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Abstract

Existing asymptotic theory for inference in nonparametric series estimation typ-

ically imposes an undersmoothing condition that the number of series terms is suf-

ficiently large to make bias asymptotically negligible. However, there is no formally

justified data-dependent method for this in practice. This paper constructs inference

methods for nonparametric series regression models and introduces tests based on the

infimum of t-statistics over different series terms. First, I provide an empirical process

theory for the t-statistics indexed by the number of series terms. Using this result,

I show that test based on the infimum of the t-statistics and its asymptotic critical

value controls asymptotic size with undersmoothing condition. Using this test, we can

construct a valid confidence interval (CI) by test statistic inversion that has correct

asymptotic coverage probability. Allowing asymptotic bias without the undersmooth-

ing condition, I show that CI based on the infimum of the t-statistics bounds coverage

distortions. In an illustrative example, nonparametric estimation of wage elasticity of

the expected labor supply from Blomquist and Newey (2002), proposed CI is close to

or tighter than those based on the standard CI with the possible ad hoc choice of series

terms.

Keywords: Nonparametric series regression, Pointwise confidence interval, Smooth-

ing parameter choice, Specification search, Undersmoothing.
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1 Introduction

I consider the following nonparametric regression model;

yi = g0(xi) + εi,

E(εi|xi) = 0
(1.1)

where {yi, xi}ni=1 is i.i.d. with scalar response variable yi, vector of covariates xi ∈ Rdx , and

g0(x) = E(yi|xi = x) is the conditional mean function. Examples falling into the model (1.1)

include nonparametric estimation of the Mincer equation, gasoline demand, and labor sup-

ply function (see, among many others, Heckman, Lochner and Todd (2006), Hausman and

Newey (1995), Blomquist and Newey (2002), Blundell and MaCurdy (1999), and references

therein). Addressing potential misspecification of the parametric model, nonparametric se-

ries methods have several advantages, as they can easily impose shape restrictions such as

additive separability or concavity, and implementation is easy because the estimation method

is least squares. However, implementation in practice requires a choice of the number of se-

ries terms , K. Estimation and inference may largely depend on its choice in finite samples.

Moreover, required K may vary with different data sets to accommodate the smoothness of

unknown function and different sample sizes, as well as whether the goal is estimation or

inference.

Existing theory for the asymptotic normality and valid inference imposes so-called under-

smoothing (i.e., overfitting) condition that is a faster rate of K than the mean-squared error

(MSE) optimal convergence rates to make bias asymptotically negligible relative to standard

deviation. The undersmoothing condition has been imposed, particularly for valid inference,

in many nonparametric series methods both in theory and in practice, as there is no theory

for bias-corrections available to date. Ignoring asymptotic bias with the undersmoothing

assumption, one can apply the conventional confidence interval (CI) using the standard nor-

mal critical value with estimates and standard errors based on some choice of “sufficiently

large” K (larger than MSE optimal K). However, the asymptotic theory does not provide

specific guidelines for choosing a “large” number of series terms to make bias small in prac-

tice. With given sample sizes n, some possibly ad hoc methods in practice select K̂ = K̃ ·nγ

with some pre-selected K̃ and a specific rate of γ that satisfies the undersmoothing level,

which is generally unknown. However, there is no formally justified data-dependent method

to choose K that gives the desired level of undersmoothing in series regression literature.

Due to these unsatisfactory results for the inference procedure both in theory and prac-

tice, a specification search seems necessary, i.e., search over different series terms K ∈ [K, K̄].

For example, a researcher may use quadratic, cubic, or quartic terms in polynomial regres-
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sion, or try a different number of knots in regression spline to see how the estimate and

standard error change. Moreover, some data-dependent selection rules that are valid for

estimation (such as cross-validation) and some rule-of-thumb methods that are suggested

for inference, also require evaluating estimates with different Ks. If researchers evaluate

different specifications with a different number of series terms and select one specification as

a baseline model, it is not clear how this randomness affects the standard inference.

In this paper, I construct inference methods in nonparametric series regression given the

range of different series terms. I consider the testing problem for a regression function at a

point and introduce tests based on infimum of the studentized t-statistics over different series

terms. To describe intuition heuristically, we may decompose infimum t-statistic as follows

inf
K
|Tn(K)| ≈ inf

K
|N(0, 1) +

Bias(K)

SE(K)
|

where Tn(K), Bias(K), SE(K) denote t-statistic, bias and standard error of the series esti-

mator using K terms, respectively. The test based on infimum t-statistics and searching for

small t-statistics have a similar motivation to the one on which the undersmoothing condi-

tion is theoretically based: using faster rates of K than the optimal MSE rate (using “large”

K that has a small bias and large variance) so that makes the second term, Bias(K)
SE(K)

, small.

Many papers in nonparametric series estimation literature typically suggested to increase

the number of series terms and include additional terms than those cross-validation chooses

for inference (for example, see Newey (2013), Newey, Powell, and Vella (1999)). Although I

do not consider data-dependent methods that satisfy desired undersmoothing rates in this

paper, I formally justify this conventional wisdom by introducing the infimum test statis-

tic and provide an inference method based on its asymptotic distribution as an alternative

data-dependent undersmoothing.

For this, I first provide an empirical process theory for the t-statistics, which I shall call

t-statistic process , indexed by the number of series terms. The main contribution of this

paper is to derive a uniform asymptotic distribution theory for the entire sequences of t-

statistics over a range of K. Existing asymptotic normality of the t-statistic in the literature

holds under a deterministic sequence of K → ∞ as the sample size increases. I impose

an assumption on the set of deterministic sequences Kn where the number of series terms

K ∈ Kn can be indexed by continuous parameter π, a ‘fraction’ of the largest series terms

K̄, and this is important for our purpose to show the weak convergence of the empirical

process.

Using this result, I show that test based on the infimum of the t-statistics and its asymp-

totic critical value control the asymptotic size (null rejection probability) with the under-
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smoothing condition for all Ks in a set. Allowing asymptotic bias without the undersmooth-

ing condition, I also analyze the effect of bias on the asymptotic size of the test. Even

allowing the asymptotic bias, the test based on the infimum t-statistic bound the size dis-

tortions, in the sense that the asymptotic size is bounded above by the asymptotic size of a

test with a t-statistic that has the smallest bias. The infimum t-statistic is less sensitive to

the asymptotic bias: it naturally excludes small K with large bias and selects among some

large Ks under the null.

I also construct a valid pointwise confidence interval for the conditional mean function

that has nominal asymptotic coverage probability by test statistic inversion. The proposed

CI based on infimum test statistic can be easily constructed using estimates and standard

errors for the set of Ks. It is obtained as the union of all CIs by replacing the standard

normal critical value with the critical value from the asymptotic distribution of the infimum

t-statistic. We can approximate the asymptotic critical value using a simple Monte Carlo

or weighted bootstrap method. Similar to the asymptotic size results, I show that proposed

CI bounds the coverage distortions even when asymptotic bias exists. I also find that our

proposed CI performs well in Monte Carlo experiments; coverage probability of the CI based

on the infimum t-statistic is close to the nominal level in various simulation setups. As an

illustrative example, I revisit nonparametric estimation of wage elasticity of the expected

labor supply, as in Blomquist and Newey (2002). Given the table in Blomquist and Newey

(2002), the proposed CI is tighter than the standard CI with the largest number of series

terms as well as close to the standard CI with some “large” K.

This paper also provides a valid CI after selecting the number of series terms. By ad-

justing the conventional normal critical value to the critical value from supremum of the

t-statistics over all series terms, we can adjust uncertainty due to the choice of series terms.

This paper gives a valid post-selection CI that has a correct coverage with any choice of K̂

among some ranges. By enlarging the CI with critical values larger than the normal critical

value, this post-selection CI can accommodate bias, although it does not explicitly deal with

bias problems. We expect this lead to a tighter CI than those based on the Bonferroni-

type critical value, as I incorporate the dependence structure of the t-statistics from our

asymptotic distribution theory.

I also investigate inference methods in partially linear model setup. Focusing on the

common parametric part, choice problems also occur for the number of approximating terms

or the number of covariates in estimating the nonparametric part. Unlike the nonparametric

object of interest that has a slower convergence than n1/2 rate (e.g., regression function or

regression derivative), t-statistics for the parametric object of interest are asymptotically

equivalent for all sequences of K under standard rate conditions K/n → 0 as n → ∞. To
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fully account for the dependency of the t-statistics with the different sequences of Ks in the

partially linear model setup, this requires a different approximation theory than standard

first order approximation results. Using the recent results of Cattaneo, Jansson, and Newey

(2015a), I develop a joint asymptotic distribution of the studentized t-statistics over a dif-

ferent number of series terms. By focusing on the faster rate of K that grows as fast as the

sample size n and using larger variance than the standard variance formula, we can account

for the dependency of t-statistics with different Ks. In this setup, I also propose methods

to construct CIs that are similar to the nonparametric regression setup and provide their

asymptotic coverage properties.

1.1 Related literature

The literature on nonparametric series estimation is vast, but data-dependent series term se-

lection and its impact on estimation or inference are comparatively less developed. Perhaps

the most widely used data-dependent rule in practice is cross-validation. Asymptotic opti-

mality results have been developed (see, for example, Li (1987), Andrews (1991b), Hansen

(2015)) in terms of asymptotic equivalence between integrated mean squared error (IMSE)

of the nonparametric estimator with K̂cv selected by minimizing the cross-validation crite-

rion and IMSE of the infeasible optimal estimator. However, there are two problems with

cross-validation selected K̂cv for the valid inference. First, it is asymptotically equivalent to

selecting K to minimize IMSE, and thus it does not satisfy the undersmoothing condition

needed for asymptotic normality without bias terms. Therefore, a t-statistic based on K̂cv

will be asymptotically invalid for inference. Second, K̂cv selected by cross-validation will

itself be random and not deterministic. Thus, it is not clear whether the t-statistic based

on K̂cv has a standard asymptotic normal distribution which is derived from a deterministic

sequence of K.

Novel recent papers by Horowitz (2014), Chen and Christensen (2015a) develop the state-

of-the-art data-dependent methods in the nonparametric instrumental variables (NPIV) es-

timation (see also other references therein). They develop data-driven methods for choosing

sieve dimension in that resulting NPIV estimators attain the optimal sup-norm or L2 norm

rates adaptive to the unknown smoothness of g0(x). In this paper, we focus on the inference

rather than estimation with the similar issues arise from using cross-validation.

Moreover, this paper is also closely related to the previous methods that conceptually

require increasing K until t-statistic is “small enough”. For example, among many others,

Newey (2013) suggested increasing K until standard errors are large relative to small changes

in objects of interest, Newey, Powell, and Vella (1999) suggested using more terms than
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those cross-validation chooses, and Horowitz and Lee (2012) suggested increasing K until

the integrated variance suddenly increases and then adding an additional term. They discuss

these methods work well in practice and simulation. Using similar ideas, I provide formal

inference methods based on asymptotic distribution results of the infimum test statistic with

appropriate critical values smaller than the standard normal critical values.

Several important papers have investigated the asymptotic properties of series (and

sieves) estimators, including papers by Andrews (1991a), Eastwood and Gallant (1991),

Newey (1997), Chen and Shen (1998), Huang (2003a), Chen (2007), Chen and Liao (2014),

Chen, Liao, and Sun (2014), Belloni, Chernozhukov, Chetverikov, and Kato (2015), and

Chen and Christensen (2015b), among many others. Under i.i.d. or weakly dependent data,

they focused on Sup/L2-norm convergence rates, asymptotic normality of series estimators,

and pointwise/uniform inference on linear/nonlinear functionals under a deterministic se-

quence of K. This paper extends the asymptotic normality of the t-statistic under a single

sequence of K to the uniform central limit theorem of the t-statistic for the sequences of K

over a set, and focuses on a pointwise inference on g0(x), which is an irregular (i.e., slower

than n1/2 rate) and linear functional, under i.i.d. data.

For the kernel-based density or regression estimation, the data-dependent bandwidth

selection problem is well known. Several rule-of-thumb methods and plug-in optimal band-

widths have been proposed (see Härdle and Linton (1994), Li and Racine (2007) for ref-

erences). A recent paper by Calonico, Cattaneo and Farrell (2015) compared higher-order

coverage properties of undersmoothing and explicit bias-corrections and derived coverage op-

timal bandwidth choices in kernel estimation. See also Hall and Horowitz (2013), Schennach

(2015) and references therein for various recent work on related bias issues and nonparamet-

ric inference for the kernel estimator. Unlike the kernel-based methods, little is known about

the statistical properties of data-dependent selection rules (e.g., rates of K̂cv) and asymp-

totic distribution with data-dependent methods in series estimation. In general, the main

technical difficulty arises from the lack of an explicit asymptotic bias formula for the series

estimator (see Zhou, Shen, and Wolfe (1998) and Huang (2003b) for exceptions with some

specific sieves). Thus, it is difficult to derive an asymptotic theory for the bias-correction,

or some plug-in formulas compare with kernel estimation.

An important recent paper that is concurrent with this paper, Armstrong and Kolesár

(2015) considered inference methods in kernel estimation with bandwidth snooping. Fo-

cusing on the supremum of the t-statistics over the bandwidths, they developed confidence

intervals that are uniform in bandwidths. Considering supremum statistic is motivated by

the sensitivity analysis as a correction for the multiple testing problems. Moreover, consider-

ing different bandwidths and the test based on the supremum of the studentized t-statistics
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has been used to achieve adaptive inference procedures when smoothness of the function is

unknown (See Horowitz and Spokoiny (2001), and also Armstrong (2015)). See Appendix C

for the similar coverage results (uniform in series terms) as in Armstrong and Kolesár (2015).

The main focus of this paper is to analyze the undersmoothing assumption with their effect

on the size of the tests and to develop tests which can control size distortions even allowing

large asymptotic bias, which can be crucial in series estimation context.1

The outline of the paper is as follows. I first introduce basic nonparametric series regres-

sion setup in Section 2. In Section 3, I provide an empirical process theory for the t-statistic

sequences over a set. Section 4 introduces infimum of the t-statistic and describes the asymp-

totic null distributions of the test statistic. Then, I provide the asymptotic size results of

the test and implementation procedure for the critical value. Section 5 introduces CIs based

on the infimum test statistic and provides their coverage properties. Section 6 analyzes valid

post model selection inference in this setup. Section 7 extends our inference methods to the

partially linear model setup. Section 8 includes Monte Carlo experiments in various setups.

Section 9 illustrates proposed inference methods using the nonparametric estimation of wage

elasticity of the expected labor supply, as in Blomquist and Newey (2002), then Section 10

concludes. Appendix A and B include all proofs, figures, and tables. Appendix C discuss

inference procedures based on the supremum of the t-statistics.

1.2 Notation

I introduce some notation will be used in the following sections. I use ||A|| =
√
tr(A′A) for

the Euclidean norm. Let λmin(A), λmax(A) denote the minimum and maximum eigenvalues

of a symmetric matrix A, respectively. op(·) and Op(·) denote the usual stochastic order

symbols, convergence in probability and bounded in probability.
d−→ denotes convergence

in distribution and ⇒ denotes weak convergence. I use the notation a ∧ b = min{a, b},
a∨ b = max{a, b}, and denote bac as the largest integer less than the real number a. For two

sequences of positive real numbers an and bn, an . bn denotes an ≤ cbn for all n sufficiently

large with some constant c > 0 that is independent of n. an � bn denotes an . bn and

bn . an. For a given random variable {Xi} and 1 ≤ p < ∞, Lp(X) is the space of all

Lp norm bounded functions with ||f ||Lp = [E||f(Xi)||p]1/p and `∞(X) denotes the space of

all bounded functions under sup-norm, ||f ||∞ = supx∈X |f(x)| for the bounded real-valued

functions f on the support X . Let also R+ = {x ∈ R : x ≥ 0}, R+,∞ = R+ ∪ {+∞},
R[+∞] = R ∪ {+∞} and R[±∞] = R ∪ {+∞} ∪ {−∞}.

1We may also consider other types of test statistics, for example, “median” or “average” of the t-statistics.
Any types of test statistics that are continuous transformation of joint t-statistics with its appropriate critical
value leads to the tests that control the asymptotic size with undersmoothing.
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2 Model framework and estimation

I first introduce the nonparametric series regression setup in the model (1.1). Given a random

sample {yi, xi}ni=1, we are interested in the conditional mean g0(x) = E(yi|xi = x) at a point

x ∈ X ⊂ Rdx . All the results derived in this paper are the pointwise inference in x and I will

omit the dependence on x if there is no confusion.

We consider the sequence of approximating model indexed by the number of series terms

K ≡ K(n). Let ĝK(x) be an estimator of g0(x) using the first K vectors of approximating

functions PK(x) = (p1(x), · · · , pK(x))′ from basis functions p(x) = (p1(x), p2(x), · · · )′. Stan-

dard examples for the basis functions are power series, Fourier series, orthogonal polynomials

(e.g., Hermite polynomials), or splines with evenly sequentially spaced knots.

Series estimator ĝK(x) is then obtained by standard least square (LS) estimation of yi

on regressors PKi

ĝK(x) = PK(x)′β̂K , β̂K = (PK′PK)−1PK′Y (2.1)

where PKi ≡ PK(xi) = (p1(xi), p2(xi), · · · , pK(xi))
′, PK = [PK1, · · · , PKn]′, Y = (y1, · · · yn)′.

ĝK(x) is an estimator of the best linear L2 approximation for g0(x), i.e., PK(x)′βK where

βK is defined as the best linear projection coefficients βK ≡ (E[PKiP
′
Ki])

−1E[PKiyi]. Define

the approximation error using K series terms as rK(x) = g0(x) − PK(x)′βK for x ∈ X .

Also define rKi ≡ rK(xi), pi ≡ p(xi) = (p1i, p2i, · · · , )′. We can write the model using K

approximating terms as the following projection model

yi = P ′KiβK + εKi, E[PKiεKi] = 0 (2.2)

where εKi ≡ rKi + εi.

For simplicity of notation, I define the true regression function at a point as θ0 ≡ g0(x).

Let θ̂K ≡ ĝK(x) and θK ≡ PK(x)′βK . Define the series variance

VK ≡ VK(x) = PK(x)′Q−1
K ΩKQ

−1
K PK(x),

QK = E(PKiP
′
Ki), ΩK = E(PKiP

′
Kiε

2
i )

(2.3)

where Q−1
K ΩKQ

−1
K is the conventional asymptotic variance formula for the LS estimator β̂K .

We use notion of testing setup and consider two-sided testing for θ

H0 : θ = θ0, H1 : θ 6= θ0. (2.4)
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The studentized t-statistic for H0 is

Tn(K, θ0) ≡
√
n(ĝK(x)− g0(x))

V
1/2
K

=

√
n(θ̂K − θ0)

V
1/2
K

. (2.5)

Under standard regularity conditions (will be discussed in Section 3) including an under-

smoothing rate for deterministic sequence K → ∞ as n → ∞, the asymptotic distribution

of the t-statistic is well known

Tn(K, θ0)
d−→ N(0, 1).

See, for example, Andrews (1991a), Newey (1997), Belloni et al. (2015), Chen and Chris-

tensen (2015b) among many others. In the next section, I formally develop an asymptotic

distribution theory of Tn(K, θ0) over a set Kn.

3 Asymptotic distribution

3.1 Weak convergence of t-statistic process

In this section, I provide an asymptotic theory of the joint t-statistics over a set. First,

I introduce following set Kn to construct empirical process theory of the t-statistics over

K ∈ Kn that can be indexed by the continuous and fixed parameter π, which is a ‘fraction’

of the largest series term K̄.

Assumption 3.1. (Set of number of series terms) Let Kn as

Kn = {K : K ∈ [πK̄, K̄]}

where K = πK̄ with a fixed constant π ∈ Π = [π, 1], π > 0, and K̄ ≡ K̄(n)→∞ as n→∞.

Assumption 3.1 considers a range of the number of series terms and considers an infinite

sequence of approximations indexed by π ∈ Π. Note that Kn is indexed by sample size n

as I will impose rate conditions for the largest series term K̄ in the next Assumption 3.2.

Together with the Assumption 3.2 below, set Kn in Assumption 3.1 considers the sequence

of models that has the same rate of K, i.e., K � K ′ for any K,K ′ ∈ Kn. Note that

standard inference methods in nonparametric regression setup typically consider a singleton

set Kn = {K} with K →∞ as n→∞.

9



Next, define the following empirical process, T ∗n(π, θ), as

T ∗n(π, θ) ≡ Tn(bπK̄c, θ), π ∈ Π, (3.1)

where Tn(K, θ) is defined in (2.5), i.e., T ∗n(π, θ) is a t-statistic evaluated at the parameter θ

using bπK̄c number of series terms. Note that T ∗n(π, θ) is indexed by π ∈ Π and is a step

function of π.

Also, I impose mild regularity conditions that are standard in nonparametric series re-

gression literature and are satisfied by well-known basis functions. For each K ∈ Kn, de-

fine ζK ≡ supx∈X ||PK(x)|| as the largest normalized length of the regressor vector and

λK ≡ (λmin(QK))−1/2 for K ×K design matrix QK = E(PKiP
′
Ki).

Assumption 3.2. (Regularity conditions)

(i) {yi, xi}ni=1 are i.i.d random variables satisfying the model (1.1).

(ii) supx∈X E(ε2
i |xi = x) <∞, infx∈X E(ε2

i |xi = x) > 0, and supx∈X E(ε2
i {|εi| > c(n)}|xi =

x)→ 0 for any sequence c(n)→∞ as n→∞.

(iii) For each K ∈ Kn, as K →∞, there exists η and cK , `K such that

sup
x∈X
|g0(x)− PK(x)′η| ≤ `KcK , E[(g0(xi)− PK(xi)

′η)2]1/2 ≤ cK .

(iv) supK∈Kn λK . 1.

(v) supK∈Kn ζK
√

(logK)/n(1 +
√
K`KcK) + `KcK → 0 as n→∞.

I closely follow assumptions in recent papers by Belloni et al. (2015), Chen and Chris-

tensen (2015b) and impose rate conditions ofK uniformly overKn. Other standard regularity

conditions in the literature (e.g., Newey (1997)) can also be used here. Assumption 3.2(ii)

imposes moment conditions and standard uniform integrability conditions. ζK , cK , `K in As-

sumption 3.2(iii)-(v) are satisfied with various basis functions. For example, if the support X
is a cartesian product of compact connected intervals (e.g. X = [0, 1]dx) and the probability

density of xi is bounded below zero, then ζK . K for power series and other orthogonal

polynomial series, and ζK .
√
K for regression splines, Fourier series, and wavelet series.

cK and `K in Assumption 3.2(iii) vary with the different basis and can be replaced by series

specific bounds. For example, if g0(x) belongs to the Hölder space of smoothness p, then

cK . K−p/dx , `K . K for power series, cK . K−(p∧s0)/dx , `K . 1 for spline and wavelet series

10



of order s0 (see Newey (1997), Chen (2007), Belloni et al. (2015), and Chen and Christensen

(2015b) for more discussions on cK , `K , ζK with various sieve bases).

When the probability density function of xi is uniformly bounded above and bounded

away from zero over the compact support X and orthonormal basis is used, then λK . 1

(see, for example, Proposition 2.1 in Belloni et al. (2015) and Remark 2.2 in Chen and

Christensen (2015b)). The rate conditions in Assumption 3.2(v) can be replaced by the

specific bounds of ζK , cK , `K . For example, for the power series, Assumption 3.2(v) reduced

to supK∈Kn
√
K2(logK)/n(1 + K3/2−p/dx) + K1−p/dx =

√
K̄2(log K̄)/n(1 + K̄3/2−p/dx) +

K̄1−p/dx → 0 under Assumption 3.1.

For notational simplicity, it is convenient to define Pπ(x) ≡ PbK̄πc(x), Pπi ≡ Pπ(xi) =

PbK̄πci and rπ ≡ rπ(x) = rbK̄πc(x) under Assumption 3.1. The series variance can be defined

as Vπ ≡ Vπ(x) = ||Ω1/2
π Q−1

π Pπ(x)||2, where Ωπ = E(PπiP
′
πiε

2
i ), Qπ = E(PπiP

′
πi). Under

Assumptions 3.1 and 3.2, the t-statistic process under H0 can be decomposed as follows

T ∗n(π, θ0) =
1√
n

n∑
i=1

Pπ(x)′Pπiεi

V
1/2
π

−
√
nV −1/2

π rπ + op(1), π ∈ Π (3.2)

where the first term converges to a standard normal distribution for any π ∈ Π, and the

second term does not necessarily converge to 0 even with large sample sizes due to approxima-

tion errors. We want to show weak convergence of the empirical process {T ∗n(π, θ0) : π ∈ Π}.
This empirical process has a covariance kernel

Σn(π1, π2) ≡
Pπ1(x)′E(Pπ1iP

′
π2i
ε2
i )Pπ2(x)

V
1/2
π1 V

1/2
π2

, π1, π2 ∈ Π. (3.3)

We expect that the limiting Gaussian process has a covariance function as a limit of the

sequence of covariance functions Σn(π1, π2), which is assumed to exist by the following as-

sumption. I also impose rate restrictions on series variances.

Assumption 3.3.

(i) Σ(π1, π2) = limn→∞Σn(π1, π2) exists and Σ(π1, π2) < 1 for any π1, π2 ∈ Π.

(ii) limn→∞ V
1/2
π (K̄π)−η = c uniformly in π ∈ Π for some constants c, η > 0.

Assumption 3.3(i) guarantees well-defined covariance function for the tight Gaussian

process in `∞(Π) and a positive definite variance-covariance matrix for its finite dimensional

limit distributions. Assumption 3.3(ii) may be stronger than necessary, but required to

prove weak convergence of the t-statistic process. Assumption 3.3(ii) requires that series
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variance is increasing in K at some rates uniformly in K ∈ Kn under Assumption 3.1, i.e.,

limn→∞ V
1/2
K K−η = c. This assumption holds with η = 1/2 when we consider a point x ∈ X

where V
1/2
K ∝ K1/2. Moreover, Assumption 3.3(ii) is a sufficient condition for Assumption

3.3(i) under homoskedasticity. Under conditional homoskedasticity, E(ε2
i |xi = x) = σ2, the

limit of the covariance kernel Σ(π1, π2) reduces to the simple form

Σ(π1, π2) = lim
n→∞

V
1/2
π1∧π2

V
1/2
π1∨π2

(3.4)

for any π1, π2 ∈ Π, i.e., the covariance kernel is the limit of the ratio of standard deviations. If

we further assume Assumption 3.3(ii), then Σ(π1, π2) = (π1∧π2
π1∨π2 )η. With η = 1, this coincides

with the covariance kernel of a scaled Brownian motion process Z(π)/
√
π, π ∈ Π.

Next, I define the asymptotic bias for the sequence of models indexed by π as the limit

of the second term in (3.2)

ν(π) ≡ lim
n→∞

−
√
nV −1/2

π rπ. (3.5)

Under the following undersmoothing condition, ν(π) = 0 for all π ∈ Π. To assess

the effect of bias on inference, we will consider a distinction between results imposing the

undersmoothing condition or not.

Assumption 3.4. (Undersmoothing) sup
K∈Kn

|
√
nV
−1/2
K `KcK | → 0 as n→∞.

When we use explicit bounds `KcK . K−p/dx for spline or wavelet series, Assumption 3.4

reduces to sup
K∈Kn

√
nV
−1/2
K K−p/dx = o(1). When we further consider V

1/2
K ∝ K1/2, Assump-

tion 3.1 and 3.4 together imply that Assumption 3.4 is provided by
√
nK̄1/2−p/dx → 0 for

power series.

Next theorem is our first main result which provides uniform central limit theorem of the

t-statistic process for nonparametric LS series estimation.

Theorem 3.1. Under Assumptions 3.1, 3.2, 3.3 and supπ |ν(π)| <∞,

T ∗n(π, θ0)⇒ T(π) + ν(π), π ∈ Π, (3.6)

where T(π) is a mean zero Gaussian process on `∞(Π) with covariance kernel E(T(π1)T(π2)) =

Σ(π1, π2) for any π1, π2 ∈ Π, and ν(π) is defined in (3.5). In addition, if Assumption 3.4 is

12



satisfied, then

T ∗n(π, θ0)⇒ T(π), π ∈ Π. (3.7)

Theorem 3.1 provides weak convergence of the t-statistic process T ∗n(π, θ0), π ∈ Π. This is

an asymptotic theory for the entire sequence of t-statistics Tn(K, θ0), K ∈ Kn. The t-statistic

process converges weakly to a mean zero Gaussian process T(π) plus the asymptotic bias

ν(π). Proof of Theorem 3.1 needs to verify a uniform-entropy condition and apply empirical

process theory in van der Vaart and Wellner (1996, Theorem 2.11.22).

Remark 3.1 (Rate conditions). Note that the asymptotic bias |ν(π)| = 0 if K̄ increases

faster than the optimal MSE rate (undersmoothing). 0 < |ν(π)| < ∞ if K̄ increases at the

optimal MSE rate, and |ν(π)| = +∞ if K̄ increases slower than the optimal MSE rate (over-

smoothing). Theorem 3.1 does not allow oversmoothing rates as we require supπ |ν(π)| <∞.

Assumption 3.1 does not consider different rates of K satisfying asymptotic normality of se-

ries estimators, however, these are the class of sequences to be able to provide uniform

central limit theorem of the t-statistic process. As studentized t-statistic is normalized by

the standard deviation V
1/2
K which may increase differently with different rates of K, two

t-statistics with different rates of K can be asymptotically independent, thus hard to in-

corporate dependency (see discussions in Section 3.2 with alternative Kn allowing different

rates of K).

Remark 3.2 (Other functionals). Here, I focus on the leading example, where θ0 = g0(x)

for some fixed point x ∈ X , but I may consider other linear functionals θ0 = a(g0(·)), such

as the regression derivates a(g0(x)) = d
dx
g0(x). All the results in this paper can be applied to

irregular (slower than n1/2 rate) linear functionals with estimators θ̂ = a(ĝK(x)) = aK(x)′β̂K

and appropriate transformation of basis aK(x) = (a(p1(x), · · · , a(pK(x)))′. While verification

of previous results for regular (n1/2 rate) functionals, such as integrals and weighted average

derivative, is beyond the scope of this paper, I examine similar results for the partially linear

model setup in Section 7.

3.2 Asymptotic normality with different rates

Next, we provide different asymptotic distribution of the sequence of t-statistics with an

alternative set Kn constructed to allow different rates of Ks. A following alternative set

assumption allows for optimal mean squared error rates of K as well as oversmoothing rates

which increase slower than the optimal MSE rates.

Assumption 3.5. (Alternative set with different rates) Let Kn as

13



Kn = {K = K1, · · · , Km, · · · , K̄ = KM} where Km ≡ bτnφmc for constant τ > 0,

0 < φ1 < φ2 < · · · < φM , and fixed M . Define asymptotic bias for the sequence

of models as ν(m) ≡ − lim
n→∞

√
nV
−1/2
Km

rKm. Assume that the largest model K̄ satisfies
√
nV
−1/2

K̄
`K̄cK̄ → 0 as n→∞.

Assumption 3.5 can consider rates of K from oversmoothing (|ν(m)| = +∞) to under-

smoothing (|ν(m)| = 0) with different φm. Here, K can increase slower than the optimal

MSE rates and K̄ satisfies undersmoothing rates. Assumption 3.5 considers a broader range

of Ks than the Assumption 3.1 as alternative set allows slower than optimal MSE rates.

Together with Assumption 3.2, there exist explicit rate restrictions on φm uniformly over m

to guarantee an asymptotic normality of each single t-statistic. Undersmoothing assumption

for the K̄, i.e. ν(M) = 0, is a modeling device considering a broad range of K and large

enough K̄ so that satisfy undersmoothing.

Under Assumption 3.5, joint t-statistics do not converge in distribution to a bounded

random vector if any of the elements |ν(m)| = +∞ with oversmoothing sequences. If ν(m) =

±∞ for some m, then it can be shown that corresponding t-statistic Tn(Km, θ0) diverges in

probability to ±∞. This matters when we obtain the asymptotic distribution of the test

statistic that is some continuous transformation of the joint t-statistics because continuous

mapping theorem cannot be directly applied. This technical difficulty does not arise when

we consider t-statistics centered at the true conditional mean function (θ0) with relative bias

(rKm) and standard error (
√
VKm/n): joint t-statistics converge in distribution to a mean

zero normal random vector. However, allowing |ν(m)| = +∞ is important for our analysis

to consider asymptotic bias and undersmoothing (and oversmoothing) condition with their

effects on inference.

To obtain the asymptotic distribution under supm |ν(m)| = +∞, we provide formal proofs

which combine arguments in inference on CIs for the parameters in moment inequality liter-

ature as in Andrews and Guggenberger (2009). For this, we define the continuous function

on the extended real space as follows; S : A → B is continuous at t ∈ A if t′ → t for t ∈ A
implies S(t′)→ S(t) for any set A.

Theorem 3.2. Under Assumptions 3.2 and 3.5, following holds for any continuous function

S(t) at all t ∈ RM−1
[±∞] × R,

S(Tn(θ0))
d−→ S(Z + ν)

where Tn(θ) = (Tn(K1, θ), · · · , Tn(KM , θ))
′, Z = (Z1, · · · , ZM)′ ∼ N(0,Σ), ν = (ν(1), · · · ,

ν(M))′ are M × 1 vectors provided that Σ exists and is a finite positive definite matrix
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with Σjl = limn→∞Σjl,n, and Σjl,n =
PKj (x)′E(PKjiP

′
Kli

ε2i )PKl (x)

V
1/2
Kj

V
1/2
Kl

. If ν(m) = ±∞, then the

corresponding element of Z + ν equals ±∞.

Note that we do not require either Assumption 3.4 (undersmoothing) or supm |ν(m)| <
∞ in Theorem 3.2. Variance-covariance matrix Σ is similarly defined as in Theorem 3.1.

Moreover, if V
1/2
K � Kη at some point x with η > 0, then for any j < l, Σjl,n ≤ C

V
1/2
Kj

V
1/2
Kl

for

some constant C > 0 by Assumption 3.2(ii) and the upper bound converges to 0 as n → 0

by Assumption 3.5, thus Σjl,n → 0 and Σ = IM .

Remark 3.3 (Rate conditions (continued)). Note that Assumption 3.5 only considers finite

sequences, i.e., |Kn| = M . Assumption 3.5 is useful to consider the effect of bias on inference

problems allowing a broader range of K including oversmoothing rates (see Section 4 for

formal results). On the other hand, Assumption 3.1 considers sequences of K with the

same rates which only differ in constant π. Thus, Theorem 3.1 gives the joint asymptotic

distribution of t-statistics that has either zero bias for all K ∈ Kn or non-zero bounded bias

for all K ∈ Kn.

4 Test statistic

In this section, I introduce an infimum test statistic and analyze its asymptotic null distri-

bution based on Theorem 3.1 and 3.2. Then, I provide an asymptotic size result of the tests,

and methods to obtain critical values for inference procedures.

I consider following test statistic

Inf Tn(θ) ≡ inf
K∈Kn

|Tn(bKc, θ)|, (4.1)

where either Assumption 3.1 or Assumption 3.5 can be used for Kn. Note that Inf Tn(θ) =

infπ∈Π |T ∗n(π, θ)| under Assumption 3.1 and Inf Tn(θ) = infm=1,···,M |Tn(Km, θ)| under As-

sumption 3.5.

As I denoted in the introduction, there are several reasons to consider Inf Tn(θ) in the

series regression context. First of all, small t-statistic centered at the true θ0 corresponds

to the approximation with a certain choice of series terms that has a small bias and large

variance, which is good for inference similar to what undersmoothing assumption does by

eliminating asymptotic bias, theoretically. Moreover, this is also closely related to some

rule-of-thumb methods suggested by several papers to choose undersmoothed K (see, for

example, Newey (2013), Newey, Powell and Vella (1999)).
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4.1 Asymptotic distribution of the test statistic

Asymptotic null limiting distribution of the infimum test statistic follows immediately from

Theorem 3.1 and 3.2.

Corollary 4.1. 1. Under Assumptions 3.1, 3.2, 3.3 and supπ |ν(π)| <∞, Inf Tn(θ0)
d−→

infπ∈[π,1] |T(π) + ν(π)|, where T(π) is the mean zero Gaussian process defined in Theo-

rem 3.1. In addition, if Assumption 3.4 holds, then Inf Tn(θ0)
d−→ ξinf ≡ infπ∈[π,1] |T(π)|.

2. Under Assumptions 3.2 and 3.5, Inf Tn(θ0)
d−→ infm=1,···,M |Zm + ν(m)|, where Zm is

an element of M × 1 normal vector Z ∼ N(0,Σ) and ν = (ν(1), · · · , ν(M))′ is defined

in Theorem 3.2.

Corollary 4.1.1 derives the asymptotic null limiting distribution of Inf Tn(θ) underKn with

same rates of K (Assumption 3.1) and Corollary 4.1.2 provides the asymptotic distribution

under alternative Kn with different rates of K (Assumption 3.5).

Whether some asymptotic bias |ν(m)| are unbounded or not, Corollary 4.1.2 shows that

Inf Tn(θ0) converge in distribution to the bounded random variable. Under the null H0,

Inf Tn(θ) exclude all small Ks corresponding to oversmoothing rates (where the bias is of

larger order than the standard error) and select among large Ks with optimal MSE rates

and undersmoothing rates (where the bias is of smaller order), asymptotically. Using this

Corollary, I discuss the effect of asymptotic bias on the inference in Section 4.2 (for the size

results) and Section 5 (for the coverage results).

4.2 Asymptotic size

I start by defining critical value cinf
1−α as (1− α) quantile of the asymptotic null distribution

ξinf = infπ∈[π,1] |T(π)| in Corollary 4.1.1, i.e., solves

P ( inf
π∈[π,1]

|T(π)| > cinf
1−α) = α (4.2)

for 0 < α < 1/2.2

The asymptotic null distribution, ξinf , can be completely defined by covariance kernel of

the limiting Gaussian process T(π) in Theorem 3.1. In the special case where Assumption

3.3(ii) holds with η = 1 under homoskedasticity (as discussed below the equation (3.4)),

2Without imposing the undersmoothing assumption, asymptotic distribution of Inf Tn(θ0) in Corollary
4.1.1 also depend on asymptotic bias ν(π) as well. If ν(π) can be replaced by some estimates ν̂(π), then
the critical value from infπ∈Π |T(π) + ν̂(π)| can be used. We do not pursue this approach as it is a difficult
problem beyond the scope of this paper.
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infπ∈[π,1] |T(π)| can be approximated by infπ∈[π,1] |Z(π)/
√
π| with a Brownian motion Z(π).

Then the critical value can be tabulated as a function of π = K/K̄ with the smallest K and

the largest K̄, which can be viewed as an analogous result in Armstrong and Kolesár (2015)

with the uniform Kernel (See Section 2 of Armstrong and Kolesár (2015)). In general, the

limiting Gaussian process can not be written as some transformation of Brownian motion,

so that the asymptotic critical value cannot be tabulated. However, critical values can be

obtained by standard Monte Carlo simulation method or by the weighted bootstrap method

and will be discussed in Section 4.3.

With abuse of notation, I also use cinf
1−α as (1 − α) quantile of the infm=1,···,M |Zm| if

Corollary 4.1.2 is used under Assumption 3.5. Next, I define z1−α/2 as (1 − α/2) quantile

of the standard normal distribution function, which solves P (|Z| > z1−α/2) = α, where

Z ∼ N(0, 1). Next Corollary provides the asymptotic size of the tests based on Inf Tn(θ)

follows from the Corollary 4.1.

Corollary 4.2. 1. Under Assumptions 3.1, 3.2, 3.3 and 3.4, following holds with critical

value cinf
1−α defined in (4.2) and the normal critical value z1−α/2,

lim sup
n→∞

P (Inf Tn(θ0) > cinf
1−α) = α, lim sup

n→∞
P (Inf Tn(θ0) > z1−α/2) ≤ α. (4.3)

2. Suppose Assumptions 3.1, 3.2, and 3.3 hold. If supπ |νπ| <∞, then following inequality

holds

lim sup
n→∞

P (Inf Tn(θ0) > cinf
1−α) ≤ F (cinf

1−α, inf
π
|ν(π)|), (4.4)

lim sup
n→∞

P (Inf Tn(θ0) > z1−α/2) ≤ F (z1−α/2, inf
π
|ν(π)|), (4.5)

where F (c, |ν|) = 1 − Φ(c − |ν|) + Φ(−c − |ν|) with the standard normal cumulative

distribution function Φ(·).

3. Under Assumptions 3.2 and 3.5, following holds

lim sup
n→∞

P (Inf Tn(θ0) > cinf
1−α) ≤ F (cinf

1−α, 0), (4.6)

lim sup
n→∞

P (Inf Tn(θ0) > z1−α/2) ≤ α. (4.7)

Under Assumption 3.1 (same rates of K), Corollary 4.2.1 shows that the tests based

on Inf Tn(θ) asymptotically control size assuming all K ∈ Kn satisfy the undersmoothing

condition. As Inf Tn(θ0) ≤ |Tn(K, θ0)| and |Tn(K, θ0)| d→ |N(0, 1)| for any single K ∈
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Kn, the test based on Inf Tn(θ) using normal critical value also controls the asymptotic

size, but conservative. Without undersmoothing assumption, Corollary 4.2.2 shows that

the asymptotic size is bounded above by the asymptotic size of a single t-statistic with the

smallest asymptotic bias infπ |ν(π)|. Note that F (c, |ν|) is a monotone decreasing in c and

increasing in |ν|. See also Hall and Horowitz (2013), Hansen (2014) for the similar function

and Figure 1 for the plots of F (·, ·) as a function of |ν| with some different c.

Note that cinf
1−α ≤ z1−α/2, so that F (z1−α/2, 0) = α ≤ F (cinf

1−α, 0). Moreover, the upper

bounds of the asymptotic size can be small if the smallest bias infπ |ν(π)| is small. For

example, when cinf
1−α = 1.5, F (cinf

1−α, infπ |ν(π)|) = 0.13 for infπ |ν(π)| = 0. (4.5) also shows

that the test based on Inf Tn(θ0) with normal critical value controls size asymptotically if

the smallest bias is 0.

Under Assumption 3.5 (different rates of K), Corollary 4.2.3 shows that asymptotic size

of the tests based on Inf Tn(θ) is bounded above even when we allowing ‘large’ asymptotic

bias (|ν(m)| =∞) for several Ks in Kn.3

Remark 4.1 (Largest K). Although, there exist rate restrictions for K̄ by Assumption 3.2

to be used for the asymptotic normal approximation, formal guidance or data-dependent

results for the range of Kn = [K, K̄] are beyond the scope of this paper. Nevertheless,

the test based on Inf Tn(θ0) and its asymptotic critical value cinf
1−α may have better power

compare with the test based on Tn(K, θ0) with the normal critical value for some large K.

Suppose that Inf Tn(θ0) = |Tn(K, θ0)| for some large K (say K̄) under the null, then the test

based on Inf Tn(θ0) may have better power as this test compares with the smaller critical

value than the normal critical value.

Also, note that the asymptotic size result in (4.7) relies on the inequality Inf Tn(θ0) ≤
|Tn(K̄, θ0)| and the fact that Tn(K̄, θ0)

d−→ N(0, 1) under Assumption 3.5. But, theory

can provide the bound of the asymptotic size in (4.7) as F (z1−α/2, infm |ν(m)|) without any

undersmoothing conditions on K ∈ Kn. Asymptotic distribution result in Corollary 4.1.2

is still valid as long as infm |ν(m)| is bounded. If we know (a priori) that K̄ satisfies the

undersmoothing condition and others not, then there’s no point of searching over different

3If we further assume V
1/2
K � Kη, η > 0 for all K ∈ Kn then Σ = IM and t-statistics are asymptot-

ically independent (see discussions below Theorem 3.2). Then, we can get asymptotic size of the test as∏M
m=1 F (cinf

1−α, |ν(m)|). The asymptotic size is not affected by Km such that |ν(m)| =∞ since F (c,∞) = 1
for any constant c > 0. Further, suppose that the last M1 number of Ks satisfy undersmoothing conditions
and the others satisfy oversmoothing rates, i.e., |ν(m)| = ∞ for m = 1, · · · ,M −M1 and |ν(m)| = 0 for
the others. Then, the asymptotic size is equal to αM1/M , as cinf

1−α = z1−α1/M/2 follows from Theorem 3.2
and Σ = IM . In this special case, the asymptotic size is a decreasing function of the fraction of number of
undersmoothing sequences M1/M , and is equal to α when |ν(m)| = 0 for all m, similar to Corollary 4.2.1.
Using infimum t-statistic and larger critical value z1−α1/M1/2 (which is equal to the standard normal critical
value when M1 = 1) controls asymptotic size in this particular case, but this is not practically useful.
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K; we may just use K̄ for the inference. This may work well if K̄ coincides with some

size-optimal sequence K∗(n) = arg minK |P (Tn(K, θ0) > z1−α/2) − α|. However K∗(n) is

unknown, so the choice of K̄ can be ad hoc in practice.

Remark 4.2 (Power of the test). Although Inf Tn(θ) leads to the tests that control the

asymptotic size or bound the size distortions, one reasonable concern is that possible low

power property of the test compare with the other statistics (e.g., the supremum of the

t-statistics). Investigating local asymptotic power comparisons of the level α test based

on several different statistics, or some optimal property of the tests in this nonparametric

regression context is important, but these are beyond the scope of this paper. I discuss the

length of CIs based on inverting an infimum test statistic in Section 5. I also report the

length of proposed CIs (Figures 5-6) and power of the tests (Figure 7) in Section 8 with

various simulation setups.

The goal of this paper is to develop tests which can control size distortions even allowing

large asymptotic bias for several different series approximations. I want to emphasize that

bias issues can severely affect commonly used inference procedures (i.e., coverage of standard

CI) in series estimation. For example, high-order polynomials can be highly sensitive to the

choice of series terms. Using low-order polynomials or regression splines can help to reduce

bias issues, but does not solve bias problem completely. Moreover, a test based on the other

transformation of the t-statistics can be sensitive to the bias problems, thus may lead to

size distortions of the tests. For example, see Appendix C for the inference based on the

supremum test statistic under Assumption 3.5.

4.3 Critical values

In this section, I discuss detail descriptions to approximate critical values defined in (4.2).

Here, I suggest using simple simulation methods to obtain critical values. To make implemen-

tation procedures simple, I impose following set assumption and conditional homoskedastic-

ity.

Assumption 4.1. (Set of finite number of series terms)

Kn = {K ≡ K1, · · · , Km, · · · , K̄ ≡ KM} where Km = πmK̄ for constant πm, 0 < π =

π1 < π2 < · · · < πM = 1, fixed M , and K̄ = K̄(n)→∞ as n→∞.

Assumption 4.2. (Conditional homoskedasticity) E(ε2
i |xi = x) = σ2.

Assumption 4.1 is a finite dimensional version of Assumption 3.1 and is different with an

alternative set (Assumption 3.5) that considers a different rate of Ks. Hereafter, without loss
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of generality, we assume K1 < K2 < · · · < KM and they are all integers. In finite samples,

we only consider finite set Kn, so the difference between Assumption 4.1 and 3.5 only matters

in large samples. Conditional homoskedasticity assumption is only for a simpler implemen-

tation. Based on the general covariance structure defined in Theorem 3.1 and 3.2, we can

construct a variance-covariance matrix using its sample analogs under the heteroskedastic

error.

By Theorem 3.1, following finite dimensional convergence of the t-statistics holds under

the Assumptions 3.2, 3.4, 4.1, and 4.2

(Tn(K1, θ0), · · · , Tn(KM , θ0))′
d−→ Z = (Z1, · · · , ZM)′, Z ∼ N(0,Σ), (4.8)

where Σ is a variance-covariance matrix, Σjl = limn→∞ V
1/2
Kj

/V
1/2
Kl

for any j and l, provided

that Σ exists and is a finite positive definite matrix. (4.8) also holds under same assumptions

as in Theorem 3.2. Note that the limiting distribution does not depend on θ0 and variance-

covariance matrix Σ can be consistently estimated by its sample counterparts. This requires

estimators of the variance VK that are consistent uniformly over K ∈ Kn. Define least square

residuals as ε̂Ki = yi − P ′Kiβ̂K , and let V̂K as the simple pluig-in estimator for VK

V̂K = PK(x)′Q̂−1
K Ω̂KQ̂

−1
K PK(x),

Q̂K =
1

n

n∑
i=1

PKiP
′
Ki, Ω̂K =

1

n

n∑
i=1

PKiP
′
Kiε̂

2
Ki.

(4.9)

Then, I define ĉinf
1−α based on the asymptotic null distribution of Inf Tn(θ0) as follows,

ĉinf
1−α ≡ (1− α) quantile of inf

m=1,···,M
|Zm,Σ̂|,

where ZΣ̂ = (Z1,Σ̂, · · · , ZM,Σ̂)′ ∼ N(0, Σ̂), Σ̂jj = 1, Σ̂jl = V̂
1/2
Kj

/V̂
1/2
Kl

.
(4.10)

One can compute ĉinf
1−α by simulating B (typically B = 1000 or 5000) i.i.d. random vectors

Zb
Σ̂
∼ N(0, Σ̂) and by taking (1−α) sample quantile of {Inf T bn = inf

m
|Zb

m,Σ̂
| : b = 1, · · · , B}.4

I impose following assumption on the consistency of variance estimator V̂K uniformly in

K ∈ Kn.

Assumption 4.3. sup
K∈Kn

| V̂K
VK
− 1| = op(1) as n,K →∞.

4Under heteroskedastic error terms, we can construct Σ̂j,l =
V̂Kjl

V̂
1/2
Kj

V̂
1/2
Kl

for any j < l, where V̂Kjl
is an

sample analog estimator of PKj (x)′E(PKjiP
′
Kli
ε2
i )PKl

(x) and V̂Kj , V̂Kl
are estimator of the variance VKj , VKl

,
respectively.
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Assumption 4.3 is satisfied under same regularity conditions (Assumption 3.1 and 3.2)

with an additional assumption. For example, if we further assume sup
K∈Kn

||
∑n

i=1 P̃KiP̃
′
Kiε

2
i −

E[P̃KiP̃
′
Kiε

2
i ]|| = op(1) with an orthonormalized vector of basis functions P̃K(x) ≡ Q

−1/2
K PK(x),

then Assumption 4.3 holds. See Lemma 5.1 of Belloni et al. (2015), and also Lemma 3.1

and 3.2 of Chen and Christensen (2015b) for different sufficient conditions under mild rate

restrictions and unconditional moment of the error terms.

Next, we consider a t-statistic Tn,V̂ (K, θ) =
√

n

V̂K
(θ̂K − θ0) replacing variance of the

series estimator VK with V̂K . Following Corollary provides the joint asymptotic distribution

of Tn,V̂ (K, θ) for K ∈ Kn and the validity of Monte Carlo critical values ĉinf
1−α defined in

(4.10).

Corollary 4.3. Under Assumptions 3.2, 3.4, 4.1, 4.2 and 4.3,

(Tn,V̂ (K1, θ0), · · · , Tn,V̂ (KM , θ0))′
d−→ Z

where Z = (Z1, · · · , ZM)′ ∼ N(0,Σ) with a positive definite matrix Σ defined in (4.8). This

also holds under the Assumptions 3.2, 3.4, 3.5, 4.2, and 4.3. Furthermore, ĉinf
1−α

p−→ cinf
1−α

holds where ĉinf
1−α is defined in (4.10) and cinf

1−α is the (1− α) quantile of inf
m=1,···,M

|Zm|.

Remark 4.3 (Weighted bootstrap). Alternatively, we can use the weighted bootstrap method

to approximate asymptotic critical values. Implementation of the weighted bootstrap method

is as follows. First, generate i.i.d draws from exponential random variables {ωi}ni=1, inde-

pendent of the data. Then, for each draw, calculate LS estimator weighted by ω1, · · · , ωn for

each K ∈ Kn and construct weighted bootstrap t-statistic as follows

β̂bK = arg min
b

1

n

n∑
i=1

ωi(yi − P ′Kib)2, ĝbK(x) = PK(x)′β̂bK ,

T bn(K) =

√
n(ĝbK(x)− ĝK(x))

V̂
1/2
K

.

(4.11)

Then, construct Inf T bn = infK |T bn(K)|. Repeat this B times (1000 or 5000) and define ĉinf,WB
1−α

as conditional 1 − α quantile of {Inf T bn : b = 1, · · · , B} given the data. Similar to Belloni

et al. (2015), the idea behind the weighted bootstrap methods is as follows: if the limiting

distribution of weighted bootstrap process is equal to the original process conditional on

the data, then the weighted bootstrap process Inf T bn also approximate the original limiting

distribution infπ∈[π,1] T(π). However, the validity of the weighted bootstrap is beyond the

scope of this paper and will be pursued for the future work.
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5 Confidence interval

Now, I introduce confidence intervals for θ0 = g0(x) and provide their coverage properties.

We consider a confidence interval based on inverting a test statistic for H0 : θ = θ0 against

H1 : θ 6= θ0. Define CIRobustinf as the nominal level 1 − α CI for θ based on infimum test

statistics,

CIRobustinf ≡ {θ : inf
K∈Kn

|Tn,V̂ (K, θ)| ≤ ĉinf
1−α}

= {θ : |Tn,V̂ (K, θ)| > ĉinf
1−α,∀K}C =

⋃
K∈Kn

{θ : |Tn,V̂ (K, θ)| ≤ ĉinf
1−α}

= [inf
K

(θ̂K − ĉinf
1−αs(θ̂K)), sup

K
(θ̂K + ĉinf

1−αs(θ̂K))]

(5.1)

where ĉinf
1−α is the Monte Carlo critical value defined in Section 4.3, s(θ̂K) ≡

√
V̂K/n is a

standard error of series estimator θ̂K using K series terms, and AC denotes the complement

of a set A. Note that CIRobustinf can be easily obtained by using estimates θ̂K , standard errors

s(θ̂K), and a critical value ĉinf
1−α. CIRobustinf is the lower and the upper-end point of confidence

intervals for all K ∈ Kn using critical value ĉinf
1−α.

Similarly, I define CIinf based on Inf Tn(θ) and the normal critical value z1−α/2,

CIinf ≡ {θ : inf
K∈Kn

|Tn,V̂ (K, θ)| ≤ z1−α/2}

= [inf
K

(θ̂K − z1−α/2s(θ̂K)), sup
K

(θ̂K + z1−α/2s(θ̂K))]
(5.2)

Note that CIinf is the union of all confidence intervals for K ∈ Kn using conventional normal

critical value z1−α/2.

Next Corollary shows valid coverage property of the above CIs, and it follows from

Corollary 4.2 and 4.3.

Corollary 5.1. 1. Under Assumptions 3.2, 3.4, 4.1, 4.2, and 4.3,

lim inf
n→∞

P (θ0 ∈ CIRobustinf ) = 1− α, lim inf
n→∞

P (θ0 ∈ CIinf) ≥ 1− α. (5.3)

2. Under Assumptions 3.2, 4.1, 4.2, 4.3, and supm |ν(m)| <∞,

lim inf
n→∞

P (θ0 ∈ CIRobustinf ) ≥ 1− F (cinf
1−α, inf

m
|ν(m)|), (5.4)

lim inf
n→∞

P (θ0 ∈ CIinf) ≥ 1− F (z1−α/2, inf
m
|ν(m)|). (5.5)
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3. Under Assumptions 3.2, 3.5, 4.2, and 4.3,

lim inf
n→∞

P (θ0 ∈ CIRobustinf ) ≥ 1− F (cinf
1−α, 0), (5.6)

lim inf
n→∞

P (θ0 ∈ CIinf) ≥ 1− α. (5.7)

Corollary 5.1.1 shows the validity of CIRobustinf , i.e., asymptotic coverage is equal to 1−α.

The asymptotic coverage of CIinf is greater or equal than 1 − α. Note that the Corollary

5.1.1 requires undersmoothing condition, i.e., no asymptotic bias for all Ks in Kn.

Without undersmoothing assumption, Corollary 5.1.2 and 5.1.3 show that the coverage

probability of CIRobustinf and CIinf are bounded below by the coverage of single K with the

smallest asymptotic bias, similar to the asymptotic size results in Corollary 4.2. For example,

the lower bound in (5.6) is 0.87 when cinf
1−α = 1.5. Furthermore, (5.7) shows that CIinf using

standard normal critical value achieve nominal coverage probability 1−α. CIinf and CIRobustinf

bound coverage distortions even when we allow large asymptotic bias terms (|ν(m)| = ∞)

for several Ks in Kn. In this sense, CIinf and CIRobustinf are robust to the bias problems.

Although CIinf gives formally valid coverage allowing asymptotic bias, coverage property

of the CIinf in (5.3) and (5.7) holds with inequality; thus it can be conservative. As the

variance of series estimator increases with K, we expect CIinf can be comparable to the

standard CI using normal critical values with some large K around K̄. In contrast, CIRobustinf

has shorter length by using smaller critical value than the normal critical value.

Remark 5.1 (Length of the interval and the ranges of K). Note that potential large length

of the CIRobustinf is also related to the possible low power property of the test. Also, note that

the last equality from the definition of CIRobustinf in (5.1) holds only when there is no dislocated

CI, i.e., the intersection is nonempty at least for some two CIs using ĉinf
1−α. Otherwise, using

the superset widens the length of CI. As the variance of series estimator increases with K,

we expect that the union of all confidence intervals may only be determined by some large

Ks so that there is no dislocated CI. In general, dislocated confidence interval may show

some evidence of significant bias for some specific models, but there is no guarantee that the

union of the confidence interval is connected in practice.

Although this paper does not consider the data-dependent choice of Kn, a possible large

length of CI can be avoidable if K is reasonably large and this is exactly the condition

needed in Corollary 5.1 to have a correct coverage. Furthermore, the net effect of increasing

largest K̄ on the length of CIRobustinf is not clear as it may decrease critical values ĉinf
1−α as well.
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6 Post model selection inference

In this section, I provide methods to construct a valid CI that gives correct coverage after

selecting the number of series terms considering supremum of the t-statistics.

I first consider the ‘post model selection’ t-statistic

|Tn(K̂, θ)|, K̂ ∈ Kn

where K̂ is a possibly data-dependent rule chosen from Kn. Then, we define following ‘naive’

post-selection CI with K̂ using the normal critical value z1−α/2,

CINaivepms ≡ {θ : |Tn(K̂, θ)| ≤ z1−α/2} = [θ̂K̂ − z1−α/2s(θ̂K̂), θ̂K̂ + z1−α/2s(θ̂K̂)]. (6.1)

Conventional method of using normal critical values in (6.1) comes from the asymptotic

normality of the t-statistic under deterministic sequence, i.e., when Kn = {K}. However, it

is not clear whether the asymptotic normality of the t-statistic Tn(K̂, θ0)
d→ N(0, 1) holds

with some random sequence of K̂. Even if we assume the asymptotic bias is negligible, the

variability of K̂ introduced by some selection rules can affect the variance of the asymptotic

distribution. Thus, it is not clear whether naive inference using standard normal critical

value is valid. If the post model selection t-statistic, Tn(K̂, θ0) with some K̂, has non-

normal asymptotic distribution, then the naive confidence interval CINaivepms may have coverage

probability less than the nominal level 1− α.

Furthermore, K̂ with some data-dependent rules may not satisfy the undersmoothing

rate conditions which ensure the asymptotic normality without bias terms. For example,

suppose a researcher uses K̂ = K̂cv selected by cross-validation. It is well known that

the K̂cv is typically too “small” so that lead to a large bias by violating undersmoothing

assumption needed to ensure asymptotic normality and the valid inference. If K̂ increases

not sufficiently fast as the undersmoothing condition does, then the asymptotic distribution

may have bias terms and resulting naive CI may have large coverage distortions.

Here, I construct a valid post-selection CI with K̂ ∈ Kn by adjusting standard normal

critical value to the critical value from a ‘supremum’ test statistic,

SupTn(θ) ≡ sup
K∈Kn

|Tn(K, θ)|. (6.2)

Note that |Tn(K̂, θ0)| ≤ SupTn(θ0) for any choice of K̂ ∈ Kn, and SupTn(θ0)
d−→ ξsup ≡

supπ∈[π,1] |T(π)| under the same assumptions as in Corollary 4.1. Therefore, inference based

on |Tn(K̂, θ0)| using asymptotic critical values from the limiting distribution of SupTn(θ0)

24



will be valid, but conservative. Similar to cinf
1−α defined in (4.2), I define asymptotic critical

value csup
1−α as 1− α quantile of ξsup. We can approximate this critical value by using Monte

Carlo simulation based method similarly as in Section 4.3. To be specific, I define

ĉsup
1−α ≡ (1− α) quantile of sup

m=1,···,M
|Zm,Σ̂|, (6.3)

where ZΣ̂ = (Z1,Σ̂, · · · , ZM,Σ̂)′ ∼ N(0, Σ̂) and Σ̂ are defined in (4.10). We can verify ĉsup
1−α

p−→
csup

1−α similar to Corollary 4.3.

Next, I define the following robust post-selection CI using the critical value ĉsup
1−α rather

than the normal critical value z1−α/2 compare to CINaivepms ,

CIRobustpms ≡ [θ̂K̂ − ĉ
sup
1−αs(θ̂K̂), θ̂K̂ + ĉsup

1−αs(θ̂K̂)], K̂ ∈ Kn. (6.4)

Next Corollary shows that the robust post-selection CIRobustpms guarantees the asymptotic

coverage as 1 − α. Even though Corollary 6.1 does not implicitly use randomness of the

specific data-dependent selection rules of K̂, CIRobustpms can be useful as it can be applied to

any selection rules among Kn.

Corollary 6.1. Under Assumptions 3.2, 3.4, 4.1, 4.2, and 4.3,

lim inf
n→∞

P (θ0 ∈ CIRobustpms ) ≥ 1− α. (6.5)

(6.5) also holds under Assumptions 3.2, 3.4, 3.5, 4.2 and 4.3.

Corollary 6.1 imposes an undersmoothing (Assumption 3.4) and does not allow optimal

MSE rates (e.g., K̂cv). Thus CIRobustpms does not deal with the bias problem explicitly. However,

it accommodates bias by enlarging confidence interval using larger critical values ĉsup
1−α than

the normal critical value. Moreover, we also expect ĉsup
1−α is smaller than the usual Bonferroni-

type critical value. Bonferroni corrections use normal critical value z1− α
2M

replacing α with

α/M . However, Bonferroni critical value can be too large especially when |Kn| = M is large,

as it ignores dependence structure of the t-statistics.

7 Extension: partially linear model setup

In this section, I provide inference methods for the partially linear model (PLM) similar to

the nonparametric regression setup.

Suppose we observe random samples {yi, wi, xi}ni=1, where yi is scalar response variable,

wi ∈ W ⊂ R is treatment/policy variable of interest, and xi ∈ X ⊂ Rdx is a set of explanatory
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variables. For simplicity, we shall assume wi is a scalar. I consider following partially linear

model

yi = θ0wi + g0(xi) + εi, E(εi|wi, xi) = 0. (7.1)

We are interested in inference on treatment/policy effect θ0 after approximating unknown

function g0(x) by series terms/regressors p(xi) among a set of potential control variables. A

number of regressors can be large if there are many available control variables, i.e., p(xi) = xi

or if there are large number of transformations of p(xi) are available such as polynomials

and interactions of xi. For notational simplicity, I use the similar notation as defined in

nonparametric regression setup. Suppose we use K regressors PKi = PK(xi), where PK(x) =

(p1(x), · · · , pK(x))′ from the basis functions p(x). The approximating model can be written

as

yi = θ0wi + P ′KiβK + εKi, (7.2)

where the error term εKi = rKi + εi and approximation error rKi are defined similarly as

in Section 2. Then, series estimator θ̂K for θ0 using the first K approximating functions is

obtained by standard LS estimation of yi on wi and PKi, and has the usual “partialling out”

formula

θ̂K = (W ′MKW )
−1
W ′MKY (7.3)

where W = (w1, · · · , wn)′,MK = IK − PK(PK′PK)−1PK′ , PK = [PK1, · · · , PKn]′, Y = (y1,

· · · , yn)′. Similar to the nonparametric regression model, we are interested in testing for

H0 : θ = θ0 against H1 : θ 6= θ0.

The asymptotic normality and valid inference for the partially linear model have been

developed in the literature. Donald and Newey (1994) derived the asymptotic normality of

θ̂K under standard rate conditions where K/n→ 0. See also Robinson (1988), Linton (1995)

and references therein for the related results of the kernel estimators. Belloni, Chernozukhov,

and Hansen (2014) analyzed asymptotic normality and uniformly valid inference for the

post-double-selection estimator even when K is much larger than n under some form of

sparsity condition. A recent paper by Cattaneo, Jansson, and Newey (2015a) provided a

valid approximation theory for θ̂K even when K grows at the same rate of n.

Different approximation theory using faster rate of K (K/n → c > 0) than the stan-

dard rate conditions (K/n → 0) is particularly useful for our purpose to better reflect the

choice/search of smoothing parameters in finite samples. Unlike the nonparametric object
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of interest in fully nonparametric model where variance term increases with K, θ̂K has para-

metric (n1/2) convergence rate and asymptotic variances are same as the semiparametric

efficiency bound for all sequences under K/n → 0, i.e., all estimators θ̂K with different

rate of Ks satisfying K/n → 0 are asymptotically equivalent. This is also related to the

well-known results of the two-step semiparametric estimation; asymptotic variance of two-

step semiparametric estimators does not depend on the type of the first-step estimator and

smoothing parameter sequences under certain conditions (see Newey (1994b)).

By using the higher order approximation theory that allows the number of series can

grow as fast as sample size n, we can construct a joint distribution of the t-statistics with the

different sequence of models. Under K/n→ c for c > 0, the limiting normal distribution has

a larger variance than the standard first-order asymptotic variance derived under K/n→ 0.

Adjusted variances depend on the number of terms K so that I can provide an approximation

theory that accounts the dependency of the t-statistics with different Ks.

Next, I impose regularity conditions that are used in Cattaneo, Jansson, and Newey

(2015a, Assumption PLM) uniformly over K ∈ Kn where Kn is same as in the Assumption

4.1. Let vi ≡ wi − gw0(xi) where gw0(xi) ≡ E[wi|xi].

Assumption 7.1. (Regularity conditions for Partially Linear Model)

(i) {yi, wi, xi} are i.i.d random variables satisfying the model (7.1).

(ii) There exists constant 0 < c ≤ C < ∞ such that E[ε2
i |wi, xi] ≥ c and E[v2

i |xi] ≥ c,

E[ε4
i |wi, xi] ≤ C and E[v4

i |xi] ≤ C.

(iii) rank(PK) = K(a.s.) and Mii,K ≥ C for C > 0 for all K ∈ Kn.

(iv) For all K ∈ Kn, there exists γg, γgw ,

min
ηg

E[(g0(xi)− η′gPKi)2] = O(K−2γg), min
ηgw

E[(gw0(xi)− η′gwPKi)
2] = O(K−2γgw ).

Assumption 7.1 does not require K/n→ 0 which is required to get asymptotic normality

in the literature (e.g., Donald and Newey (1994)). Similar to the Assumption 3.2(iii) in

nonparametric setup, Assumption 7.1(iv) holds for the polynomials and splines basis. For

example, 7.1(iv) holds with γg = pg/dx, γgw = pw/dx when X is compact and unknown

functions g0(x), gw0(x) has pg, pw continuous derivates, respectively.

From the results in Cattaneo, Jansson, and Newey (2015a), we have following decompo-

sition for any K ∈ Kn under Assumptions 4.1, 7.1 and H0,
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√
n(θ̂K − θ0) = (

1

n
W ′MKW )−1 1√

n
W ′MKY

= Γ̂−1
K (

1√
n

∑
i

viM
K
ii εi +

1√
n

n∑
i=1

n∑
j=1,j 6=i

viM
K
ij εj) + op(1)

(7.4)

where Γ̂K = W ′MKW/n. Under homoskedasticity (E[ε2
i |wi, xi] = σ2

ε),
√
n(θ̂K−θ0) is asymp-

totically normal with variance V = σ2
εE[v2

i ]
−1 under any sequences K → ∞ satisfying the

standard rate conditions K/n → 0. However, under the faster rate conditions on K im-

posed here, the second term in (7.4) is not negligible and converges to bounded random

variables. Cattaneo, Jansson, and Newey (2015a) apply the central limit theorem of degen-

erate U-statistics for the second term, similar to the many instrument asymptotics analyzed

in Chao, Swanson, Hausman, Newey and Woutersen (2012).

Now, consider the sequence of t-statistics Tn(K, θ), K ∈ Kn for testing H0. Under As-

sumptions 4.1, 7.1 and undersmoothing condition nK−2(γg+γgw ) → 0, we get following asymp-

totic null limiting distributions for all deterministic sequence of K ∈ Kn assuming conditional

homoskedasticity;

Tn(K, θ0) =
√
nV
−1/2
K (θ̂K − θ0)

d−→ N(0, 1),

VK = (1−K/n)−1V, V = σ2
εE[v2

i ]
−1,

where VK coincides with V under K/n → 0. Allowing K/n need not converge to zero

requires “correction” term, (1 − K/n)−1 taking into account for the remainder terms that

are assumed “small” with the classical condition K/n→ 0. Note that the adjusted variance

VK is always greater than V when K/n9 0 and is an increasing function of K.

Next theorem is the main result of the partially linear model setup, analogous to nonpara-

metric setup. Theorem 7.1 provides joint asymptotic distribution of the t-statistics Tn(K, θ0)

over K ∈ Kn. It also provides the asymptotic coverage results of the CIs that are similarly

defined as in Section 5 and 6.5

Theorem 7.1. Suppose Assumptions 4.1 and 7.1 hold. Also, nK̄−2(γg+γgw ) → 0 as K̄ →∞.

Assume K̄/n → c (0 < c < 1) and E[ε2
i |wi, xi] = σ2

ε , E[v2
i |xi] = E[v2

i ]. Then the joint null

5Similar to the nonparametric setup, the asymptotic size results and the lower bounds of the asymptotic
coverage for CIRobustinf , CIinf can be derived without undersmoothing assumption (nK̄−2(γg+γgw ) → 0),but
omitted here for simplicity.
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limiting distribution is given by

(Tn(K1, θ0), · · · , Tn(KM , θ0))′
d−→ Z = (Z1, · · ·ZM)′ ∼ N(0,Σ)

with variance-covariance matrix Σ where Σjl ≡ limn→∞ V
1/2
Kj∧l

/V
1/2
Kj∨l

for j 6= l, and Σjl = 1

for j = l. Moreover, under Assumptions 4.1, 4.3 and 7.1,

lim inf
n→∞

P (θ0 ∈ CIRobustinf ) = 1− α, lim inf
n→∞

P (θ0 ∈ CIinf) ≥ 1− α (7.5)

lim inf
n→∞

P (θ0 ∈ CIRobustpms ) ≥ 1− α (7.6)

where CIRobustinf , CIinf, and CIRobustpms are similarly defined as in Section 5 and 6 with PLM

estimator θ̂K and variance estimator V̂K, and the critical values ĉinf
1−α, ĉ

sup
1−α.

Theorem 7.1 derives the joint asymptotic distribution of the Tn(K, θ0) over K ∈ Kn for

the parametric part in the partially linear model. Note that the variance-covariance matrix Σ

is same as in nonparametric model setup (see equation (3.4) or (4.8)) under homoskedasticity.

Variance-covariance matrix Σjl for any j 6= l can be reduced under the condition K̄/n→ c,

Σjl = lim
n→∞

V
1/2
Kj∧l

V
K

1/2
j∨l

= lim
n→∞

(1−Kj∧l/n)−1/2V 1/2

(1−Kj∨l/n)−1/2V 1/2
= lim

n→∞

(1− πj∧lK̄/n)−1/2

(1− πj∨lK̄/n)−1/2
= (

1− cπj∨l
1− cπj∧l

)1/2.

Note that construction of CIs also requires consistent variance estimators V̂K ,

V̂K = s2Γ̂−1
K , s2 =

1

n− 1−K
(Y −Wθ̂K)′MK(Y −Wθ̂K).

For consistent variance estimation results when K/n→ c > 0 and more discussions, see sec-

tion 3.2 (Theorem 2) of Cattaneo, Jansson, and Newey (2015a) and also Cattaneo, Jansson,

and Newey (2015b) even under conditional heteroskedastic error terms.

8 Monte Carlo simulations

This section investigates the small sample performance of the proposed methods in Sections

4-6. We are mainly interested in empirical coverage of CIs for the true functions g(x) over

the support of x with various specifications and different basis.

I consider the following data generating process similar to Newey and Powell (2003),

Chen and Christensen (2015a),
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yi = g(xi) + εi,

xi = Φ(x∗i ),

(
x∗i

εi

)
∼ N

((
0

0

)
,

(
1 0

0 σ2

))
(8.1)

where Φ(·) is the standard normal cumulative distribution function need to ensure compact

support. I investigate following four functions for g(x): g1(x) = 4x − 1, g2(x) = ln(|6x −
3|+ 1)sgn(x− 1/2), g3(x) = sin(7πx/2)

1+2x2(sgn(x)+1)
, g4(x) = x− 1/2 + 5φ(10(x− 1/2)), where φ(·) is

the standard normal probability density function, and sgn(·) is the sign function. g1(x) and

g2(x) are used in Newey and Powell (2003), Chen and Christensen (2015) and we label these

functions as “linear” and “nonlinear” designs. g3(x) and g4(x) are rescaled versions used in

Hall and Horowitz (2013), and we denote these as “highly nonlinear” designs. See Figure 2

for shapes of all four functions on the support X = [0, 1]. In addition, I set σ2 = 1 for all

simulations results below. Results for σ2 = 0.5, 0.1 show similar patterns, thus omitted.

I generate 5000 simulation replications for each different design with sample size n =

100. Then, I implement nonparametric series estimators using both power series bases and

quadratic splines with evenly placed knots. In either case, K denotes the total number

of estimated coefficients. I also set Kn = [2, 10] for the polynomials and Kn = [3, 13] for

the splines. Then, I calculate a pointwise coverage of various CIs for all 40 grid points of

x on [0,1]. To calculate critical values, 1000 additional Monte Carlo replications are also

performed on each simulation iteration. Results for different sample sizes n = 200, 400 and

results for the cubic spline regressions show similar patterns, thus omitted for brevity.

As a benchmark, I first consider post-selection CI with K̂cv ∈ Kn selected to minimize

leave-one-out cross-validation and using (naive) normal critical value, CINaivepms = [θ̂K̂cv
−

z1−α/2s(θ̂K̂cv
), θ̂K̂cv

+ z1−α/2s(θ̂K̂cv
)]. I also report coverage of CImaxK = [θ̂K̄ − z1−α/2s(θ̂K̄),

θ̂K̄ + z1−α/2s(θ̂K̄)] using the largest number of series terms K̄. Next, I consider new CIs

proposed in this paper, CIRobustinf and CIinf, based on the test statistics Inf Tn(θ) defined in

Section 5. Finally, I examine robust post-selection CI, CIRobustpms with K̂cv, defined in Section

6. The critical values, ĉinf
1−α and ĉsup

1−α are constructed using the Monte Carlo methods.

Figure 3 reports nominal 95% coverage probability of all five CIs. Overall, CIRobustinf

performs well across the different simulation designs. Its empirical coverage is close to the

nominal 95% level at many points over the support, even at the boundary. Coverage of CIinf

is no less than the nominal level at almost all points, but CIinf using normal critical value

seems quite conservative. CINaivepms using cross-validation selected series terms undercovers

most of the cases: K̂cv is small and CINaivepms is somewhat narrow to cover the true function.
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CImaxK slightly undercovers at many points, and works quite poorly at the boundary. CIRobustpms

using larger critical value ĉsup
1−α seems to work well, but undercovers when there exists large

bias for all K (for example, see coverage probability of g2(x = 0.4)).

For the linear function g1(x), polynomials should approximate unknown function very

well for all K, i.e., finite sample bias is expected to be small over K ∈ Kn. In this setup,

coverage of CIRobustinf , CImaxK are expected to be close to 95% and CIinf, CI
Robust
pms are expected

to be conservative. Slightly undercover results in Figure 3-(a) for CImaxK are mostly due to

the small sample sizes. However, given the small sample size, coverage of CIRobustinf is fairly

close to 95% and performs well even at the boundary compare with CImaxK.

For the nonlinear function g2(x), coverage of all confidence intervals except CIinf is

less than 0.95 at some particular points. For example, at x = 0.4 and 0.6, the coverage

of CINaivepms , CIRobustpms are 0.77, 0.87, respectively. Although it is slightly below than 0.95,

coverage of CIRobustinf is 0.93, and this coincides with our theory that CIRobustinf bounds the

coverage distortions even when there exist biases for some K ∈ Kn. With highly nonlinear

function g4(x), CIRobustinf does not achieve nominal coverage at point x = 0.5. At this single

peak at x = 0.5, every polynomial approximation has a large bias. Possible poor coverage

property at this point was also described in Hall and Horowitz (2013, Figure 3). Regression

spline seems better for approximating g4(x) at this local point. Figure 4 shows the coverage

probability of CIs using quadratic splines with a different number of knots. As we can see

from Figure 4, CIRobustinf with splines works better to achieve nominal coverage for g2(x = 0.4),

g4(x = 0.5), and for other different functions as well.

In Figure 5, I compare the length of five CIs for the polynomial series. In the linear and

nonlinear designs (for g1(x) and g2(x)), the rank of the length in a narrower order is (roughly)

as follows; CINaivepms < CIRobustpms ≤ CIRobustinf < CImaxK < CIinf. For the highly nonlinear design,

the length of CIRobustinf is similar or wider than CImaxK at some points where estimates are

relatively sensitive across K. Figure 6 compares the length of CIs when splines are used,

and it shows similar patterns with a polynomial approximation. Given the observations that

CIRobustinf has similar or slightly wider lengths than CImaxK, CI
Naive
pms and CIRobustpms , I want to

highlight that it has better or similar coverage probability at most points than the other CIs

as in Figure 4.

Note that the coverage probability of CImaxK can be better when K̄ coincides with coverage

optimalK∗ that minimizes the distance |P (θ0 ∈ CI(K))−(1−α)|, where CI(K) is a standard

CI using K series terms and the normal critical value. However, as I already emphasized,

there is no formal data-dependent method to choose such large enough K∗. Coverage optimal

K∗ also depends on the sample sizes and unknown smoothness of the underlying function.

If K̄ is smaller than the K∗, then CImaxK may undercover because of bias problems. If K̄
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is larger than K∗, then CImaxK can be too wide because of large standard errors, and it can

have poor coverage because the normal distribution can be a poor approximation with large

K̄. In contrast, CIRobustinf seems to perform well even in small sample sizes and to be less

affected with the ranges of K, especially those with small K that has a large bias.

In addition to length comparisons, I also provide the power of the different test statistics.

In Figure 7, I report power functions of the three different test statistics to test H0 : θ = θ0

against fixed alternatives H1 : θ = θ0 +δ where θ0 = g2(x) evaluated at some point x. As the

power depends on the different point of interest x, I consider two cases where bias of series

estimator for g2(x) is small (x = 0.5) and relatively large (x = 0.4). I plot the following

rejection probability based on Inf Tn(θ), SupTn(θ), and |Tn(K̂, θ)| with appropriate critical

values as a functions of δ: (1) P (|Tn(K̂cv, θ0 + δ)| > z1−α/2) with K̂cv; (2) P (Inf Tn(θ0 +

δ) > ĉinf
1−α); (3) P (Inf Tn(θ0 + δ) > z1−α/2); (4) P (SupTn(θ0 + δ) > ĉsup

1−α); (5) P (|Tn(K̂cv,

θ0 + δ)| > ĉsup
1−α). Figure 7-(a) and (b) show that the tests based on Inf Tn(θ) control size or

bound the size distortions when there exists bias for some Ks. The tests based on SupTn(θ)

seems to have better power, but the size is not controlled even with moderate bias (Figure

7-(b)) and the size distortions can be huge with large bias for some K (Figure 7-(a)).

In sum, CIRobustinf seems to work well in various simulation experiments: empirical coverage

is close to the nominal level and less affected by bias issues. Regarding coverage, CIinf also

performs well, but it can be quite conservative. In some simulation setups, coverage of

CIRobustpms is close to the nominal level, thus it is also advisable to report rather than the naive

CINaivepms .

9 Illustrative empirical application: Nonparametric es-

timation of labor supply function and wage elasticity

with nonlinear budget sets

In this section, I illustrate our inference procedures by revisiting a paper by Blomquist and

Newey (2002). Understanding how tax policy affects individual labor supply has been central

issues in labor economics (see Hausman (1985) and Blundell and MaCurdy (1999), among

many others). Blomquist and Newey (2002) estimate conditional mean of hours of work

given the individual nonlinear budget sets using nonparametric series estimation. They also

estimate other functionals such as wage elasticity of the expected labor supply and find

some evidence of possible misspecification of the usual parametric model such as maximum

likelihood estimation (MLE).

Specifically, Blomquist and Newey (2002) consider the following model by exploiting
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additive structure from the utility maximization with piecewise linear budget sets. I use the

similar notations with their paper,

hi = g(xi) + εi, E(εi|xi) = 0, (9.1)

g(xi) = g1(yJ , wJ) +
J−1∑
j=1

[g2(yj, wj, `j)− g2(yj+1, wj+1, `j)], (9.2)

where hi is the hours of ith individual worked and xi = (y1, · · · , yJ , w1, · · · , wJ , `1, · · · , `J ,
J) is the budget set that can be represented by the intercept yj (non-labor income), slope

wj (marginal wage rates) and the end point `j of the jth segment in a piecewise linear

budget with J segments. Here, Equation (9.2) for the conditional mean function follows

from Theorem 2.1 of Blomquist and Newey (2002), and this additive structure substantially

reduces the dimensionality issues. They consider following power series for g(x),

pk(x) = (y
p1(k)
J w

q1(k)
J ,

J−1∑
j=1

`
m(k)
j (y

p2(k)
j w

q2(k)
j − yp2(k)

j+1 w
q2(k)
j+1 )), p2(k) + q2(k) ≥ 1. (9.3)

From the Swedish “Level of Living” survey in 1973, 1980 and 1990, they pool the data

from three waves and use the data for married or cohabiting men of ages 20-60. Changes

in tax system over three different time periods gives a large variation in the budget sets.

Sample size is n = 2321. See Section 5 of Blomquist and Newey (2002) for more detail

descriptions. They estimate wage elasticity of the expected labor supply

Ew = w̄/h̄[
∂g(w, · · · , w, ȳ, · · · , ȳ)

∂w
]|w=w̄, (9.4)

which is the regression derivative of g(x) evaluated at the mean of the net wage rates w̄,

virtual income ȳ and level of hours h̄.

Table 1 is the same table used in Blomquist and Newey (2002, Table 1). They report

estimates Êw and standard errors SEÊw with a different number of series terms by adding

additional series terms. For example, estimates in the second raw use the term in the first row

(1, yJ , wJ) with the additional terms (∆y,∆w). Here, `m∆ypwq denotes approximating term∑
j `

m
j (ypjw

q
j − y

p
j+1w

q
j+1). Blomquist and Newey (2002) also report cross-validation criteria,

CV , for each specification. In their formula, series terms are chosen to maximize CV, which

minimizes asymptotic MSE. In addition to their original table, I also report the standard

95% CI for each specification, i.e., Êw ± 1.96SEÊw . From the table, it is ambiguous which

large model (K) can be used for the inference and we do not have compelling data-dependent

methods to select one of the large K for the confidence interval to be reported.
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I report proposed robust confidence interval CIRobustinf as well as CIinf and CIRobustpms defined

in Sections 5 and 6. For this, I exploit the covariance structure in the joint asymptotic

distribution of the t-statistics under homoskedastic error: the variance-covariance matrix is

only a function of the variance of series estimators. Therefore, construction of the critical

value using the Monte Carlo method defined in (4.10) only requires estimated variance for

different specifications that are already reported in the table of Blomquist and Newey (2002).

We can implement critical value based on general variance forms under heteroskedasticity or

bootstrap critical value using full dataset, but we do not pursue here to exploit computational

advantages of our procedure. It is straightforward to construct the proposed CI without any

replication of the data sets in this case. Using Monte-Carlo methods, estimated critical

values are ĉinf
1−α = 0.9668, ĉsup

1−α = 2.4764, respectively (based on simulations using 10000

repetitions).

Robust CI based on the infimum of the t-statistics, CIRobustinf is [0.0271, 0.1111] and this

is quite comparable to the CI with some large K, for example, [0.0273, 0.1045] using all

the additional terms up to the 6th row. Moreover, CIRobustinf is substantially tighter than

CImaxK = [0.0148, 0.1280] that uses the largest K̄ as well as those based on the second largest

series terms, [0.0214, 0.1336].

CIinf using normal critical value is [0.0148, 0.1384], and this turns out to be the union

of CI with the largest and the third largest number of series terms. Naive post-selection CI

with K̂cv is CINaivepms = [0.0247, 0.0839], and this seems somewhat narrow in this case. CIRobustpms

widens this naive confidence interval to [0.0169, 0.0916].

Given the Table 1 reported in Blomquist and Newey (2002), CIRobustinf seems robust to the

choice of [K, K̄]. By sequentially excluding the largest model from the last column in Table 1

(decreasing K̄), we get CIRobustinf as [0.0272, 0.1110], [0.0268, 0.1121], [0.0254, 0.0909], [0.0253,

0.0910], [0.0243, 0.0922], [0.0221, 0.0951] and corresponding critical values ĉinf
1−α as 0.9643,

1.0043, 1.1316, 1.1433, 1.2360, 1.4541, respectively. Moreover, by sequentially excluding the

smallest model from the first column (increasing K), we get CIRobustinf as [0.0379, 0.1144],

[0.0381, 0.1140], [0.0376, 0.1150], [0.0357, 0.1179], [0.0305, 0.1235] and the corresponding ĉinf
1−α

as 1.0879, 1.0732, 1.1092, 1.2136, 1.4165, respectively. In all cases, CIRobustinf is tighter than

CImaxK with the new ranges [K, K̄]. Also, note that increasing K̄ does not always increase

the width of CI as it can decrease the critical value.

10 Conclusion

This paper considers the construction of inference methods given the range of different num-

ber of series terms in the nonparametric series regression model. New inference methods

34



proposed in this paper are based on two innovations. First, I provide an empirical process

theory for the t-statistics indexed by the number of series terms over a set. Second, I in-

troduce tests based on the infimum of the t-statistics over different series terms and show

that the tests control the asymptotic size with undersmoothing condition or bound the size

distortions without undersmoothing condition. Pointwise confidence interval for the true

regression function is obtained by test statistic inversion. To construct the critical value and

a valid CI, I suggest using a simple Monte Carlo simulation based method. In various simu-

lation experiments, CI based on the infimum t-statistics performs well: coverage is close to

the nominal level and less affected by finite sample bias. I illustrate proposed CI by revisiting

empirical example of Blomquist and Newey (2002). I also provide methods of constructing

a valid CI after selecting the number of series terms by adjusting the conventional normal

critical value to the critical value based on the supremum of the t-statistics. Furthermore, I

provide an extension of the proposed CIs in the partially linear model setup.
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A Proofs

In the Appendix, we define additional notations for the empirical process theory used in

the proof of Theorem 3.1. Given measurable space (S,S), let F as a class of measurable

functions f : S → R. For any probability measure Q on (S,S), we define N(ε,F , L2(Q)) as

covering numbers relative to the L2(Q) norms, which is the minimal number of the L2(Q)

balls of radius ε to cover F with L2(Q) norms ||f ||Q,2 = (
∫
|f |2dQ)1/2. Uniform entropy

numbers relative to L2 are defined as supQ logN(ε||F ||Q,2,F , L2(Q)) where the supremum is

over all discrete probability measures with an envelope function F .

Let the data zi = (εi, xi) be i.i.d. random vectors defined on probability space (Z = E×X ,
A, P ) with common probability distribution P ≡ Pε,x. We think of (ε1, x1), · · · (εn, xn) as the

coordinates of the infinite product probability space. For notational convenience, we avoid

discussing nonmeasurability issues and outer expectations (for the related issues, see van

der Vaart and Wellner (1996)). Throughout the proofs, we denote c, C > 0 as a universal

constant that does not depend on n.

A.1 Proof of Theorem 3.1

For any sequence {K(n) = πK̄(n) : n ≥ 1} ∈
∏∞

n=1Kn under Assumptions 3.1 and 3.2, we

first define orthonormalized vector of basis functions

P̃K(x) ≡ Q
−1/2
K PK(x) = E[PKiP

′
Ki]
−1/2PK(x),

P̃Ki = P̃K(xi), P̃
K = [P̃K1, · · · , PKn]′

We observe that

ĝK(x) = PK(x)′(PK′PK)−1PK′y = P̃K(x)′(P̃K′P̃K)−1P̃K′y,

VK(x) = PK(x)′Q−1
K ΩKQ

−1
K PK(x) = P̃K(x)′Ω̃KP̃K(x),

Ω̃K = E(P̃KiP̃
′
Kiε

2
i ).

Without loss of generality, we may impose normalization of QK̄ = I or QK = E(PKiP
′
Ki) =

IK uniformly over K ∈ Kn, since ĝK(x) is invariant to nonsingular linear transformations of

PK(x). However, we shall treat QK as unknown and deal with non-orthonormalized series

terms here.

Next, we re-define pseudo-true value βK in (2.2), with abuse of notation, using orthornor-

malized series terms P̃Ki. That is, yi = P̃ ′KiβK + εKi, E[P̃KiεKi] = 0 where εKi = rKi + εi,

rK(x) = g0(x) − P̃K(x)′βK , rKi = rK(xi), and rK ≡ (rK1, · · · rKn)′. We also define Q̂K ≡
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1
n
P̃K′P̃K , σ2 ≡ infxE[ε2

i |xi = x], σ̄2 ≡ supxE[ε2
i |xi = x]. We first provide useful lemmas

which will be used in the proof of Theorem 3.1. Versions of proof of Lemma 1 are available

in the literature, such as Newey (1997), Belloni et al. (2015) and Chen and Christensen

(2015b), among others. For completeness, we provide the results of Lemma 1. Note that

different rate conditions can be used in Assumption 3.2, but lead to different bounds in

(A.1)-(A.3) in the following Lemma 1.

Lemma 1. Under Assumptions 3.1 and 3.2, for any K ∈ Kn, following holds

||Q̂K − IK || = Op(

√
ζ2
Kλ

2
K logK

n
), (A.1)

R1(K) ≡
√

1

nVK
P̃K(x)′

(
Q̂−1
K − IK

)
P̃K′(ε+ rK) = Op(

√
λ2
Kζ

2
K logK

n
(1 + `KcK

√
K)),

(A.2)

R2(K) ≡
√

1

nVK
P̃K(x)′P̃K′rK = Op(`KcK). (A.3)

To provide (A.1) in Lemma 1, we first introduce matrix Bernstein inequality in Tropp

(2015).

Lemma 2 (Theorem 6.1.1 of Tropp (2015)). Consider a finite sequence {Si} of independent,

random matrices with common dimension d1× d2. Assume that ESi = 0, ||Si|| ≤ L for each

i. Let Z =
∑

i Si, and define

v(Z) = max{||E(ZZ ′)||, ||E(Z ′Z)||}.

Then,

P (||Z|| ≥ t) ≤ (d1 + d2) exp(
−t2/2

v(Z)Lt/3
), ∀t ≥ 0,

E||Z|| ≤
√

2v(Z) log(d1 + d2) +
1

3
L log(d1 + d2).

Proof of Lemma 1.

To provide bound in (A.1), we apply Lemma 2 by setting Si = 1
n
(P̃KiP̃

′
Ki − E(P̃KiP̃

′
Ki)).

Note that ESi = 0, ||Si|| ≤ L = 1
n
(λ2

Kζ
2
K + 1), and v(Z) = 1

n
||E(P̃KiP̃

′
KiP̃KiP̃

′
Ki) −

E(P̃KiP̃
′
Ki)E(P̃KiP̃

′
Ki)|| ≤ 1

n
(λ2

Kζ
2
K + 1) by definition of λK , ζK and E(P̃KiP̃

′
Ki) = IK . By
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Lemma 2, we have

E||Q̂K − IK || = E||
∑
i

1

n
(P̃KiP̃

′

Ki − IK)|| ≤ C(
√
λ2
Kζ

2
K log(K)/n+ λ2

Kζ
2
K log(K)/n).

Then we have ||Q̂K − IK || = OP (
√
λ2
Kζ

2
K log(K)/n) by Markov inequality.

For (A.2), we first look at the terms
√

1
nVK

P̃K(x)′
(
Q̂−1
K − IK

)
P̃K′ε. Conditional on the

sample X = [x1, · · · , xn], this term has mean zero and variance,

1

nVK
P̃K(x)′

(
Q̂−1
K − IK

)
P̃K′E(εε′|X)P̃K

(
Q̂−1
K − IK

)
P̃K(x)

≤ σ̄2

VK
P̃K(x)′

(
Q̂−1
K − IK

)
Q̂K

(
Q̂−1
K − IK

)
P̃K(x)

=
σ̄2

VK
P̃K(x)′

(
Q̂K − IK

)
Q̂−1
K

(
Q̂K − IK

)
P̃K(x)

≤ σ̄2P̃K(x)
′
P̃K(x)

VK
λmax(Q̂

−1
K )||

(
Q̂K − IK

)
||2

= OP (λ2
Kζ

2
K log(K)/n)

where the first and the last inequality uses VK ≤ σ̄2P̃K(x)
′
P̃K(x), VK ≥ σ2P̃K(x)

′
P̃K(x)

by Assumption 3.2(ii), ||Q̂K − IK || = OP (
√
λ2
Kζ

2
K log(K)/n) by (A.1) and λmax(Q̂

−1
K ) =

(λmax(Q̂K))−1 = Op(1) since all eigenvalues of Q̂K are bounded away from zero as |λmin(Q̂K)−
1| ≤ ||Q̂K − IK || = op(1) by (A.1) and Assumption 3.2(iv)-(v). Then, by Chebyshev’s in-

equality, we have that√
1

nVK
P̃K(x)′

(
Q̂−1
K − IK

)
P̃K′e = OP (

√
λ2
Kζ

2
K log(K)/n).

Next, consider the terms
√

1
nVK

P̃K(x)′
(
Q̂−1
K − IK

)
P̃K′rK . Observe that || 1√

n

∑n
i=1 P̃KirKi|| =

Op(`KcK
√
K) since

E[|| 1√
n

n∑
i=1

P̃KirKi]||2] = E[
K∑
j=1

P̃ 2
jir

2
Ki] ≤ `2

Kc
2
KE[||P̃Ki||2] = `2

Kc
2
KK. (A.4)
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Combining (A.1) and (A.4) yields the results

|
√

1

nVK
P̃K(x)′

(
Q̂−1
K − IK

)
P̃K′rK | ≤ C||Q̂−1

K || · ||
(
Q̂K − IK

)
|||| 1√

n

n∑
i=1

P̃KirKi||

= Op(

√
λ2
Kζ

2
K log(K)

n
`KcK

√
K)

by || P̃K(x)

V
1/2
K

|| � 1 and using ||Q̂−1
K || = Op(1).

We now prove (A.3). Consider
√

1
nVK

P̃K(x)′P̃K′rK ,

E[(

√
1

nVK
P̃K(x)′P̃K′rK)2] = E[(

P̃K(x)′P̃Ki

V
1/2
K

rKi)
2] ≤ (cK`K)2

since E[( P̃K(x)′P̃Ki

V
1/2
K

)2] � 1 by Assumption 3.2(ii) and E(rKi)
2 ≤ (`KcK)2 by Assumption

3.2(iii). Therefore, we have (A.3) by Chebyshev’s inequality and using E[P̃KirKi] = 0 from

projection model. This completes the proof. Q.E.D.

Proof of Theorem 3.1. For any π ∈ Π = [π, 1], we first show the decomposition of the t-

statistic in equation (3.2).

T ∗n(π, θ0) = Tn(bπK̄c, θ)

=

√
n

Vπ
P̃π(x)′(β̂bπK̄c − βbπK̄c)−

√
n

Vπ
rπ

=

√
1

nVπ
P̃π(x)′P̃ bπK̄c

′
(ε+ rbπK̄c′)

+

√
1

nVπ
P̃π(x)′

(
Q̂−1
bπK̄c − IbπK̄c

)
P̃ bπK̄c

′
(ε+ rbπK̄c′)−

√
n

Vπ
rπ

=
1√
n

n∑
i=1

P̃π(x)′P̃πiεi

V
1/2
π

+R1(bπK̄c) +R2(bπK̄c)−
√
nV −1/2

π rπ

where R1(K), R2(K) are defined in (A.2), (A.3).

By Lemma 1, we haveR1(K) = Op(

√
ζ2K logK

n
(1+`KcK

√
K)) = op(1), R2(K) = Op(`KcK) =

op(1) for any K = πK̄ ∈ Kn under Assumptions 3.1 and 3.2. Therefore we have following

decomposition for any π ∈ Π,

T ∗n(π, θ0) = t∗n(π)−
√
nV −1/2

π rπ + op(1), (A.5)
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where

t∗n(π) ≡ 1√
n

n∑
i=1

P̃π(x)′P̃π(xi)εi

V
1/2
π

. (A.6)

For given n ≥ 1, π ∈ Π, define functions fn,π : (E × X ) 7→ R,

fn,π(ε, t) =
P̃π(x)′P̃π(t)ε

V
1/2
π (x)

=
P̃bK̄πc(x)′P̃bK̄πc(t)ε

V
1/2

bK̄πc(x)
, (ε, t) ∈ E × X . (A.7)

Consider the class of measurable functions Fn = {fn,π : π ∈ Π}. Then, we consider following

empirical process

{
t∗n(π) : π ∈ Π

}
=
{
n−1/2

n∑
i=1

fn,π(εi, xi) : π ∈ Π
}

which is indexed by classes of functions Fn.

We want to show weak convergence of the empirical process {t∗n(·) : n ≥ 1} to a centered

Gaussian process, T(·) defined in the Theorem 3.1, in the space `∞(Π) with totally bounded

semimetric space (Π, ρ), where ρ is defined as ρ(π1, π2) = |π1−π2|. Weak convergence results

follows from marginal convergence to a multivariate normal distribution and asymptotic

tightness. We closely follow Section 2.11.3 in van der Vaart and Wellner (1996) and verify

conditions for the asymptotic tightness as in Theorem 2.11.22.

Note that the covariance kernel can be derived as follows

Efn,π1fn,π2 − Efn,π1Efn,π2 =
P̃π1(x)′E(P̃π1(xi)P̃π2(xi)

′ε2
i )P̃π2(x)

V
1/2
π1 V

1/2
π2

, (A.8)

for any π ≤ π1 ≤ π2 ≤ 1. This term converges to the claimed covariance kernel Σ(π1, π2)

under Assumption 3.3(i). This covariance kernel can be bounded below and above some

constant 0 < C1, C2 <∞ for all n,

0 < C1 ≤ σ2V
1/2
π1

V
1/2
π2

≤ P̃π1(x)′E(P̃π1(xi)P̃π2(xi)
′ε2
i )P̃π2(x)

V
1/2
π1 V

1/2
π2

≤ σ̄2V
1/2
π1

V
1/2
π2

≤ C2 (A.9)

by using σ2P̃π(x)′P̃π(x) ≤ Vπ ≤ σ̄2P̃π(x)′P̃π(x) from Assumption 3.2(ii). We also use the

fact that V
1/2
π1 � V

1/2
π2 � ||P̃K̄ || for any π1, π2 ∈ Π under Assumption 3.3(ii).

To show the finite dimensional convergence, by the Cramér-Wold device, it suffices to
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show that for any 0 < π ≤ π1 < · · · < πM ≤ 1,

δ′t∗n
d−→ N(0, δ′Σδ) ∀δ ∈ RM (A.10)

where t∗n = (t∗n(π1), ..., t∗n(πM))′,Σjl = limn→∞Σjl,n, Σjl,n ≡
P̃πj (x)′E(P̃πjiP̃

′
πli
ε2i )P̃πl (x)

V
1/2
πj

V
1/2
πl

. To show

(A.10) we will verify Lindberg’s condition of the CLT for 1√
n

∑n
i=1 ωni

d−→ N(0, 1), where

ωni = (δ′Σnδ)
−1/2

∑M
j=1 δj

P̃πj (x)′P̃πjiεi

V
1/2
πj

. Note that Eωni = 0, and 1
n

∑n
i=1 E[ω2

ni] = 1, since

E[ω2
ni] = (δ′Σnδ)

−1δ′V ar(fn(εi, xi))δ = 1, where fn(εi, xi) = (fn,π1(εi, xi), ..., fn,πM (εi, xi))
′.

By Assumption 3.2, we have ||
∑M

j=1 δj
P̃πj (x)′P̃πji

V
1/2
πj

||∞ . ζK̄λK̄ . Moreover, (δ′Σnδ)
−1 . 1.

Therefore, for any a > 0,

1

n

n∑
i=1

E(|ωni|21{|ωni| > a
√
n})

.M
M∑
j=1

E[|
P̃πj(x)′P̃πjiεi

V
1/2
πj

|21{|
M∑
j=1

δj
P̃πj(x)′P̃πji

V
1/2
πj

εi| > a
√
n}]

≤M
M∑
j=1

E(|
P̃πj(x)′P̃πji

V
1/2
πj

|2) sup
x
E[ε2

i 1{|εi| > a(
√
n/(ζK̄λK̄)}|xi = x],

where the last term goes to 0 under n→∞ by Assumption 3.2(ii), since E[( P̃π(x)′P̃πi

V
1/2
π

)2] � 1

for any π and (ζK̄λK̄)/
√
n = o(1) by Assumption 3.2(iv). Thus, Lindberg condition is verified

and therefore (A.10) holds by Lindberg-Feller CLT and Slutzky’s Theorem. We show that

the finite dimensional convergence to a Gaussian distribution with covariance kernel in the

Theorem 3.1.

Now, we only need to show stochastic equicontinuity. Define α(x, π) ≡ P̃π(x)/V
1/2
π (x) =

P̃π(x)/||Ω1/2
π P̃π(x)||. Note that |fn,π(ε, t)| = |α(x, π)′Pπ(t)ε| ≤ C|fn,1(ε, t)| ≤ C|ε|ζK̄λK̄ . We

define envelope function Fn(ε, t) ≡ |fn,1(ε, t)|∨1. Without loss of generality, we assume that

Fn ≥ 1. Note that Ef 2
n,π = 1 for any π, thus EF 2

n = O(1). Moreover, Lindeberg conditions

can be verified easily as follows. For any a > 0,

E(F 2
n1{Fn > a

√
n}) = E[(

P̃1(x)′P̃1(xi)

V
1/2
π

εi)
21{|εi| > a(

√
n/(ζK̄λK̄)}] (A.11)

≤ sup
x
E[ε2

i 1{|εi| > a(
√
n/(ζK̄λK̄)}|Xi = x] = o(1) (A.12)
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since (ζK̄λK̄)/
√
n = o(1) and Assumption 3.2(ii). Moreover, for every δn → 0,

sup
ρ(π1,π2)<δn

E(fn,π1 − fn,π2)2 → 0 (A.13)

since Efn,π1fn,π2 → 1 as ρ(π1, π2)→ 0.

Define κ1,n ≡ supπ 6=π′
||P̃π′−π(x)||
||π′−π|| where P̃π′−π(x) = (p̃bK̄πc+1(x), ..., p̃bK̄π′c(x))′. For suffi-

ciently large n, κ1,n . ||P̃π′−π(x)|| . V
1/2
π′−π(x) under Assumption 3.2 and 3.3(ii). Also define

κ2,n ≡ supπ 6=π′
|Vπ′ (x)−Vπ(x)|
||π′−π|| .

Then, for any π, π′ ∈ Π = [π, 1] such that π < π′, following holds for sufficiently large n,

|α(x, π′)′Pπ′(t)− α(x, π)′Pπ(t)| = | P̃π
′(x)′P̃π′(t)

V
1/2
π′ (x)

− P̃π(x)′P̃π(t)

V
1/2
π (x)

| (A.14)

≤ | P̃π
′(x)′P̃π′(t)− P̃π(x)′P̃π(t)

V
1/2
π′ (x)

|+ |P̃π(x)′P̃π(t)(
1

V
1/2
π′ (x)

− 1

V
1/2
π (x)

)| (A.15)

≤ (sup
π

1

|V 1/2
π (x)|

)|P̃π′−π(x)′P̃π′−π(t)|+ | P̃π(x)′P̃π(t)

V
1/2
π (x)

(
Vπ′(x)− Vπ(x)

V
1/2
π′ (x)(V

1/2
π (x) + V

1/2
π′ (x))

)| (A.16)

≤ C1(sup
π

1

|V 1/2
π (x)|

)κ1,nζK̄λK̄ ||π′ − π||+ C2ζK̄λK̄
1

infπ |Vπ(x)|
κ2,n||π′ − π|| (A.17)

≤ C3ζK̄λK̄ ||π′ − π||+ C4ζK̄λK̄ ||π′ − π|| = AζK̄λK̄ ||π′ − π|| (A.18)

where C1, C2, C3, C4, A are some constants do not depend on n. The third inequality uses

the definition of κ1,n, κ2,n, |P̃π′−π(t)| . ζK̄λK̄ and | P̃π(x)′P̃π(t)

V
1/2
π (x)

| . ζK̄λK̄ under Assumption 3.1

and 3.2. The last inequality uses κ1,n . V
1/2
π′−π(x), κ2,n . supπ Vπ(x), and Vπ(x) � Vπ′(x) for

any π, π′ ∈ Π under Assumption 3.3(ii).

From this, we have

|fn,π′ − fn,π| = |εα(x, π′)′Pπ′(t)− εα(x, π)′Pπ(t)| ≤ |ε|AζK̄λK̄ ||π′ − π||. (A.19)

Therefore, the class of functions Fn = {fn,π : π ∈ Π} satisfies Lipschitz conditions for each

n, and this implies that there are constants A, V > 0 such that

sup
Q
N(ε||Fn||L2(Q),Fn, L2(Q)) ≤ (A/ε)V , 0 < ∀ε ≤ 1 (A.20)

for each n. Then, following uniform-entropy condition holds for every δn → 0.

J(δn,Fn, L2(Q)) =

∫ δn

0

√
log sup

Q
N(ε||Fn||L2(Q),Fn, L2(Q)) −→ 0. (A.21)
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Thus, by the Theorem 2.11.22 in van der Vaart and Wellner (1996), we have shown that the

sequence {t∗n(π) : π ∈ Π} is asymptotically tight in `∞(Π). Together with the definition of

ν(π) = limn→∞−
√
nV
−1/2
π rπ and the equation (A.5), we have T ∗n(π, θ0) ⇒ T(π) + ν(π) for

π ∈ Π. In addition, if Assumption 3.4 holds, then |
√
nV
−1/2
π rπ| = O(

√
nV
−1/2
π `bπK̄ccbπK̄c) =

o(1) for any π ∈ Π. Therefore, T ∗n(π, θ0)⇒ T(π). This completes the proof.

Q.E.D.

A.2 Proof of Theorem 3.2

Proof. We prove the finite dimensional convergence using similar arguments to those used in

the proof of Theorem 3.1. We repeat this here, as Assumption 3.5 impose different rates of K

compare with the Assumption 3.1. If some elements of |νm| = +∞ under oversmoothing se-

quences, joint distribution of (Tn(K1, θ0), · · · , Tn(KM , θ0))′ does not converge in distribution

to a profer bounded random vector. Thus, continuous mapping theorem cannot be directly

applied to obtain asymptotic distribution results. To circumvent this issue, remaining proof

use the same type of argument as in Theorem 1 of Andrews and Guggenberger (2009) in the

moment inequality literature.

By Lemma 1 and similar arguments as in Theorem 3.1, we have following decompositions

for any m = 1, 2, · · ·M ,

Tn(Km, θ0) = tn(m) + νn(m) + op(1),

where tn(m) = 1√
n

∑n
i=1

P̃Km (x)′P̃Kmiεi

V
1/2
Km

and νn(m) = −
√
nV
−1/2
Km

rKm(x) is defined in Assump-

tion 3.2. To obtain joint asymptotic distribution of tn(m), we need to show

δ′tn
d−→ N(0, δ′Σδ), ∀δ ∈ RM (A.22)

where tn = (tn(1), ..., tn(M))′,Σjl = limn→∞Σjl,n, Σjl,n ≡
P̃Kj (x)′E(P̃KjiP̃

′
Kli

ε2i )P̃Kl (x)

V
1/2
Kj

V
1/2
Kl

. Similarly

to the proof of Theorem 3.1, we define ωni = (δ′Σnδ)
−1/2

∑M
j=1 δj

P̃Kj (x)′P̃Kjiεi

V
1/2
Kj

. Observe that

Eωni = 0, and 1
n

∑n
i=1E[ω2

ni] = 1, and

||
M∑
j=1

P̃Kj(x)′P̃Kj

V
1/2
Kj

||∞ .
M∑
j=1

ζKjλKj . ζKMλKM

by Assumptions 3.2 and 3.5. Lindberg’s condition can be verified similarly as in the proof of

Theorem 3.1. Therefore, finite dimensional convergence holds by Lindberg-Feller CLT and
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Slutzky’s Theorem.

Next, we let G(·) be a strictly increasing continuous distribution function on R, for

example standard normal cdf Φ(·). For any m,

Gn,m = G(Tn(Km, θ0)) = G(tn(m) + νn(m) + op(1)).

If |ν(m)| <∞, then we have

Gn,m
d−→ G(Zm + ν(m)) (A.23)

by finite dimensional CLT under Assumptions 3.2, 3.5 and the continuous mapping theorem.

If ν(m) = +∞,

Gn,m
p−→ 1 (A.24)

since tn(m) = Op(1), and G(x)→ 1 as x→∞, and by CLT. Moreover, if ν(m) = −∞

Gn,m
p−→ 0 (A.25)

as G(x)→ 0 as x→ −∞. Since (A.23), (A.24), and (A.25) holds jointly, following holds for

any strictly increasing continuous distribution function on R, G(·),

Gn ≡ (Gn,1, · · · , Gn,M)′
d−→ G∞ ≡ (G(Z1 + ν(1)), · · · , G(ZM + ν(M)))′ (A.26)

where Gn,m = G(Tn(Km, θ0)), and G(Zm + ν(m)) denotes G(+∞) = 1 when ν(m) = +∞,

and G(−∞) = 0 when ν(m) = −∞.

Next, we define G−1(·) as the inverse of G(·). For t = (t1, · · · , tM)′ ∈ RM−1
[±∞] × R, define

G(M)(t) ≡ (G(x1), · · · , G(xM))′ ∈ [0, 1]M−1 × (0, 1). For y = (y1, · · · , yM)′ ∈ (0, 1]M−1 × (0,

1), define G−1
(M)(y) ≡ (G−1(y1), · · · , G−1(yM))′ ∈ RM−1

[±∞] × R. Define also S∗(y) for y ∈ (0,

1]M−1 × (0, 1),

S∗(y) ≡ S(G−1
(M)(y)). (A.27)

Note that S∗(y) is continuous at all y ∈ (0, 1]M−1 × (0, 1) since S(t) is continuous at all
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t ∈ RM−1
[±∞] × R. Then, we have

S(Tn(θ0)) = S(G−1
(M)(Gn))

= S∗(Gn)

d→ S∗(G∞)

= S(G−1
(M)(G∞)) = S(Z + ν)

where the first equality holds by the definition of G−1
(M)(·), the second equality uses the

definition of S∗. Convergence in the third line holds by (A.26), and the fourth and fifth

equality uses the definition of S∗.

Q.E.D.

A.3 Proof of Corollary 4.1

Proof. Under Assumptions 3.1, 3.2, 3.3 and supπ |ν(π)| < ∞, we have T ∗n(π, θ0) ⇒ T(π) +

ν(π) by Theorem 3.1. Then, Inf Tn(θ0) = infK∈Kn |Tn(K, θ0)| = infπ∈Π |T ∗n(π, θ0)| d→ infπ |T(π)+

ν(π)| holds by continuous mapping theorem. In addition, if Assumption 3.4 holds, Inf Tn(θ0)
d→

infπ |T(π)| by Theorem 3.1.

For the second part of Corollary, we first define S(t) ≡ infm |tm| for t = (t1, · · · , tM) ∈
RM−1

[±∞]×R. Note that S(t) is continuous at all t ∈ RM−1
[±∞]×R under Assumption 3.5 (especially,

assumption of at least one |νm| = O(1)) by restricting the domain of functions appropriately.

Then, we have

Inf Tn(θ0) = S(Tn(θ0))
d→ S(Z + ν) = inf

m
|Zm + νm| (A.28)

by Theorem 3.2. If |νm| = +∞, corresponding elements of |Zm+νm| = +∞ by construction.

This completes the proof of Corollary 4.1.

Q.E.D.

A.4 Proof of Corollary 4.2

Proof. We first provide (4.3) in Corollary 4.2.1. Under Assumptions 3.1-3.4, we have shown

that Inf Tn(θ0)
d−→ ξinf = infπ∈[π,1] |T(π)| in Corollary 4.1.1. Therefore,

lim sup
n→∞

P (Inf Tn(θ0) > cinf
1−α) = lim

n→∞
P (Inf Tn(θ0) > cinf

1−α) = P (ξinf > cinf
1−α) = α
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where the first equality holds under subsequence {un} of {n} by the definition of lim sup,

the second equality uses the Corollary 4.1.1 and the definition of cinf
1−α in (4.2). Moreover,

lim sup
n→∞

P (Inf Tn(θ0) > z1−α/2) = P (ξinf > z1−α/2) ≤ P (|T(π)| > z1−α/2) = α

where the inequality uses ξinf = infπ∈[π,1] |T(π)| ≤ |T(π)| and T(π)
d
= N(0, 1) for any single

π.

Next, we prove Corollary 4.2.2. Under Assumptions 3.1-3.3 and supπ |ν(π)| < ∞, we

have Inf Tn(θ0)
d−→ infπ∈[π,1] |T(π) + ν(π)| with asymptotic bias ν(π). We have

lim sup
n→∞

P (Inf Tn(θ0) > cinf
1−α) = P ( inf

π∈[π,1]
|T(π) + ν(π)| > cinf

1−α)

≤ inf
π
P (|T(π) + ν(π)| > cinf

1−α)

= inf
π

[1− (P (Z ≤ cinf
1−α − |ν(π)|)− P (Z ≤ −cinf

1−α − |ν(π)|))]

= inf
π
F (cinf

1−α, |ν(π)|) = F (cinf
1−α, inf

π
|ν(π)|)

where the first inequality uses infπ∈[π,1] |T(π) + ν(π)| ≤ |T(π) + ν(π)| for all π, the second

equality uses T(π)
d
= Z ∼ N(0, 1) and the definition of F (·). Finally, the last equality holds

since F (c, |ν|) is monotone increasing function of |ν|. Similarly,

lim sup
n→∞

P (Inf Tn(θ0) > z1−α/2) = P ( inf
π∈[π,1]

|T(π) + ν(π)| > z1−α/2) ≤ F (z1−α/2, inf
π
|ν(π)|).

Corollary 4.2.3 can be similarly derived with infm |ν(m)| = 0 under Assumption 3.5 and

using the fact that F (z1−α/2, 0) = α. This completes the proof. (If we further assume

Σ = IM in Theorem 3.2, then lim sup
n→∞

P (Inf Tn(θ0) > c) =
∏M

m=M−M1+1 F (c, |ν(m)|) holds for

any 0 < c <∞, by the asymptotic independence of Zm, m = 1, ...,M and when |ν(m)| =∞
for m = 1, · · · ,M −M1 since F (c, |ν(m)|) = 1 for |ν(m)| =∞.) Q.E.D.

A.5 Proof of Corollary 4.3

Proof. Under Assumptions 3.2, 3.4, 4.1, and 4.2, following finite dimensional convergence

holds by Theorem 3.1,

Tn(θ) = (Tn(K1, θ0), · · · , Tn(KM , θ0))′
d−→ Z = (Z1, · · · , ZM)′, Z ∼ N(0,Σ). (A.29)
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Under Assumptions 3.2, 3.4, 3.5, and 4.2, above also holds by Theorem 3.2. Note that

Tn,V̂ (K, θ) =
√
n(θ̂K−θ0)

V̂
1/2
K

=
V

1/2
K

V̂
1/2
K

Tn(K, θ). Then following holds for A ≡ diag{
V

1/2
K1

V̂
1/2
K1

, · · · ,
V

1/2
KM

V̂
1/2
KM

},

(Tn,V̂ (K1, θ0), · · · , Tn,V̂ (KM , θ0))′ = ATn(θ)
d−→ Z (A.30)

by Assumption 4.3 and Slutzky Theorem and A
p−→ IM

Next consider ĉinf
1−α which is (1− α) quantile of inf

m=1,···,M
|Zm,Σ̂| defined in (4.10),

ĉinf
1−α = inf{x ∈ R : P ( inf

m=1,···,M
|Zm,Σ̂| ≤ x) ≥ 1− α}

where ZΣ̂ = (Z1,Σ̂, · · · , ZM,Σ̂)′ ∼ N(0, Σ̂), Σ̂jj = 1, Σ̂jl = V̂
1/2
Kj

/V̂
1/2
Kl

. Note that for any

j < l,

Σ̂jl =
V̂

1/2
Kj

V̂
1/2
Kl

=
V̂

1/2
Kj

V
1/2
Kj

V
1/2
Kj

V
1/2
Kl

V
1/2
Kl

V̂
1/2
Kl

p−→ Σjl (A.31)

by Assumption 4.3. Therefore, Σ̂
p−→ Σ, ZΣ̂

d−→ ZΣ, and inf
m=1,···,M

|Zm,Σ̂|
d−→ inf

m=1,···,M
|Zm,Σ|

hold. Thus, ĉinf
1−α

p−→ cinf
1−α. Q.E.D.

A.6 Proof of Corollary 5.1

Proof. We first show Corollary 5.1.1. Note that Inf Tn(θ0) = inf
K∈Kn

|Tn,V̂ (K, θ)| d→ infm |Zm|
by Corollary 4.3. We have

lim inf
n→∞

P (θ0 ∈ CIRobustinf ) = lim inf
n→∞

P (Inf Tn(θ0) ≤ cinf1−α + op(1))

= P (inf
m
|Zm| ≤ cinf1−α) = 1− α

where the first and the second equality holds by Corollary 4.3 and Corollary 4.1.1 under

Assumptions 3.2, 3.4, 4.1, 4.2, and 4.3. Similarly,

lim inf
n→∞

P (θ0 ∈ CIinf) = P (inf
m
|Zm| ≤ z1−α/2) ≥ P (|Zm| ≤ z1−α/2) = 1− α. (A.32)

Corollary 5.1.2 and 5.1.3 can be similarly derived from Corollary 4.2.2 and 4.2.3, respectively.

Q.E.D.
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A.7 Proof of Corollary 6.1

Proof. Similar to the proof of Corollary 4.3, we can verify sup
m=1,···,M

|Zm,Σ̂|
d−→ sup

m=1,···,M
|Zm,Σ|,

ĉsup
1−α

p−→ csup
1−α, and SupTn(θ0) = sup

m
|Tn,V̂ (Km, θ0)| d−→ sup

m
|Zm,Σ| either under Assumptions

3.2, 3.4, 4.1, 4.2, and 4.3 or under Assumptions 3.2, 3.4, 3.5, 4.2, and 4.3. Therefore, we

have

lim inf
n→∞

P (θ0 ∈ CIRobustpms ) = lim inf
n→∞

P (|Tn,V̂ (K̂, θ0)| ≤ ĉsup1−α) (A.33)

≥ lim inf
n→∞

P (SupTn(θ0) ≤ ĉsup1−α) (A.34)

= P (sup
m
|Zm,Σ| ≤ csup1−α) = 1− α (A.35)

where the first inequality uses |Tn,V̂ (K̂, θ0)| ≤ SupTn(θ0) for any K̂ ∈ Kn. Q.E.D.

A.8 Proof of Theorem 7.1

Proof. Conditional on X = [x1, · · · , xn]′, following decomposition holds for any single se-

quence K ∈ Kn

√
n(θ̂K − θ0) = Γ̂−1

K SK ,

Γ̂K =
1

n
(W ′MKW ), SK =

1√
n
W ′MK(g + ε)

where g = [g1, · · · , gn]′, gi = g0(xi), gw = [gw1, · · · , gwn]′, gwi = gw0(xi) = E[wi|xi], v = [v1,

· · · , vn]. All remaining proofs contain conditional expectations (conditioning on X) hold

almost surely (a.s.).

Under Assumption 7.1 and conditional homoskedastic error terms, E[v2
i |xi] = E[v2

i ],

Γ̂K = ΓK + op(1), ΓK = (1−K/n)E[v2
i ] (A.36)

by Lemma 1 of Cattaneo, Jansson, and Newey (2015a). Moreover,

SK =
1√
n
v′MKε+

1√
n
g′wMKg +

1√
n

(v′MKg + g′wMKε) (A.37)

=
1√
n

n∑
i=1

MK,iiviεi −
1√
n

n∑
i=1

n∑
j=1,j<i

PK,ij(viεj + vjεi) + op(1) (A.38)

since MK,ij = −PK,ij for j < i, 1√
n
g′wMKg = Op(

√
nK̄−γg−γgw ) = op(1), 1√

n
(v′MKg +

g′wMKε) = Op(K̄
−γg +K̄−γgw ) = op(1) by Lemma 2 of Cattaneo, Jansson and Newey (2015a)
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under Assumption 7.1. Under conditional homoskedastic error E[ε2
i |wi, xi] = σ2

ε following

holds

Tn(K, θ0) =
√
nV
−1/2
K (θ̂K − θ0) = V

−1/2
K Γ−1

K

1√
n
v′MKε+ op(1)

d−→ N(0, 1)

by Theorem 1 of Cattaneo, Jansson and Newey (2015a) which follows from Lemma A2 in

Chao, Swanson, Hausman, Newey and Woutersen (2012).

For simplicity, here we only show the joint convergence of bivariate t-statistics, but the

proof can be easily extended to multivariate case. For any K1 < K2 in Kn, we show

δ1Tn(K1, θ0) + δ2Tn(K2, θ0)
d−→ N(0, (δ2

1 + δ2
2 + 2δ1δ2v12)), ∀(δ1, δ2) ∈ R2 (A.39)

where v12 = limn→∞ V
1/2
K1

/V
1/2
K2

. We closely follows the proof of Lemma A2 in Chao et al.

(2012). Define Yn, Y1,n and Y2,n as follows

Yn = δ1Y1,n + δ2Y2,n, (A.40)

Y1,n = ω1,1n +
n∑
i=2

y1,in, y1,in = ω1,in + ȳ1,in, (A.41)

Y2,n = ω2,1n +
n∑
i=2

y2,in, y2,in = ω2,in + ȳ2,in, (A.42)

where ω1,in = V
−1/2
K1

Γ−1
K1
MK1,ii/

√
n, ȳ1,in =

∑
j<i(u1,jPK1,ijεi+u1,iPK1,ijεj)/

√
n, u1,i = V

−1/2
K1

Γ−1
K1
vi

and ω2,in, ȳ2,in are similarly defined with appropriate terms PK2 , VK2 ,ΓK2 with K2. Similar

to the proof of Lemma A2 in Chao et al. (2012), ω1,1n = op(1), ω2,1n = op(1). Thus, we only

need to show that following holds conditional on X with probability one

n∑
i=2

(δ1y1,in + δ2y2,in)
d−→ N(0, δ2

1 + δ2
2 + 2δ1δ2v12). (A.43)

It remains to provide Lindeberg-Feller condition.

E[(
n∑
i=2

δ1y1,in + δ2y2,in)2|X] = δ2
1E[(

n∑
i=2

y1,in)2|X] + δ2
2E[(

n∑
i=2

y2,in)2|X]

+2δ1δ2E[
n∑
i=2

n∑
j=2

y1,iny2,in|X], (A.44)

where the first and second terms in (A.44) goes to δ2
1, δ

2
2 a.s., respectively, as in the proof of

Lemma A.2 in Chao et al. (2012). Note that E[ω1,inȳ2,in|X] = 0, E[ω2,inȳ1,in|X] = 0, and
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E[ω1,1nω2,in|X] = 0, E[ω2,1nω1,in|X] = 0 for any i > 1. Followings are the key calculations

for the asymptotic variance of leading terms in Yn.

E[Y1,nY2,n|X] =
1

n
V
−1/2
K1

Γ−1
K1
E[v′MK1εε

′MK2v|X]Γ−1
K2
V
−1/2
K2

(A.45)

=
1

n
V
−1/2
K1

Γ−1
K1
σ2
εE[v′MK2v|X]Γ−1

K2
V
−1/2
K2

(A.46)

= V
−1/2
K1

Γ−1
K1
σ2
εΓK2Γ

−1
K2
V
−1/2
K2

(A.47)

= V
1/2
K1

/V
1/2
K2

(A.48)

where the second equality uses conditional homoskedasticity E[εε′|X,W ] = σ2
εI andMK1MK2 =

MK2 , the third equality uses tr(MK2) = n−K2 and E[v2|X] = E[v2], and the last equality

uses VK1 = σ2
εΓ
−1
K1

. Therefore, we calculate components of last terms in (A.44) as follows

E[
n∑
i=2

n∑
j=2

y1,iny2,in|X] = E[Y1,nY2,n|X]−
n∑
i=2

E[ω1,1ny2,in|X]

−
n∑
i=2

E[ω2,1ny1,in|X]− E[ω1,1nω2,1n|X] (A.49)

= V
1/2
K1

/V
1/2
K2
− E[ω1,1nω2,1n|X]→ v12 a.s. (A.50)

As in the proof of Lemma A.2 of Chao et al. (2012), we have

n∑
i=2

E[(δ1y1,in + δ2y2,in)4|X] .
n∑
i=2

E[(y1,in)4|X] +
n∑
i=2

E[(y2,in)4|X]→ 0 a.s. (A.51)

Thus, by similar arguments following the proof of Lemma A.2 in Chao et al. (2012), we can

apply the martingale central limit theorem. Then, by Slutzky theorem, joint convergence

holds with the claimed covariance.

By Theorem 2 in Cattaneo, Jansson, and Newey (2015a), Assumption 4.3 holds with the

following variance estimator for VK

V̂K = s2Γ̂−1
K , s2 =

1

n− 1−K

n∑
i=1

ε̂2
i , ε̂2

i =
n∑
j=1

MK,ij(yj − θ̂Kwj). (A.52)

Then, we can show the coverage results using similar arguments to those used in the proof

of Corollary 5.1 and 6.1. This completes the proof. Q.E.D.
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B Figures and Tables
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Figure 1: Plots of F (c, ν) as a function of ν for c = 1.5, 1.96, 2.4, where
F (c, |ν|) = 1− Φ(c− |ν|) + Φ(−c− |ν|) with the standard normal cumulative distribution

function Φ(·).
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Figure 2: Different functions of g(x) used in simulations (Section 8).
Solid lines (Black) are g1(x) = 4x− 1; Dashed lines (Green) are
g2(x) = ln(|6x− 3|+ 1)sgn(x− 1/2); Dotted lines (Blue) are

g3(x) = sin(7πx/2)/[1 + 2x2(sgn(x) + 1)]; and Dash-dot lines (Red) are
g4(x) = x− 1/2 + 5φ(10(x− 1/2)), where φ(·) is the standard normal pdf.

57



Figure 3: Coverage - Polynomials
Nominal 95% Coverage of Various CIs for g(x):

(1) CINaivepms with K̂cv (2) CImaxK with K̄ (3) CIRobustinf (4) CIinf (5) CIRobustpms with K̂cv

(a) g1(x) = 4x− 1
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(b) g2(x) = ln(|6x− 3|+ 1)sgn(x− 1/2)
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(c) g3(x) = sin(7πx/2)
1+2x2(sgn(x)+1)
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(d) g4(x) = x− 1/2 + 5φ(10(x− 1/2))
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Figure 4: Coverage - Splines
Nominal 95% Coverage of Various CIs for g(x):

(1) CINaivepms with K̂cv (2) CImaxK with K̄ (3) CIRobustinf (4) CIinf (5) CIRobustpms with K̂cv

(a) g1(x) = 4x− 1
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(b) g2(x) = ln(|6x− 3|+ 1)sgn(x− 1/2)
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(c) g3(x) = sin(7πx/2)
1+2x2(sgn(x)+1)
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(d) g4(x) = x− 1/2 + 5φ(10(x− 1/2))
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Figure 5: Length of CIs - Polynomials
Average lengths of nominal 95% CIs for g(x):

(1) CINaivepms with K̂cv (2) CImaxK with K̄ (3) CIRobustinf (4) CIinf (5) CIRobustpms with K̂cv
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(b) g2(x) = ln(|6x− 3|+ 1)sgn(x− 1/2)
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(c) g3(x) = sin(7πx/2)
1+2x2(sgn(x)+1)
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(d) g4(x) = x− 1/2 + 5φ(10(x− 1/2))
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Figure 6: Length of CIs - Splines
Average lengths of nominal 95% CIs for g(x):

(1) CINaivepms with K̂cv (2) CImaxK with K̄ (3) CIRobustinf (4) CIinf (5) CIRobustpms with K̂cv

(a) g1(x) = 4x− 1
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(b) g2(x) = ln(|6x− 3|+ 1)sgn(x− 1/2)
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(d) g4(x) = x− 1/2 + 5φ(10(x− 1/2))
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Figure 7: Power function against fixed alternatives. Design 2 :
g2(x) = ln(|6x− 3|+ 1)sgn(x− 1/2). H0 : θ = θ0 vs H1 : θ = θ0 + δ, where θ0 = g2(x) at

x = 0.4 for figure (a) and x = 0.5 for figure (b). Using Polynomials.
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Table 1: Nonparametric Wage Elasticity of Hours of Work
Estimates in Blomquist and Newey (Table 1, 2002). Wage elasticity

evaluated at the mean wage and income.

Additional Terms1 CV 2 Êw SEÊw CIÊw

1, yJ , wJ 0.00472 0.0372 0.0104 [0.0168, 0.0576]
∆y∆w 0.0313 0.0761 0.0128 [0.0510, 0.1012]
`∆y 0.0305 0.0760 0.0127 [0.0511, 0.1009]
y2
J , w

2
J 0.0323 0.0763 0.0129 [0.0510, 0.1016]

∆y2,∆w2 0.0369 0.0543 0.0151 [0.0247, 0.0839]
yJwJ 0.0364 0.0659 0.0197 [0.0273, 0.1045]
∆yw 0.0350 0.0628 0.0223 [0.0191, 0.1065]
`2∆y 0.0364 0.0636 0.0223 [0.0199, 0.1073]
y3
J , w

3
J 0.0331 0.0845 0.0275 [0.0306, 0.1384]

`∆y2, `∆w2, `∆yw 0.0263 0.0775 0.0286 [0.0214, 0.1336]
y2
JwJ , yJw

2
J 0.0252 0.0714 0.0289 [0.0148, 0.1280]

MLE estimates 0.123 0.0137

Critical values: ĉinf
1−α = 0.9668, ĉsup

1−α = 2.4764

Test H0 : Ew = 0, Inf Tn(θ0) = 2.4706 > ĉinf
1−α

CIRobustinf = [0.0271, 0.1111]
CIinf = [0.0148, 0.1384], CIRobustpms = [0.0169, 0.0916]

1 y : non-labor income, w : marginal wage rates, `: the end point
of the segment in a piecewise linear budget set. `m∆ypwq denotes∑

j `
m
j (ypjw

q
j − y

p
j+1w

q
j+1).

2 CV denotes cross-validation criteria defined in Blomquist and
Newey (2002, p.2464).
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C Supplementary material

The supremum of the t-statistics and confidence intervals uniform

in the number of series terms

In this supplementary material, we consider the supremum of the t-statistics over all series

terms and discuss more about inference methods based on this test statistic. In another

direction, this paper also derives the robust inference method after searching over different

specifications for nonparametric series estimation.

Suppose a researcher reports only ‘favorable’ subset of positive results and hiding large

different specifications which show overall mixed results or pretending not to search. These

practices may lead to distorted inference and the misleading conclusion if we take variability

of the first step specification search into account. For example, if a researcher computes

many t-statistics and chooses the largest one, then the usual standard normal critical value

must be adjusted to control size. The importance of specification search (or data mining/

data snooping) has long been alerted in various other contexts (see Leamer (1983), White

(2000), Romano and Wolf (2005), Hansen (2005), and recent papers by Varian (2014), Athey

and Imbens (2015), and Armstrong and Kolesár (2015)). Considering the supremum statistic

is quite natural to control the size of the joint test in multiple testing literatures.

Specification search is widely used in estimating the parametric model in a less clear

way. Although nonparametric series estimation gives a systematic way of doing specification

search by restricting the domain of search as K ∈ [K, K̄], little justification has been done,

especially for the inference problems. Here, we introduce the tests based on the supremum of

the t-statistics over all series terms using the critical values from its asymptotic distribution.

We show that this also controls size with undersmoothing conditions. This tests can be

used to construct CIs which are uniform in K that have a correct coverage. That is, all

confidence intervals using the critical value from supremum t-statistics jointly cover the true

parameter at the nominal level, asymptotically. This robust inference method is one way to

improve the credibility of inference by admitting search over large sets of different models in

nonparametric regression and doing some corrections as usual in multiple testing literatures.

We consider a following ‘supremum’ t-statistic

SupTn(θ) = sup
K∈Kn

|Tn(K, θ)|. (C.1)

The supremum of the t-statistics is appropriate in the context of multiple testing and

is known to control the size of the family wise error rate (FWE). We may consider the

specification search over large sets of Kn as simultaneously testing a single hypothesis H0
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based on different test statistics Tn(K, θ) over K ∈ Kn. Multiple testing setup is more

natural when we focus on the pseudo-true parameter θK , i.e., the best linear approximation

for g0(x). One can consider simultaneous testing of individual hypothesis HK,0 : θK = θ0 vs

HK,1 : θK 6= θ0 for different K ∈ Kn. Controlling FWE corresponds to control the following

probability asymptotically, FWE = P (reject at least one hypothesis HK,0, K ∈ Kn) ≤ α.

To derive the asymptotic size of the test and coverage of CI based on the SupTn(θ), we

first provide asymptotic null limiting distribution of the supremum statistics analogous to

the Corollary 1 for the infimum test statistic, Inf Tn(θ).

Corollary C.1. 1. Under Assumptions 3.1, 3.2, 3.3, and supπ |ν(π)| <∞, SupTn(θ0)
d−→

supπ∈[π,1] |T(π) + ν(π)|, where T(π) is the mean zero Gaussian process defined in

Theorem 3.1. In addition, if Assumption 3.4 holds, then SupTn(θ0)
d−→ ξsup =

supπ∈[π,1] |T(π)|.

2. Suppose Assumptions 3.2 and 3.5 hold. In addition, if supm |ν(m)| <∞ are satisifed,

then SupTn(θ0)
d−→ supm=1,···,M |Zm + ν(m)| where Zm is an element of M × 1 nor-

mal vector Z ∼ N(0,Σ) and ν = (ν(1), · · · , ν(M))′ defined in Theorem 3.2. If

supm |ν(m)| =∞, then SupTn(θ0)
p−→∞.

Corollary C.1.2 shows that SupTn(θ0) converges in probability to infinity under alterna-

tive set Assumption 3.5. This implies that the supremum of the t-statistics can be sensitive

to those oversmoothing sequences (small K) with high bias. Next Corollary provides the

asymptotic size of the test based on SupTn(θ) similar to Corollary 4.2.

Corollary C.2. 1. Under Assumptions 3.1-3.4, following holds

lim sup
n→∞

P (SupTn(θ0) > csup
1−α) = α. (C.2)

2. Under Assumptions 3.1-3.3, and supπ |νπ| <∞, following holds

lim sup
n→∞

P (SupTn(θ0) > csup
1−α) ≥ F (csup

1−α, sup
π
|ν(π)|) (C.3)

where F (c, |ν|) = 1−Φ(c− |ν|) + Φ(−c− |ν|) with standard normal cumulative distri-

bution function Φ(·).

3. Under Assumptions 3.2, 3.5, and supm |ν(m)| =∞, lim sup
n→∞

P (SupTn(θ0) > c) = 1 for

any 0 < c <∞.

Contrary to the Inf Tn(θ) test statistic, Corollary C.2.2 shows that the test based on

SupTn(θ) can be sensitive to the large asymptotic bias, and this leads to the over-rejection
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of the test. Suppose F (csup
1−α, q) = α for some q > 0. If supπ |ν(π)| > q, then the asymptotic

size is strictly greater than α. This also can be seen from the results in C.2.3. If |ν(m)| =∞
for any m, then the asymptotic size of the test is equal to 1.

Next, we define CIsup based on SupTn(θ) and the critical value ĉsup
1−α in Section 6.

CIsup ≡ {θ : sup
K∈Kn

|Tn,V̂ (K, θ)| ≤ ĉsup
1−α}

=
⋂

K∈Kn

{θ : |Tn,V̂ (K, θ)| ≤ ĉsup
1−α} = [sup

K
(θ̂K − ĉsup

1−αs(θ̂K)), inf
K

(θ̂K + ĉsup
1−αs(θ̂K))].

(C.4)

Note that CIsup is an intersection of all CIs in Kn using critical value ĉsup
1−α.

Corollary C.3. 1. Under Assumptions 3.2, 4.1, 4.2, and 4.3,

lim inf
n→∞

P (θK ∈ [θ̂K ± ĉsup
1−αs(θ̂K)] ∀K ∈ Kn) = 1− α. (C.5)

In addition, if Assumption 3.4 (undersmoothing) holds,

lim inf
n→∞

P (θ0 ∈ CIsup) = lim inf
n→∞

P (θ0 ∈ CIK = [θ̂K ± ĉsup
1−αs(θ̂K)] ∀K ∈ Kn) = 1− α.

(C.6)

2. Under Assumptions 3.2, 4.1, 4.2, 4.3, and supm |ν(m)| <∞,

lim inf
n→∞

P (θ0 ∈ CIsup) ≤ 1− F (csup
1−α, sup

m
|ν(m)|). (C.7)

3. Under Assumptions 3.2, 3.5, 4.3, and supm |ν(m)| =∞, lim inf
n→∞

P (θ0 ∈ CIsup) = 0.

By using an appropriate critical value from the distribution of SupTn(θ), (C.5) gives

asymptotic coverage of the uniform confidence intervals over K ∈ Kn for the pseudo-true

value θK . (C.6) gives asymptotic coverage probability of CIsup for the true value θ0 with

undersmoothing assumption, which is same as joint coverage of uniform confidence intervals

over K ∈ Kn.

Corollary C.3.2 and C.3.3 show that the coverage can be sensitive to the asymptotic bias.

Especially, uniform coverage results based on SupTn(θ) in (C.6) can be highly sensitive to

some small K ∈ K which has a large asymptotic bias, so that the coverage probability can

be far below than the nominal level. Recall that CIsup is constructed by the intersection of
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all confidence intervals in Kn using larger critical value ĉsup
1−α than the normal critical value.

Intersection can give tighter CI, however, if one of the estimators has a large bias, resulting

CI can be too narrow to cover the true parameter. In the worst scenario, the intersection can

be empty sets so that the coverage of uniform CIs can be 0. This was formally stated in C.3.3.

Under Assumption 3.5, if |ν(m)| = ∞ for some m then asymptotic coverage probability of

CIsup is exactly 0.

C.1 Proof of the results in Section C

C.1.1 Proof of Corollary C.1

Proof. The first part follows from Theorem 3.1 and continuous mapping theorem similar to

the proof of Corollary 4.1. For the second part of Corollary C.1, consider S(t) = supm |tm|
for t = (t1, · · · , tM) similarly as in the proof of Corollary 4.1. We have

SupTn(θ0) = sup
m
|Tn(Km, θ0)| = S(Tn(θ0)). (C.8)

If supm |ν(m)| <∞, S(t) is continuous at all t ∈ RM . Therefore, following holds

SupTn(θ0)
d−→ S(Z + ν) = sup

m
|Zm + ν(m)| (C.9)

by Theorem 3.2. If |νm| = +∞ for some m, then then |Tn(Km, θ0)| p−→ +∞, therefore

SupTn(θ0)
p−→ +∞. Q.E.D.

C.1.2 Proof of Corollary C.2

Proof. First, we observe that |Tn(K̂, θ0| ≤ SupTn(θ0) for any K̂ ∈ Kn. Then we have

lim sup
n→∞

P (|Tn(K̂, θ)| > csup
1−α) ≤ lim sup

n→∞
P (SupTn(θ0) > csup

1−α) = P (ξsup > csup
1−α) = α

by Corollary C.1.1. Next, without assuming Assumption 3.4, we have

lim sup
n→∞

P (SupTn(θ0) > csup
1−α) = P ( sup

π∈[π,1]

|T(π) + ν(π)| > csup
1−α)

= 1− P ( sup
π∈[π,1]

|T(π) + ν(π)| ≤ csup
1−α)

≥ sup
π

[1− P (|T(π) + ν(π)| ≤ csup
1−α)]

= sup
π
F (csup

1−α, |ν(π)|) = F (csup
1−α, sup

π
|ν(π)|)
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where the first inequality uses P (supπ∈[π,1] |T(π) + ν(π)| ≤ csup
1−α) ≤ P (|T(π) + ν(π)| ≤ csup

1−α)

for all π. The third and last equality use the definition of F and monotone increasing

property of F (c, |ν|) with respect to |ν|.
Next, we consider Corollary C.2.3 under alternative set assumption. If supm |ν(m)| =∞,

then SupTn(θ0)
p−→ +∞ by Corollary C.1.2. Thus, lim sup

n→∞
P (SupTn(θ0) > c) = 1 since

F (c,∞) = 1 for any 0 < c <∞. Q.E.D.

C.1.3 Proof of Corollary C.3

Proof. This follows from Corollary 4.3 and Corollary C.2 similar to the proof of Corollary

6.1. Recall that the t-statistic can be written as

Tn,V̂ (K, θ0) =

√
n(θ̂K − θ0)

V̂
1/2
K

=

√
n(θ̂K − θK)

V̂
1/2
K

+

√
nrK

V̂
1/2
K

(C.10)

First, consider (C.5),

lim inf
n→∞

P (θK ∈ [θ̂K ± ĉsup
1−αs(θ̂K)] ∀K ∈ Kn) (C.11)

= lim inf
n→∞

P (|
√
n(θ̂K − θK)

V̂
1/2
K

| ≤ ĉsup1−α ∀K ∈ Kn) = lim inf
n→∞

P (sup
K
|
√
n(θ̂K − θK)

V̂
1/2
K

| ≤ ĉsup1−α)

(C.12)

= P (sup
m
|Zm| ≤ csup1−α) = 1− α (C.13)

where the last equality follows from Theorem 3.1 and Corollary 4.3 under Assumptions 3.2,

4.1, 4.2, and 4.3. In addition, if Assumption 3.4 holds, we have that

lim inf
n→∞

P (θ0 ∈ CIsup) = lim inf
n→∞

P (SupTn(θ0) ≤ ĉsup1−α) (C.14)

(= lim inf
n→∞

P (|Tn,V̂ (K, θ0)| ≤ ĉsup1−α ∀K ∈ Kn)) (C.15)

= P (sup
m
|Zm| ≤ csup1−α) = 1− α. (C.16)

This completes the first part of Corollary C.3. The second part can be shown similarly

to the proof of Corollary C.2.2. For the last part, if supm |ν(m)| = ∞, then lim inf
n→∞

P (θ0 ∈
CIsup) = 0 by Corollary C.2.3.

Q.E.D.
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