρ(X(θ))

− π > 0, and X(θ) = XFB(θ).

Proof. Suppose there exists θ̃ such that, θρ(XFB(θ̃))π ≤ c. We first show

that µ1(θ) > 0 for θ < θ̃. Contrary to the proposition, suppose there exists a
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non-empty interval I ⊂ [θ, θ̃) such that θ ∈ I =⇒ µ1(θ) = 0. Fix θ ∈ I. By

(10): µ2(θ) = ρ(X(θ))h(θ) > 0 =⇒ V (θ) = 0. Plugging V (θ) = µ1(θ) = 0

into (11) yields X(θ) = XAS(θ). But since XAS(θ) < XFB(θ̃) this means

θρ(XAS(θ))π < θρ(XFB(θ̃))π ≤ c, which violates (12). Thus, µ1(θ) > 0 for all

θ ∈ [θ, θ̃).

To complete the proof, Lemma B.2 implies that it is sufficient to show

V (θ) > 0 for all θ ∈ [θ, θ̃). Suppose to the contrary there exists a non-

empty interval I ⊂ [θ, θ̃) such that θ ∈ I =⇒ V (θ) = 0. Fix θ ∈ I. We’ve

already established µ1(θ) > 0, and so (12) implies θρ(X(θ))π = c, which means

X(θ) = xm(θ). By assumption, θρ(XFB(θ̃))π ≤ c ⇐⇒ xm(θ) ≥ XFB(θ̃).

Since θ < θ̃ and XFB(·) is strictly increasing, we have the following string of

inequalities:

xm(θ) ≥ XFB(θ̃) > XFB(θ) (14)

Since µ2(θ) ≥ 0, (10) implies h(θ)− µ1(θ)θ ≥ 0. It then follows from (11):

θρ′(xm(θ))(W + π)− 1 = ρ′(xm(θ))(V (θ) + π)(h(θ)− µ1(θ)θ) ≥ 0

By concavity of ρ, the expression above implies xm(θ) ≤ XFB(θ), which con-

tradicts (14). Thus, V (θ) > 0 for θ ∈ [θ, θ̃).

We are now ready to prove Propositions 4-6.

Proof of Proposition 4(1).

As an immediate consequence of Lemma B.3, the investment/prize schedules

given in the proposition solve the problem [P ′]. To establish that the solution

to [P ′] also solves [P ], we must show (IC-S) is satisfied. Note that as V (θ) = 0

and X ′AS(·) > 0, (IC-S) is satisfied. To establish the stated properties of the

grant schedule, we refer the reader to the proof of Proposition 3, as the proof

here is nearly identical.
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Proof of Proposition 4(2).

We first show that the solution given in the proposition solves the relaxed

problem, [P ′]. By assumption, XFB(θ) > xm(θ), which means θρ(XFB(θ))π >

c and so Lemma B.2 implies V (θ) = 0 for all θ ∈ Θ. Equation (12) then

implies X(θ) ≥ xm(θ).

Next, the hypotheses of the proposition implies XAS(θ) < xm(θ) < XAS(θ);

by continuity of XAS(·), there exists θ′ ∈ (θ, θ) such that XAS(θ′) = xm(θ). Fix

θ ∈ [θ, θ′). As already shown, V (θ) = 0; if it were the case that µ1(θ) = 0 then

(11) implies X(θ) = XAS(θ). However, since XAS(θ) < xm(θ) this contradicts

(12). So, it must be that µ1(θ) > 0, and hence θρ(X(θ))π = c ⇐⇒ X(θ) =

xm(θ). Finally, at θ′ we have θρ(XAS(θ′))π = c, and so by Lemma B.3, X(θ) =

XAS(θ) for all θ ∈ [θ′, θ].

This establishes that the investment/prize schedules given in the proposi-

tion solve the problem [P ′]. It remains to be shown that these schedules also

solve [P ], and that the grant schedule satisfies the stated properties. These

proofs follow along similar lines as the proof of Cases ii and iii in the proof of

Proposition 5 (Part II), and so we omit these here.

Proof of Proposition 5.

Part I. We first show that the solution given in the proposition solves the

relaxed problem, [P ′]. Since XFB(θ) < xm(θ) < XFB(θ) (by assumption),

continuity of XFB(·) implies that there exists θ′ ∈ (θ, θ) such that XFB(θ′) =

xm(θ); equivalently, θρ(XFB(θ′))π = c. Lemma B.4 implies that for all θ ∈
[θ, θ′), V (θ) = c

θρ(X(θ))
− π > 0 and X(θ) = XFB(θ). Moreover, Lemma B.2

implies that for all θ ∈ (θ′, θ], V (θ) = 0.

Next, since XAS(θ′) < XFB(θ′) = xm(θ) and XAS(θ) = XFB(θ) > xm(θ)

continuity of XAS implies XAS(θ′′) = xm(θ) for some θ′′ ∈ (θ′, θ); equivalently,

θρ(XAS(θ′′))π = c. Lemma B.3 then implies X(θ) = XAS(θ) for θ ∈ (θ′′, θ].

It remains to be shown that X(θ) = xm(θ) for θ ∈ [θ′, θ′′]. Contrary to the
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proposition, suppose there exists a nonempty interval, I ⊂ [θ′, θ′′] such that

θ ∈ I =⇒ X(θ) 6= xm(θ). Fix θ ∈ I. Since V (θ) = 0 and X(θ) 6= xm(θ), (12)

implies X(θ) > xm(θ), and µ1(θ) = 0. We then have the following string of

inequalities:

X(θ) > xm(θ) = XFB(θ′) > XFB(θ) > XAS(θ) (15)

Plugging µ1(θ) = 0 into (11) yields X(θ) = XAS(θ), which contradicts (15).

Hence, X(θ) = xm(θ) for all θ ∈ [θ′, θ′′]. This establishes that the solution

given in the proposition solves [P ′].

Part II. To complete the proof of Proposition 5, we show that the investment

and grant schedules have the stated properties. We must also show that the

solution to [P ′] solves [P ]; to do so, we must show that (IC-S) is satisfied. We

will proceed in three cases.

Case i: θ ∈ [θ, θ′)

In this range, the solution to [P ′] yields: X(θ) = XFB(θ) and V (θ) =
c

θρ(X(θ))
− π. It can be verified that,

ρ′(X(θ))(V (θ) + π)X ′(θ) + ρ(X(θ))V ′(θ) = 0

And hence (IC-S) is satisfied. It can also be verified that the solution to [P ′]

gives u(θ) = c
(
θ−θ
θ

)
. Hence,

G(θ) ≡ u(θ)− θρ(X(θ))(V (θ) + π) +X(θ) + c

= c

(
θ − θ
θ

)
− θ c

θ
+X(θ) + c

= X(θ)

Case ii: θ ∈ [θ′, θ′′]

In this range, the solution to [P ′] yields a constant investment and prize
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schedule: X(θ) = xm(θ) and V (θ) = 0; so clearly (IC-S) is satisfied. It may

then be verified that u(θ) = c
(
θ−θ
θ

)
, and a similar string of inequalities as

presented in Case 1 reveals G(θ) = X(θ).

Case iii: θ ∈ (θ′′, θ]

In this range the solution to [P ′] yields the investment and prize schedules:

X(·) = XAS(·) and V (·) = 0. When V ′(θ) = 0, (IC-S) holds if and only if X

is non-decreasing; since X ′AS(·) > 0, (IC-S) is satisfied. Next, see that

u(θ) =

∫ θ

θ

ρ(X(t))(V (t) + π) dt = c

(
θ′′ − θ
θ

)
+

∫ θ

θ′′
ρ(X(t))π dt

So,

G(θ) ≡ u(θ)− θρ(X(θ))(V (θ) + π) +X(θ) + c

= c

(
θ′′ − θ
θ

)
+

∫ θ

θ′′
ρ(X(t))π dt− θρ(X(θ))π +X(θ) + c

Differentiating both sides of the expression above, we findG′(θ) = X ′(θ) [1− θρ(X(θ))π].

Since X ′AS(θ) > 0, and since XAS(θ) > x(θ) implies 1−θρ(X(θ))π > 0, it holds

that G′(θ) > 0. We can also write: G′(θ) − X ′(θ) = −θρ(X(θ))X ′(θ) < 0.

Since G(θ′′) = X(θ′′) and G′(θ) < X ′(θ) for θ > θ′′, this means X(θ) > G(θ)

for θ > θ′′.

Proof of Proposition 6

As an immediate consequence of Lemma B.4, the investment/prize schedules

given in the proposition solve the problem [P ′]. It remains to be shown that

these schedules also solve [P ], and that the grant schedule satisfies the stated

properties. These proofs follow along similar lines as the proof of Case i in the
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proof of Proposition 5 (Part II), and so we omit these here.

Proof of Proposition 7

We first show that the investment schedule XAS(θ) can be implemented via a

menu of linear grant contracts {a(θ), r(θ)}θ∈Θ, where the grant is then given

by,

G̃(x, θ) = a(θ) + r(θ)x

Define

a(θ) ≡ G(θ)− r(θ)XAS(θ)

Where G(·) is the optimal grant schedule given in Proposition 4(1), and fully

characterized in Proposition 3. Define r(θ) as follows:

r(θ) ≡ 1− θρ′(XAS(θ))π

As ρ′ > 0, it is clear that r(·) < 1; moreover, XAS(θ) > x(θ) implies r(·) > 0.

Let ũ(x, θ̂|θ) denote the payoff to a type θ researcher who chooses the contract

{a(θ̂), r(θ̂)}, and invests x:

ũ(x, θ̂|θ) = θρ(x)π − x− c+ a(θ̂) + r(θ̂)x

The researcher solves, maxx,θ̂{ũ(x, θ̂|θ)}. Let (x∗, θ∗) denote the solution to

the first-order conditions of the researcher’s problem. Using the definitions of

a(·) and r(·), the first-order condition with respect to x can be expressed,

∂ũ(x, θ̂|θ)
∂x

|(x,θ̂)=(x∗,θ∗) = θρ′(x∗)π − θ∗ρ′(XAS(θ∗))π = 0

The expression above implies θρ′(x∗) = θ∗ρ′(XAS(θ∗)). Next, using the defini-

tions of a(·) and r(·), the first-order condition with respect to θ̂ can be written

(after some simplification),
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∂ũ(x, θ̂|θ)
∂θ̂

|(x,θ̂)=(x∗,θ∗) = G′(θ∗)− r(θ)X ′AS(θ∗) + r′(θ∗)(x∗ −XAS(θ∗)) = 0

By definition of r and G, G′(θ∗) − X ′AS(θ∗)r(θ) = G′(θ∗) − X ′AS(θ∗)[1 −
θ∗ρ′(XAS(θ∗))π] = 0. Hence, the first-order condition with respect to θ̂ sim-

plifies to,

∂ũ(x, θ̂|θ)
∂θ̂

|(x,θ̂)=(x∗,θ∗) = (x∗ −XAS(θ∗))r′(θ∗) = 0

So long as r′(·) 6= 0, the expression above then implies x∗ = XAS(θ∗). We

will now show that r′(θ) > 0. XAS(θ) is defined:

θρ′(XAS(θ))(W + π)− 1− h(θ)ρ′(XAS(θ))π = 0

Differentiating the expression above with respect to θ, we can write,

W + π

π

[
ρ′(XAS(θ))π+θρ′′(XAS(θ))X ′AS(θ)π

]
= π

[
h′(θ)ρ′(XAS(θ))+h(θ)ρ′′(XAS(θ))X ′AS(θ)]

Using the definition of r(·), the expression above yields,

r′(θ) = − π2

W + π

[
h′(θ)ρ′(XAS(θ)) + h(θ)ρ′′(XAS(θ))X ′AS(θ)

]
Note that as h′(·) < 0, X ′AS(·) > 0, ρ′(·) > 0, and ρ′′(·) < 0, the term

in square brackets is strictly negative. Hence, for all θ, r′(θ) > 0. Then,

the first-order condition with respect to θ̂ implies, x∗ = XAS(θ∗). But, as

we’ve already shown, θρ′(x∗) = θ∗ρ′(XAS(θ∗)). Substituting x∗ = XAS(θ∗), we

obtain θρ′(XAS(θ∗)) = θ∗ρ′(XAS(θ∗)) ⇐⇒ θ = θ∗.

For a type-θ researcher, we have shown that (XAS(θ), θ) is the unique so-

lution to the first-order conditions; it still remains to be shown that IR is sat-

isfied: ũ(XAS(θ), θ|θ) ≥ Π(θ), and the the second-order condition is satisfied.

To check IR, it is straightforward to show that the researcher’s optimal payoff,

ũ(XAS(θ), θ|θ) is equal to her equilibrium payoff under the conditions of Propo-
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sition 4(1). Thus, IR is satisfied. Moreover, it is straightforward to show that

the researcher’s second-order conditions are satisfied at (x, θ̂) = (XAS(θ), θ).

Hence, (XAS(θ), θ) is the unique solution to the researcher’s problem.

We now show that for c sufficiently small, a(θ) < 0 for all θ. To see this,

first note that by definition, G(θ) satisfies,

G(θ)−XAS(θ) = −θρ(XAS(θ))π + c (16)

Using (16) and the definition of a(θ), we obtain

a(θ) = θπ [−ρ(XAS(θ)) +XAS(θ)ρ′(XAS(θ))] + c

Concavity of ρ implies that the term in square brackets is strictly negative.

Hence, if c is sufficiently small, a(θ) < 0. We now show that a′(θ) < 0:

a′(θ) = G′(θ)− r(θ)X ′AS(θ)− r′(θ)XAS(θ)

= −r′(θ)XAS(θ)

< 0

The first equality follows by definition of a(·). The second equality follows

since, as we’ve already shown, G′(θ) = r(θ)X ′AS(θ), and the inequality follows

since r′(θ) > 0.

Now, note that G̃(XAS(θ), θ) = G(θ) > 0; as it is never optimal for the

researcher to report her type and invest in such a way that G̃(x, θ) < 0, we

may consider a truncated grant function, which can also implement the same

allocation:

G̃(x, θ) =

0, a(θ) + r(θ)x ≤ 0

a(θ) + r(θ)x, a(θ) + r(θ)x ≥ 0

Letting b(θ) = −a(θ)
r(θ)

, we can equivalently write,

52



G̃(x, θ) =

0 x ≤ b(θ)

r(θ)(x− b(θ)) x ≥ b(θ)

Using the definitions of a(θ) and r(θ) along with the fact thatG′(θ) = r(θ)X ′AS(θ),

it is straightforward to show that b′(θ) > 0. Moreover, as already shown,

r(θ) > 0 and for c sufficiently small, a(θ) < 0; hence, if c is small, b(θ) > 0.

Proof of Proposition 8

We must first characterize the optimal menu of contracts when the funder

offers only a prize to all types: g(θ) ≡ 0. The problem faced by the funder is

the following:

max
x(·),v(·)

∫ θ

θ

θρ(x(θ))(W − v(θ))f(θ) dθ (17)

Subject to v(θ) ≥ 0, IR and IC. Note that the IC constraints are given by

(IC-F), (IC-S), and (IC-E). The IR constraint is, for all θ,

u(θ) = θρ(x(θ))(v(θ) + π)− c− x(θ) ≥ Π(θ) = 0

Note that as Π(θ) = 0 (by assumption), for any investment schedule, x(·),
Π(x(θ), 1, θ) ≤ Π(θ) = 0, where Π(·) is as defined in Section 3. More-

over, note that we can equivalently write the IR constraint, Π(x(θ), 1, θ) +

ρ(x(θ))v(θ) ≥ 0. Thus, IR implies v(θ) ≥ 0. Further, the IR constraint im-

plies θρ(x(θ))(v(θ) + π) − c ≥ x(θ) ≥ 0, and hence (IC-E) is satisfied. Thus,

the only relevant IC constraints are (IC-F) and (IC-S).

Also note that since the funder’s payoff is decreasing in u(·), and (IC-F)

implies u′(·) ≥ 0, optimality implies u(θ) = 0. Next, note that (IC-F) can also

be written, u1(θ̂|θ)|θ̂=θ = 0:

d

dθ̂
[θρ(x(θ̂))(v(θ̂) + π)− x(θ̂)− c]|θ̂=θ = 0

53



Equivalently,

d

dθ
[ρ(x(θ))(v(θ) + π)] =

x′(θ)

θ

The expression above implies that (IC-S) is satisfied if and only if x′(·) ≥ 0.

Next, using the definition of u(θ), we can write:

v(θ) ≡ u(θ) + x(θ) + c

θρ(x(θ))
− π (18)

Substituting (18) into (IC-F), we can express (IC-F) as follows:

u′(θ) = ρ(x(θ))(v(θ) + π) =
u(θ) + x(θ) + c

θ
(IC-FP)

Solving the differential equation given by (IC-FP) with initial condition

u(θ) = 0 we obtain,

u(θ) = θ

∫ θ

θ

x(t) + c

t2
dt

Taking expectations over both sides of the expression above (w.r.t. θ),

∫ θ

θ

u(θ)f(θ) dθ =

∫ θ

θ

[∫ θ

θ

x(t) + c

t2
dt

]
θf(θ) dθ

Integrating the RHS by parts yields,

∫ θ

θ

u(θ)f(θ) dθ =

∫ θ

θ

(∫ θ
θ
tf(t) dt

θ2

)
(x(θ) + c) dθ =

∫ θ

θ

h̃(θ)(x(θ) + c)f(θ) dθ

(19)

Finally, replacing v(·) in the funder’s problem by the expression given in

(18), and replacing u(·) using (19), we can express the funder’s problem as,

max
x(·)

∫ θ

θ

[θρ(x(θ))(W + π)− x(θ)− c− h̃(θ)(x(θ) + c)]f(θ) dθ (20)

Subject to x′(θ) ≥ 0. For the moment, we ignore this constraint; we will show
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that it is satisfied if h̃′(·) < 0. Let Xp(·) denote the solution to the funder’s

problem. Pointwise maximization of the maximand in (20) yields the following

first-order condition for each θ ∈ Θ:

θρ′(Xp(θ))(W + π)− 1− h̃(θ) = 0

Differentiating the first-order condition above with respect to θ, it is straight-

forward to show that if h̃′(·) < 0 then X ′p(·) > 0 and hence (IC-S) is satisfied.

We are now able to prove the proposition. Note that under the hypotheses

of Proposition 4(1), the optimal grant-based funding scheme is in fact the

optimal funding scheme. So, Proposition 4(1) implies D(·) > 0, and,

φg(c) =

∫ θ

θ

[θρ(XAS(θ))(W + π)−XAS(θ)− c− ρ(XAS(θ))πh(θ)] f(θ) dθ

As shown above,

φp(c) =

∫ θ

θ

[
θρ(Xp(θ))(W + π)−Xp(θ)− c− h̃(θ)(Xp(θ) + c)

]
f(θ) dθ

By the envelope theorem,

D′(c) =
∂

∂c
φg(c)−

∂

∂c
φp(c) =

∫ θ

θ

−f(θ) dθ−
∫ θ

θ

[−f(θ)−h̃(θ)f(θ)] dθ =

∫ θ

θ

h̃(θ)f(θ) dθ > 0

Proof of Proposition 9

First, applying the implicit function theorem on the definitions of XFB(θ) and

XAS(θ), it is straightforward to show ∂XFB(θ)
∂π

> 0 and ∂XAS(θ)
∂π

> 0 ⇐⇒ θ >

h(θ). To establish (iii), we apply the envelope theorem to the funder’s relaxed

problem, [P ′], and obtain:
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∂φ∗

∂π
=

∫ θ

θ

[ρ(X(θ))(θ − h(θ)) + µ1(θ)θρ(X(θ))] f(θ) dθ

Note that since µ1(θ) ≥ 0 for all θ, it holds:

∂φ∗

∂π
≥
∫ θ

θ

ρ(X(θ))[θ − h(θ)]f(θ) dθ (21)

We will show that the RHS of (21) is strictly positive. Note that since

h′(·) < 0, the term, [θ−h(θ)], is strictly increasing in θ with θ−h(θ) = θ > 0.

So, there are two cases to consider: If [θ− h(θ)] > 0 then [θ− h(θ)] > 0 for all

θ, and part (iii) of the proposition follows immediately. The other possibility

is that [θ − h(θ)] < 0 for θ ∈ [θ, θ∗), and [θ − h(θ)] > 0 for θ ∈ (θ∗, θ), where

θ∗ ∈ (θ, θ). Suppose this is the case. It then follows,

∂φ∗

∂π
≥
∫ θ∗

θ

ρ(X(θ))(θ − h(θ))f(θ) dθ +

∫ θ

θ∗
ρ(X(θ))(θ − h(θ))f(θ) dθ

>

∫ θ∗

θ

ρ(X(θ∗))(θ − h(θ))f(θ) dθ +

∫ θ

θ∗
ρ(X(θ∗))(θ − h(θ))f(θ) dθ

= ρ(X(θ∗))

∫ θ

θ

(θ − h(θ))f(θ) dθ

The strict inequality holds since [θ − h(θ)] < 0 for θ ∈ [θ, θ∗], [θ − h(θ)] > 0

for θ ∈ [θ∗, θ], and since X(·) is non decreasing, and strictly increasing for θ

sufficiently close to θ. Therefore, the first term in the first line is no less than

the corresponding term in the second line, while the second term is strictly

greater than the corresponding term in the second line.

Next, note that
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∫ θ

θ

[θ − h(θ)]f(θ) d(θ) =

∫ θ

θ

θf(θ) d(θ)−
∫ θ

θ

[1− F (θ)] d(θ)

=

∫ θ

θ

θf(θ) d(θ)− (θ − θ) +

∫ θ

θ

F (θ) d(θ)

= θ −
∫ θ

θ

F (θ) d(θ)− (θ − θ) +

∫ θ

θ

F (θ) d(θ)

= θ > 0

Where the third line follows by integrating the first term in the second line by

parts. Hence, ∂φ∗

∂π
> ρ(XAS(θ∗))

∫ θ
θ
(θ − h(θ))f(θ) dθ = ρ(XAS(θ∗))θ > 0.
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