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Abstract

We study a robust toll pricing problem where toll setters and users
have different level of information when taking their decisions. Toll
setters do not have full information on the costs of the network and
rely on historical information when determining toll rates, whereas
users decide on the path to use from origin to destination knowing
toll rates and having, in addition, more accurate traffic data. In this
work, we first consider a single origin-destination parallel network and
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formulate the robust toll pricing problem as a distributionally robust
optimization problem, for which we develop an exact algorithm based
on a mixed-integer programming formulation and a heuristic based
on two-point support distribution. We further extend our formula-
tions to more general networks and show how our algorithms can be
adapted for the general networks. Finally, we illustrate the usefulness
of our approach by means of numerical experiments both on randomly
generated networks and on the road network of the city of Chicago.

keywords: Toll-pricing; Conditional value at risk; Robust optimization

1 Introduction and Literature

1.1 Introduction

Road networks played a crucial role in economic and social development act-
ing as trade enablers. Hence they find an important place in every govern-
ment’s policies. There has been much debate on how roads building should
be funded. Traditionally it has been the case that roads were built and
maintained by the funds collected from the public in the form of taxes. How-
ever, many economists, researchers and policymakers questioned this practice
Lindsay (2006). The main critique being that significant proportion of the
tax payers may not be using the road being built. In fact, in his book The
Wealth of Nations, Adam Smith argued “When the carriages which pass over
a highway or a bridge ... pay toll in proportion to their weight they pay for
the maintenance of those public works exactly in proportion to the wear and
tear which they occasion of them. It seems scarce possible to invent a more
equitable way of maintaining such works”. This idea has gained much more
attention in last few decades and ever more popular today than before. As
a result private investment in road building has seen a significant increase.
Another main reason is that often not enough tax is collected by govern-
ments, especially in developing countries to fund large road building projects.
To tackle this governments are encouraging and attracting private players in
road building and many of these projects are now done under Public-Private-
Partnership (PPP) framework. The PPP-type model is widely adopted due
to advantages like bridging the fiscal gap and also efficient project man-
agement practices of private sector companies compared to governmental
agencies. For example in India, many new highways are built with PPP
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type of model after the introduction of the amendment of National Highway
Act 1956 in the year 1995, which enabled private investors participation in
highway construction and maintenance, see Singh and Kalidindi (2006) and
references therein. Typically these projects employ build-operate-transfer
model. Here the investing company enters in a contract with government to
build a road/highway. In return of the investment, the company is allowed
to collect tolls for an agreed period of time before the transfer of ownership
to government. In fact, tolls have become a primary way to encourage pri-
vate investment in public infrastructure; see Brown (2005). There are both
successes and failures of this model. One of the notable examples is the M6
toll between Cannock and Coleshill, which opened in 2003. According to a
BBC News Report, “the company operating M6 toll made a 1 million pound
loss in the year 2012”,“drivers have said the road is underused because of its
prices”. Therefore, a key element to the success of this model is the revenue
generated from tolls. The investor company’s main objective is to maximize
the revenue from tolls. Hence the “right” toll price can be the defining factor
to the success of the project. The key to a successful revenue maximization
pricing mechanism lies in understanding the network users options compared
to the toll road.

In Labbé et al. (1998), a bilevel model is proposed to capture the sit-
uation where the toll-setter anticipates the network user’s reaction to his
decisions. In a full information situation it is assumed that costs of travel
on the network are fixed and known to both toll-setter and users. However,
cost/time of travel is rarely constant over time in a real world transportation
network. Depending on many factors such as weather, day and time of week,
accidents, etc., there can be considerable variation in cost. Having said this
our ability to have a reasonably good estimate of travel time has never been
better with latest technology able to provide us with almost real time traffic
updates.This means users may change their decisions over time depending
upon then costs/times of travel in the network. Toll-setter, however, suffers
from the disadvantage that (if not always, more often in practice) he is not
allowed to change the toll very frequently due to policy regulations and other
constraints. In most cases, toll is required to be fixed for at least a minimum
period. Even if kept unchanged for a minimum period, changing toll price
and especially increasing, usually has a negative impact on user’s beliefs and
may end up resulting in reduced revenues. In such a situation toll-setter has
to make his decisions under uncertainty about user’s future options. On the
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other hand users have full (or reasonbly accurate) information before they
make their decisions.

In this work we study a robust toll-pricing mechanism which aims to
minimize the risk of the toll-setter against this uncertainty. In doing so,
we use the ideas from robust optimization literature and show that our ap-
proach is very near to the conditional value-at-risk approach used in portfolio
optimization and other problems.

1.2 Literature

Profit and revenue maximization problems over a transportation network
are given much attention in pricing literature, see for eg., van Hoesel (2008),
Bouhtou et al. (2007b), Karakostas and Kolliopoulos (2004) to name a few.
Within a huge body of papers, many have studied the application of bilevel
programming paradigm to pricing problems, such as Labbé et al. (1998); and
many subsequent papers, Coté et al. (2003), Bouhtou et al. (2007a), Heilporn
et al. (2010), Myklebust et al. (2016), Dempe and Zemkoho (2012) applied
bilevel framework to several different application areas. A deterministic ver-
sion of the problem we study in this paper has been investigated in Labbé
et al. (1998), Brotcorne et al. (2000), Labbé and Violin (2013), Heilporn
et al. (2011, 2009), van Hoesel (2008), Bouhtou et al. (2007b). However,
the stochastic extensions of the problem have gained more interest only in
recent years. Two different stochastic extensions of the model in Labbé et al.
(1998) have been studied in Gilbert et al. (2015) and Alizadeh et al. (2013).
In Gilbert et al. (2015), authors study the logit pricing problem. Alizadeh
et al. (2013) studies the two-stage stochastic problem with recourse extension
of deterministic toll pricing problem also taking view of limited price revision
opportunity. In this paper we study the robust toll pricing problem mainly
on single commodity parallel networks and show that the approach can be
extended to general networks. By single commodity we mean the network
has a single origin and single destination and by parallel we mean there can
be several roads connecting origin and destination. The deterministic pricing
problem on such networks is easy to solve using a closed-form formula. That
is given costs on the alternative roads set the toll to the least cost. To the
best of our knowledge, there is no work on robust pricing in the presence of
uncertainty even in such basic networks, and as we will show that the pricing
problem in these networks can itself be quite rich. There, however, are two
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studies where robust optimization framework is applied to pricing problems,
in Violin (2014) and Gardner et al. (2010). In both these works the models
considered are different from our model and problem setting. Furthermore,
the budgeted uncertainty model considered in Violin (2014) gives tractable
models but may not be best in terms of robustness as found in Dokka and
Goerigk (2017). Understanding the pricing problem in parallel networks will
provide useful insights into the complexity of pricing for more general net-
works involving more commodities and with variable demands. As we will
show that the ideas we propose in this work will provide a basis for solving
toll-pricing problem in more general networks.

The broader scope of the paper is to propose a bilevel type methodology
to pricing problems with limited pricing (or price revising) power. Within
this broader scope we are mainly inspired by the toll pricing problem faced
by a risk averse toll setter. Our aim in this work is to provide a better under-
standing of the toll-pricing problem faced by a risk-averse toll-setter when
there is uncertainty on non-toll costs. We use the framework of distributional
robustness which is very useful in making optimal decisions under limited or
imprecise information, see Goh and Sim (2010) for recent developments on
distributionally robust optimization. Our work also fits into the emerging
literature on general static and dynamic pricing that studies pricing problem
faced by a seller with insufficient information about demand. Bergemann and
Schlag (2008) and Bergemann and Schlag (2011) study robust static pricing
problems who formulate the problem as minmax regret problem. Within
the dynamic pricing literature we mention here Besbes and Zeevi (2009),
van den Boer and Zwart (2015), Lim and Shanthikumar (2007), Keskin and
Zeevi (2014), van den Boer and Zwart (2014). Also see the survey on studies
on dynamic pricing in van den Boer (2015). While most of this literature
studies dynamic pricing and learning and earning problems, to the best of our
knowledge none take into consideration of the case when seller has limited
price revising opportunity due to price controls imposed.

The rest of the paper is organized as follows: problem definition, as-
sumptions and some notation are described in Section 2; Section 3 gives the
description of the main robust model proposed in this paper; followed by
Section 3.1 where we discuss the inner or lower level problem in our bilevel
formulation; in Section 3.2 we give two algorithms: one exact based on the
MIP formulation for inner problem given Section 3.1 and a two point heuristic
for solving toll pricing problem; Section 4 discusses and illustrates character-
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istics of our robust model; Section 5 gives the numerical performance of two
point algorithm on simulated and real data sets; Extensions and future work
are discussed in Section 6.

2 Problem definition

We will first describe the deterministic pricing model as used in Labbé et al.
(1998). We consider a single-commodity transportation network with a single
origin and single destination, G = (N,A), where N (of cardinality n) denotes
the set of nodes, and A (of cardinality m) the set of Arcs. The arc set A of
the network G is partitioned into two subsets A1 and A2, where A2 denotes
the set of roads which are toll-free (public roads), and A1 the set of roads
which are owned by a toll-setter (toll roads). There can be two parallel roads
between any two nodes in G.

With each toll arc a in A1, we associate a generalized travel cost composed
of two parts: toll (ra) - set by toll-setter expressed in time units, and non-toll
cost (ca) - which in our case varies over time (discretized into unit intervals).
An arc a ∈ A2 only bears the non-toll cost ca. Once the toll is set on arcs
in A1, it cannot be changed for T consecutive time periods. We will refer
to T consecutive time periods in which toll is fixed as tolling period. At the
end of the tolling period toll setter may be able to revise his price. However,
in this paper we only consider static pricing problem which can still be used
in dynamic case but does not explicitly optimize pricing decisions over time.
We denote b ∈ Rn the fixed demand, with the assumption that all nodes
except origin and destination nodes have a demand equal to 0. Assuming
fixed demand and neglecting congestion implies users choose shortest paths
between the origin and destination. Further we assume that when faced with
two equal alternatives a user will choose the one which maximizes the revenue
of toll-setter. Another key assumption is that it allows conversion from time
to money and assumes it to be uniform throughout the users. In other words,
this can be seen one user using network every time period. Under this setting
when the non-toll costs are known to both toll-setter and user the question
toll-setter faces is:How to set prices which maximizes the total toll revenue
when the network user chooses shortest path to minimize his cost?

The deterministic problem is well understood both conceptually and algo-
rithmically. Our focus in this paper will be to extend the above deterministic
model to the case when there is uncertainty about non-toll costs ca. Our un-
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certainty model and assumptions are as follows:

• In our model toll-setter has the historical information encoded in the
form of previously observed states. A state s corresponds to an ob-
served state of the network in a single time period. In other words, in
each state s the non-toll cost on each arc a ∈ A is fixed denoted as csa.
The advantage of modeling uncertainty in this way is that correlations
between different arcs of network are captured in the states.

• The number of states equals to #H × T . That is, toll-setter observes
#H tolling periods. Hereafter we will write T for the rest of all tolling
periods assuming toll setter cannot change his price in the future.

• We assume the variability on each arc is bounded, that is the variance-
to-mean ratio for the toll period is bounded by a constant which is
unknown to the toll-setter. This is usually the case in real world net-
works.

• The cost distribution (unknown to toll-setter) of each arc is assumed
to be fixed and belongs to a set of non-negative distributions D with
support in Ω = [q,Q]. Given the bounded variability assumption it
is reasonable to assume fixed support. One can also consider different
supports for different arcs, however, we see Ω as the aggregated support
set.

Given this setting our aim is to answer the following question faced by a
toll-setter:

How to set toll prices under uncertainty of non-toll costs, when network
costs are random with unknown distribution?

We will now study robust pricing methodologies to answer this question.
Starting with a simple two link parallel network we first review more popular
robust methodology and then propose a new robust methodology.

3 Robust Model

Consider a simple parallel network with just two parallel arcs connecting the
origin and destination. Let one of these arcs be the toll arc and the other
arc is the non-toll arc whose costs are not known. We assume for the ease
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of exposition that the non-toll costs on the toll arc are zero or negligible.
We will later remove this assumption and show the method can be extended
to such a case. As mentioned in previous section toll-setter has a sample
of costs of #H tolling periods from the recent history. Using this sample,
toll-setter wishes to calculate the toll on the toll arc. Hereafter, we will refer
to non-toll arc as a. In the rest of the section we will drop the suffix a for
the ease of notation and readability. If toll-setter knows the distribution F
(we denote the density of F with F) of c then to fix the toll which maximizes
his expected revenue he solves the following optimization problem which
maximizes his expected revenue:

max
r∈Ω

∫ Q

r

rF(c)dc. (1)

To solve this problem note that we can rewrite the objective as r[1 −∫ r
q

F(c)dc]. We can solve the problem by equating the first derivative which

is 1 −
(∫ r

q
F(c)dc + rF(r)

)
to 0. For example if F is uniform distribution

with support Ω then r is obtained by solving r−q
Q−q + r 1

Q−q = 1, which implies

revenue maximizing integer toll is Q
2

.
In the absence of this knowledge, a risk -averse toll-setter would prefer to

insure his revenues by setting tolls such that the usage of toll arc is maximized
as much as possible. On the other hand, setting toll too low, for example
close to q, will result in high usage but does not necessarily mean better
revenue as setting it to a higher price may give much better revenue. Setting
it too high may mean no usage and loss of revenues. Suppose that, toll-setter
first decides his toll and then nature, who plays adversary to toll-setter, will
decide on F . Then toll-setter wishes to calculate a robust toll price which
maximizes his revenue by solving the following optimization problem.

max
r∈Ω

∫ Q
r
rF(c)dc

s.t. min
F∈D

∫ Q
r
rF(c)dc

s.t. u ≤ µF (c) ≤ u (2)

σ2
F (c) ≤ κµF (c)

Here the parameters u, u are calculated as confidence limits of mean; κ is
the belief of toll-setter formed after observing data and also is a parameter
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controlling the risk averseness of toll setter. This belief can change over time
and possibly converge to κ. Assuming an adversarial nature is very com-
mon in robust optimization and online optimization literature, for example
it has been used in Bergemann and Schlag (2008) and Lim and Shanthikumar
(2007). We will refer to this as AN model. Note that the constraints in (2)
correspond mainly to nature’s problem i.e., to find a distribution satisfying
mean (or moment) constraint. The second constraint limits the possible dis-
tributions by using the assumption of bounded variability. Such a situation
with sufficiently high allowed variability gives too much power to adversar-
ial nature forcing toll-setter (to be too conservative) to set very low r if
he chooses to be robust against all possible F ∈ D. To avoid such over-
conservativeness, we propose to consider that nature does not play such a
role. Instead nature’s objective is to minimize the overall expected cost of
the network user, that is:∫ Q

r

rF(c)dc +

∫ r

q

cF(c)dc, (3)

where the first term is the expected cost of travel on toll road and second
term is expected cost on non-toll road. Toll-setter then solves the following
bi-level distributionally robust program to find the robust r:

maxr∈Ω

∫ Q
r
rF(c)dc

minF∈D
∫ Q
r
rF(c)dc +

∫ r

q
cF(c)dc

s.t. u ≤ µF (c) ≤ u (4)

σ2
F (c) ≤ κµF (c)

We refer to the model (4) as UFN model. To illustrate the difference
between nature’s role in formulations (2) and (4), consider the following
example.
Suppose Ω = [1, 100] and r = 90, consider two distributions: F1 puts 0.45
probability mass on 89, 0.5 on 109 and 0.05 on 110; F2 puts 0.135 probability
mass on 75 and 0.865 on 104. Between these two distributions a nature with
objective in (2) will choose first strategy whereas in (4) nature will choose
the second one as it minimizes expected cost of the user which is 87.975 for
F2 as against 89.95 for F1.
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The main motivation behind our model comes from the deterministic
bilevel model where, under full information, toll-setter and user have con-
flicting objectives. However, user’s objective is not to make his decisions to
decrease toll-setter’s revenue but to minimize his own cost. Similarly, in our
model the lower level decision maker is acting to minimize the expected cost
of user by choosing a distribution which is consistent with the observed mean.

Another way of interpreting UFN model is as follows: the distributions
available to nature in the lower level problem can be seen as willing-to-pay
(WtP) distributions of different users whose mean is consistent with the toll-
setter’s belief. In the lower level, by choosing a user whose expected WtP
is minimum, toll-setter is taking robust decision by choosing a toll which
maximizes his revenue from the user with worst expected WtP.

We will now relate UFN model with worst-case conditional value-at-risk
(CVaR) optimization. To do this we first rewrite the objective function using
the assumption of fixed support and then introduce a parameter ε similar to
the risk level in CVaR.

Let us start with rewriting the objective function, since we consider F
with support in Ω, we can use

∫ Q
r

F(c)dc +
∫ r

q
F(c)dc = 1 and rewrite the

nature’s objective function as∫ Q

r

rF(c)dc +

∫ r

q

cF(c)dc = r(1−
∫ r
q

F(c)dc) +
∫ r

q
cF(c)dc

= r −
∫ r
q

(r − c)F(c)dc (5)

Consider now the following function,

f(r, F ) =

[
r − 1

(1− ε)

∫ r

q

(r − c)F(c)dc

]
,

where ε ∈ (0, 1). Observe that f is nothing but nature’s objective with an
additional term involving ε. We have the following property of f

Proposition 1 For a fixed F ∈ D and ε ∈ (0, 1), f(r, F ) is concave and
continuously differentiable, and the maximum of f is attained at r ∈ Ω such
that

∫
c≤r F(c)dc = 1− ε.

Proof Let G(r) =
∫ r
q

(r − c)F(c)dc. From Lemma 1 of Rockafeller and

Uryasev (2000) G is a convex continuously differentiable function. Using
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Fundamental theorem of calculus and using differentiation by parts, we can
derive G′(r) =

∫
c≤r F(c)dc. This implies ∂f

∂r
= 1 − 1

(1−ε)

∫
c≤r F(c)dc, which

proves the statement.

Proposition 1 implies that if the distribution of c is known to F and toll
setter is interested in finding a toll such that the toll road is used (100 × ε)
percent of times in expectation then he should set toll equal to r which
satisfies

∫
c≤r F(c)dc = 1− ε. That is, ε should be interpreted as probability

that toll road is used at price r. In other words, given F when toll-setter
decides toll according to (1) he indirectly also chooses this probability. This
implies that the bi-level problem in (4) can be written as a parametric single
level problem with a max-min objective with parameter ε as follows:

maxr∈Ω;ε∈[0,1] minF∈D r − 1
1−ε

∫ Q
q

max(r − c, 0)F(c)dc

s.t. u ≤ µF (c) ≤ u (6)

σ2
F (c) ≤ κµF (c)

For a fixed F the objective function in f is very similar to the concept of
Conditional-Value-at-Risk, which has been applied to portfolio optimization
problems in Rockafeller and Uryasev (2000). In fact, our problem formu-
lation is similar to worst-case conditional value-at-risk studied in Zhu and
Fukushima (2009) and more recently in Toumazis and Kwon (2015).

In the rest of the paper we assume time is discretized and we consider the
discrete version of (4) with nature’s objective rewritten using fixed support
and can be seen as nature optimizing over samples C drawn from distribu-
tions in D:

max
r∈Ω

r
[

1
T

∑T
i=1 Ir≤ci

]
min
C∈ΩT

[
r − 1

T

∑T
i=1 max(r − ci, 0)

]
s.t. u ≤ µF (c) ≤ u (7)

σ2
F (c) ≤ κµF (c)

A natural way to solve a bilevel problem is to transform it into a sin-
gle level problem by using optimality conditions and/or using any structure
present in the inner problem. Also, the complexity of bilevel problem largely
depends on the complexity of the inner or sometimes called follower’s or
lower-level problem. In next section we study the inner problem of (7).
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3.1 Inner/Nature’s problem

For a fixed value of toll price r the inner problem in (7) is a minimization
problem with a concave objective function. Concave minimization problem
are hard to solve, for some recent work on minimizing quasi-concave mini-
mization over convex sets see Goyal and Ravi (2013) and references therein.
To solve the inner problem in (7) we reformulate the inner problem as the fol-
lowing non-convex integer programming problem by introducing additional
variables:

min
C∈ΩT

[
r − 1

T

∑T
i=1 zi

]
(8)

s.t. u ≤ µ(c) ≤ u (9)

σ2(c) ≤ κµ(c) (10)

ci − r + zi ≥ 0 i = 1, . . . , T (11)

r − ci +Myi ≥ 0 i = 1, . . . , T (12)

zi ≤M(1− yi) i = 1, . . . , T (13)

zi − (r − ci)(1− yi) ≤ 0 i = 1, . . . , T (14)

Y ∈ {0, 1};C,Z ≥ 0 (15)

Note that for M in the above formulation any value greater than or equal
to Q suffices which gives our next theorem:

Theorem 2 For a fixed r, (8)-(15) is a valid reformulation of the inner
problem of (7).

Proof Constraints (11) - (13) ensure that yi = 0 when r > ci and yi = 1
otherwise, and (13)- (14) ensure zi = max[r − ci, 0].

The only non-convex constraint apart from integrality constraints in the
above formulation is (14). We linearize this by introducing two additional
sets of variables as follows. Replace the product terms ryi and ciyi in this
constraint by variables ui and vi and then add constraints (23)-(28). After
doing this we get the following convex integer programming problem.
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min
C∈ΩT

[
r − 1

T

∑T
i=1 zi

]
(16)

s.t. u ≤ µ(c) ≤ u (17)

σ2(c) ≤ κµ(c) (18)

ci − r + zi ≥ 0 i = 1, . . . , T (19)

r − ci +Myi ≥ 0 i = 1, . . . , T (20)

zi ≤M(1− yi) i = 1, . . . , T (21)

zi − r + ci + ui − vi ≤ 0 i = 1, . . . , T (22)

ui ≤Myi i = 1, . . . , T (23)

vi ≤Myi i = 1, . . . , T (24)

vi ≤ ci i = 1, . . . , T (25)

ui ≤ r i = 1, . . . , T (26)

r −M(1− yi) ≤ u ≤ r i = 1, . . . , T (27)

Y ∈ {0, 1};C,Z, U, V ≥ 0 (28)

Theorem 3 (16)-(28) is a valid reformulation of (8)-(15).

Proof To see this is true note that for every solution to (8)-(15) we can
create an equivalent solution to (16)-((28)) by taking the C, Z, Y values
as they are and putting ui = r and vi = ci for every i with yi = 1 and 0
otherwise.

For a fixed r, (16) - (28) can be solved using a state of the art commercial
solver like CPLEX and more specialized algorithms are also conceivable ow-
ing to tremendous success and availability of techniques for solving convex
quadratic integer programs in last few years. We will now look at solving the
toll setting problem.

3.2 Solution Algorithms

We will first give an exact algorithm which adds an additional constraint to
(16) - (28) which can be given to a solver like CPLEX; then we move on to
simple heuristic.
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3.2.1 Exact Algorithm

Proposition 1 implies that for a fixed ε ∈ { 1
T
, 2
T
, . . . , 1} we can add the con-

straint (29) to (16) - (28) and solve the inner problem treating r as variable.
This will give us a maximum price to have toll road used εT times. We will
formally give this in Algorithm 1.∑

i

yi
T
≤ ε (29)

Algorithm 1 Robust Toll Algorithm

INPUT: u, u, κ
R = φ
for ε ∈ { 1

T
, 2
T
, . . . , 1} do

Solve (16) - (28) +
∑

i yi
T
≤ ε

Let rε be solution output; rε ∈ R
end for
OUTPUT: r = arg maxεεrε

3.2.2 Two-point Heuristic

The formulation given in (16)-(28) can be hard to solve and can be time
consuming when using the generic solvers like CPLEX. Of course, one can
derive efficient algorithms using branch and bound and/or other methodolo-
gies. In this section, however, we focus on constructing a simple approximate
solution to toll pricing problem. In our computational experience of solving
(16) using CPLEX we found that in all cases the solution found has two-
point support. That is, the vector of costs returned by CPLEX has exactly
two distinct values. If we restrict to the distributions with two-point support
{`, u}, assuming ` ≤ r ≤ u, the nature’s problem (16)-(28) can be written as

min
`∈Ω,u∈Ω;λ∈[0,T ]

r(T − λ) + `λ

s.t.(T − λ)u+ λ` = µT

u ≤ µ ≤ u

λ(`− µ)2 + (T − λ)(u− µ)2 ≤ κµ(T − 1)
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Suppose that we fix µ = u, we can write the problem of finding of {`, u}
as

min
`∈Ω,u∈Ω;λ∈[0,T ]

r(T − λ) + `λ

s.t.(T − λ)u+ λ` = µT

λ(`− µ)2 + (T − λ)(u− µ)2 ≤ κµ(T − 1)

Eliminating u, we get

min
`∈Ωλ∈[0,T ]

rT − λ(r − `) (30)

s.t.λ(`− µ)2 + (T − λ)([
µT − λ`
(T − λ)

]− µ)2 ≤ κµ(T − 1)

For a fixed λ, the objective function in (30) is linear in ` with a positive
slope. This implies that the solution to (30) simply is the lowest value satis-
fying the inequality in (30) and u ∈ Ω. Using this observation we now give a
simple algorithm for finding a two-point solution to (16). Hereafter we will
denote the integers in Ω by Ω̄.

Algorithm 2 approximately solves by searching for all values of λ, where
obj is the objective in (30). Note we search for ` ∈ Ω̄, this is for numerical
simplification and moreover given that r ∈ Ω̄ this will only result in minor loss
in terms of approximation. Note that the heuristic presented in Algorithm
2 is aimed mainly for a quick solution where we fix µ = u and κ = κ and
the run-time complexity of algorithm is O(|Ω̄|2). We now prove that the
optimal solution to the nature’s problem for a fixed toll is indeed a two-point
distribution.

Theorem 4 The optimal solution to nature’s problem is always a two-point
distribution.

Proof From Popescu (2007) it is enough to consider three-point distribu-
tions. In Birge and Dula (1991), it is shown that a two point distribution
(z, r3) with the same mean and variance as the three point distribution can
be found, where r1 < z < r2. Suppose that the optimal three point distri-
bution is 3D = r1, r2, and r3 with probabilities p1, p2 and p3. Now consider
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Algorithm 2 Two Point Algorithm

INPUT: u, κ
Set BR(r) = 0 for all r ∈ Ω̄\u;BR(u) = 1
for r ∈ Ω̄ do
λ = T − 1, µ = u
while λ ≥ 1 do
` = 0
while ` < µ do
u = ((µ×T )−(λ×`))

(T−λ)

if u ≤ Q and λ(`− µ)2 + (T − λ)([µT−λ`
(T−λ)

]− µ)2 ≤ κµ(T − 1) then

if obj > (λ× `+ (T − λ)× r) then
obj = (λ× `+ (T − λ)× r)
BR(r) = r × (T − λ)

end if
break

else
` = `+ 1

end if
end while
λ = λ− 1

end while
end for
OUTPUT: argmaxr∈Ω̄BR(r)
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a two-point distribution 2D = (z, r3) with probabilities (p1 + p2, p3) with
r1 < z < r3 with the same mean and variance at most that of 3D.

The variance of 2D is at most that of 3D. To see this note that the
following inequality is true:

p1(z − r1)

p2(r2 − z)
≤ r2 + z

r1 + z
, (31)

LHS is equal to 1 due to equivalence of means and RHS is clearly ≥ 1.
Rearranging terms and adding p3r

2
3 on both sides we get,

(p1 + p2)z2 + p2r
2
3 ≤ p1r

2
1 + p2r

2
2 + p3r

2
3. (32)

To show that 2D has a lower expected cost we need to show that

(p1 + p2)g(z) + p3g(r3) ≤ p1g(r1) + p2g(r2) + p3g(r3) (33)

where g(x) = r if x ≥ r and x otherwise.

Consider first the case when r = r2. From the equivalence of means we
have

p1(z − r1) = p2(r − z) (34)

rearranging and adding p3r on both sides we get

(p1 + p2)z + p3r = p1r1 + p2r2 + p3r (35)

which is (33).
The case when r2 < r follows using a similar reasoning as above. Now

consider the case when r2 > r. It is enough to observe that increasing r to
r2 will not change nature’s optimal action 3D, in which case setting r to r2

gives improved revenues to toll setter with same nature’s response.

4 Characteristics of UFN model

In this section we study the characteristics of UFN model. In Section 4.2 we
compare the performance of UFN tolls with AN tolls and illustrate how the
optimal solutions of nature’s problem react to change in tolls. Before that
we first discuss the model with discrete set of costs.
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4.1 Discrete costs

Given that we are inspired mainly by toll prices it should be noted that in
many cases prices usually are not any continuous values. Instead, prices are
almost always numbers with up to two significant digits. This motivates us
to consider the case when Ω is discrete set of prices with minimum price
equal to q and maximum equal to Q. In this case toll pricing problem can
be formulated as following:

maxr∈Ω

∑
i≥r xir (36)

minX
∑

i≥r xir +
∑

i<r xici (37)

s.t.
∑

i xi = 1 (38)∑
i ixi = µ (39)∑

i xic
2
i − µ2 ≤ κµ (40)

Where xi is the probability mass assigned to price ci ∈ Ω, first constraint
corresponds to the mean (first moment) constraint and second constraint to
the bounded variability. In this case the nature’s problem is simply a linear
program, which is easy to solve. Also, using linear programming theory it
is easy to note that the optimal solution has at most three support points.
However, in numerical experiments we found that in many cases it is either
a two point distribution or it is three point distribution with two support
points very close to each other. We now use this formulation to illustrate
some characteristics of UFN model.

4.2 AN vs UFN

In this section we empirically show how UFN model is better and less conser-
vative compared to the usual robust approach of AN model. To compare the
behavior of these two models we solved the nature’s problem of both models
for a discrete Ω by varying tolls. In AN model, the distribution found is
always such that, the lower support point of distribution is very close to the
set toll price. Resulting in very low revenues. Under such model toll setter
will be forced to set the toll to lowest price for given moment constraints.
On the other hand UFN model exhibits a concave like revenue curve. That
is, as toll increases revenues may increase up to a point and then decreases.
This behavior is illustrated in Figure 1 where numerical experiment done has
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Ω = [0, 1000], with tolls changed between 350 and 500, with µ = 500 and
κ = 60. Figure 2 illustrates the changes in the lower support point, revenue

0
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300

0 50 100 150

Toll

Rev
enu

e colour

AN

UFN

Figure 1: Comparison of revenues for varying tolls between user-friendly and
adversarial nature

and nature’s objective values for the UFN two point distribution as the toll
is increased with the same parameters as for Figure 1.

4.3 Impact of κ

As mentioned in Section3, κ̄ indicates the belief of the toll setter about
the level of uncertainty. In other words a higher value of κ̄ compared to κ
indicates that the toll setter is overly pessimistic. This implies he will try to
set a lower toll and hence will have lesser revenue. This is reflected in the
illustration given in Figure 3 where we plot revenue from optimal two point
UFN distribution as toll and variances are changed with mean kept constant.
The vertical line of revenues against each toll value correspond to different
variances. The behavior of the revenue curve is such that the maximizing
point (w.r.t the two point distribution found) shifts to the left when variance
is higher as the toll increases. For the numerical experiment used in Figure
3 the parameters were set to Ω = [0, 1000], tolls changed between 350 and
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Figure 2: Change in two-point distribution as toll increases

500, µ = 500 and κ̄ = [5, 60]. It is also worth noting, with toll closer to mean
the variation in the revenue is very less with varying κ̄.

4.4 Normal Distribution - Entropy

In order to assess the performance of UFN model we compared the distri-
bution calculated in the lower level to the case when the distribution of c is
Normal with same mean and variance. Figure 4 gives the change in cumu-
lative probabilities, for a fixed toll with same mean but changing variance,
of two-point distribution calculated in nature’s problem versus the actual
Normal distribution.The mean is set to 500 with variance changing between
10 and 60 with support in [0, 1000]. The tolls are set at 300, 350 and 400
for Figures (4a)-(4c) respectively. The plots give cumulative probabilities in
both cases, that is cumulative probability in both distributions at toll value.
More formally, plots give PUFN(c ≤ r) and PN(c ≤ r) as variance is changed
for three different values of r. It can be seen that two point distributions
calculated are very close to the normal case. Furthermore, the distribution
gets better when the toll value is increased from 300 to 350, and again the
distance between curves increases with increase in toll away from 350. This
indicates the UFN approach will give close to optimal tolls when the distri-
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bution of c is Normal given that toll setter has a correct belief about the κ̄.

We believe this behavior is related to maximum entropy probability dis-
tributions. The entropy of a probability distribution represents the amount
of uncertainty associated with the distribution. The distribution maximizing
the entropy is believed to be a good prior distribution. As observed by Per-
akis and Roels (2008) entropy maximization is not a decision making criteria
which can be used under uncertainty, it can only be used as selection criteria
for selecting a probability distribution within a stochastic model. Also, it is
similar to a barrier function (Boyd and van den Berghe (2004)). The entropy
of a discrete random variable with a given distribution is defined as,

H(c) = −
∑
i

p(ci)logp(ci). (41)

Our approach can be related to maximizing entropy by replacing the logp(x)
with g(x). In other words maximizing (minimizing negative of) a similar
measure as entropy. Let Gr(x) be defined as

Gr(c) =
1

D

∑
i

p(ci)g(ci), (42)
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Figure 4: Comparison of two-point distribution calculated at lower level for
fixed toll with Normal distribution with same mean and variance

22



where is D is some fixed constant, then G is an approximation of H for each
value of r. Our approach can be interpreted as approximating H using G by
choosing r = ci where ci(1 −

∑
ci>=r p(i)) is maximized. We wonder if it is

possible to quantify this relationship and leave it for the future study.

5 Computational experiments

We performed two sets of numerical experiments to assess the UFN model,
first set of experiments is on simulated data while the second set of experi-
ments are performed on real-world traffic data collected by City of Chicago.
In Section 5.2 we present our numerical results on simulated data. In Section
5.3 we assess the performance of two point toll algorithm on City of Chicago
data.

5.1 Performance metric

A commonly used metric to measure the robustness of an algorithm in pric-
ing literature is (relative) regret. We follow this practice and we use the
percentage relative regret from using the robust toll which is calculated as
follows:

relative regret(%) =
optimal revenue - robust toll revenue

optimal revenue

From these experiments we want to understand the answers to the fol-
lowing two questions:

• how bad are revenues from robust tolls compared to the optimal rev-
enues?

• how do robust tolls compare to optimal tolls?

In both experiments we used the two-point approximate algorithm to com-
pute the robust tolls, and we set T = 50, #H = 1, and ¯kappa = 1.

5.2 Simulated data

In this section we report the performance of our approach with numerical
experiments on simulated data. We have done experiments to assess the
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Distribution First parameter second parameter
Beta [2,5] [2,5]
Beta [1,3] [1,3]

Gamma [1,3] [1
3
, 1

5
]

Normal [90,110] [10,30]
Lognormal [0.1,0.3] [0.1,0.3]

Table 1: Distributions and parameters used

robustness of our procedure under two different experimental set-ups differing
in network structure and cost distributions. We explain them below.

• First-Experiment: We consider a parallel network with five parallel
links connecting origin to destination. In this set-up we fix the dis-
tributions of the links to be same but allow the parameters to vary
randomly within a given interval.

• Second-Experiment: We consider the same network as in first but
the distributions on each links can be different including parameters.

In both experiments we would like to understand the robustness of the
two-point toll. The distributions we use are Beta, Gamma, Normal and
Lognormal. The parameters for each distribution are selected uniformly from
an interval. The parameter intervals are given in Table 1.

We first created 50 samples (history sample), from each distribution which
are used to calculate the robust tolls. We then created 2500 random samples
from each distribution and computed optimal revenue generating tolls for
each of these samples. We compare the revenues from optimal tolls in each
of these 2500 samples with revenues when a robust toll is used which is
calculated from a sample in history sample. To calculate an optimal toll for
a given instance we try each integer in Ω̄ and select the toll which generates
the most revenue. In total we compare robust tolls with optimal tolls on
125000 samples.

5.2.1 Results and Discussion: Fixed distributions

In this section we will evaluate the robustness of our two-point robust toll
on the instances when all parallel arcs have same distributions but the pa-
rameters can be selected randomly in the intervals given in Table 1. Table 2
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displays the average percentage relative regret for each of the four distribu-
tions. From Table 2 we observe that the robust toll achieves a regret less than
14% in all distributions with except Gamma all other figures below 10%. On
the other hand we observed fixing the toll equal to sample mean can have
give regret as high as 23%. Furthermore, as seen from standard deviation
values variation in regrets is also not large. This suggests that revenues from
robust toll compare well especially given the fact that the toll decision is
taken with minimal knowledge about the network cost distributions.

As previously pointed out a measure of robustness of the toll is how it
compares with the optimal revenue generating tolls. Figure 5a-5d displays
the comparison of minimum, maximum and average values of tolls over the
50 history samples, and optimal revenue generating tolls in each of the 2500
samples (sorted in increasing order). From Figure 5a-5d we observe that it is
possible that the UFN tolls can be too high or too low especially as seen in
Normal distributions. However, the average robust toll compares well with
optimal tolls and is very close to average optimal toll in almost all with
slightly below average in case of Beta. Also the variability in robust tolls
displayed in Table 3 illustrates the robustness of UFN tolls. Figures also
suggest that with a higher #H the variability can be further reduced.

Distribution Average Stdev

Beta 7.62 5.77
Gamma 13.57 12.51

Lognormal 8.31 8.18
Normal 7.36 8.12

Table 2: Fixed case: average (%) relative regret

5.2.2 Results and Discussion: Mixed distributions

In this section we will evaluate the robustness of UFN toll when arcs in
the (same) network can have different distribution with parameters again
chosen randomly from intervals given in Table 1. We observe from Table 5
that average regret from the robust toll is less than that in the case of fixed
distribution case. This is also reflected in Figure 6 which again displays the
comparison of minimum, maximum and average values of robust tolls with
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Figure 5: Comparison of optimal tolls with robust tolls with top, middle and
bottom horizontal lines corresponding to maximum, average and minimum
robust tolls.
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Distribution Robust toll
Stdev

Beta 4.94
Gamma 8.56

Lognormal 5.16
Normal 5.13

Table 3: robust toll variation

Distribution Average Stdev

Beta 6.44 5.77
Gamma 10.2 12.51

Lognormal 6.73 8.18
Normal 5.11 8.12

Table 4: Fixed case: average (%) relative regret with average robust toll

optimum revenue generating tolls. The average robust toll is again slightly
higher than but very close to the optimal average.

5.3 Real data

In real world the times of travel and hence costs may not have any known
distribution which can be analytically expressed and may have seasonality
and trends over time. Moreover, model which performs well on simulated
data may not perform well on real data as modeling assumptions may not
be satisfied. To test our approach on real data which as we explain below
is given as travel times on a real road network, we assume the generalized
cost is proportional to the time taken. We first explain the details of data

Distribution Average Stdev

Mixed 7.84% 6.2%

Table 5: Exp 3: average (%) relative regret
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Figure 6: Exp. 3: Comparison of optimal tolls with robust tolls

collection and then give then details of experimental setup and results.

5.4 Data Collection and Cleaning

We used data provided by the City of Chicago1, which provides a live traffic
data interface. We recorded traffic updates in a 15-minute interval over a
time horizon of 24 hours for several days between March 28th 2017 to May
13th 2017. A total of 4473 data observations were used.

Every observation contains the traffic speed for a subset of a total of 1,257
segments. For each segment the geographical position is available, see the re-
sulting plot in Figure 7a with a zoom-in for the city center. There were 1,045
segments where the data was recorded at least once of the 4473 time points.
We used linear interpolation to fill the missing records keeping in mind that
data was collected over time. The data after removing missing records and
filling missing values can be found at www.lancaster.ac.uk/ dokka/robust-sp-
data.zip. Segment lengths were given through longitude and latitude coordi-
nates, and approximated using the Euclidean distance.

1https://data.cityofchicago.org
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Robust toll mean-variance toll Robust toll mean-variance toll
Average Average Stdev Stdev

6.29% 18.31% 8.59% 9.21%

Table 6: real data: average (%) relative regret

As segments are purely geographical objects without structure, we needed
to create a graph for our experiments. To this end, segments were split when
they crossed or nearly crossed, and start- and end-points that were sufficiently
close to each other were identified as the same node. The resulting graph is
shown in Figure 7b; note that this process slightly simplified the network,
but kept its structure intact. The final graph contains 538 nodes and 1308
arcs.

5.5 Experimental Setup, Results and Discussion

We assume cost of travel on each road in this network is proportional to the
time of travel. Since there are no toll roads in this network which we can
use for our experiments we have randomly selected 200 pairs of cities and
calculated tolls by imagining a toll road between these each of these pair of
cities, under the assumption that non-toll cost is zero or such costs have been
adjusted in the costs of the other roads. Of 4473 observations we used 1273
as history and all observations for calculating the regrets in all of 200 cases.

The average percentage regret over 200 pairs is given in Table 6. As can
be seen the average regret is less than that observed in simulated case. It is
noteworthy that unlike the case of simulate data UFN tolls were set higher
than optimal for most pairs. Figure 8 illustrates distribution of ratio of UFN
tolls over optimal tolls. UFN toll was set roughly 17% higher in extreme case
with most tolls within 5% of optimal tolls.

6 Extensions

The UFN model can easily be applied to more general cases and not just
simple two link parallel networks. In this section we discuss some of the
extensions.
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Figure 7: Chicago instance
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6.1 General single commodity networks

Our first extension is to consider UFN in more general single commodity
networks.

6.1.1 Multiple parallel arcs

Let us first consider the immediate extension to a network where there are
k non-toll arcs parallel to the toll arc between origin and destination. Let
a1, . . . , ak be the non-toll arcs. We input the mean and variance limits (u, u
and κ) of the data obtained from taking the following minima, minki=1 c

s
ai

to
calculate the two point robust toll.

6.1.2 Multiple parallel arcs with positive non-toll costs on toll arc

Let us now consider the above network when the assumption that the non-
toll costs on toll arc are not zero. Let ak+1 be the toll arc. To apply our
method to this case we calculate the mean and variance limits (u, u and κ)
of

k

min
i=1

[csai − c
s
ak+1

] (43)

for all s.

6.1.3 General networks with polynomial(in n) number of paths

Consider now a general single commodity network with multiple toll arcs
but with few (polynomial) number of paths between origin and destination,
for example the network on the left given in Figure 9. To UFN approach
we construct an equivalent parallel network is constructed as shown in the
right side in Figure 9. For each path in this parallel network with toll arcs
we will calculate the state minima given in (43) by ignoring all other paths
with toll arcs. That is we calculate the robust toll on each toll path as if
that is the only path with toll arcs in the network. This we treat as an
upper bound on the total toll on each path. We then solve an integer/linear
programming problem to allocate the tolls to individual toll arcs. Suppose
the upper bounds for the paths in the example network in Figure 9 are ς1,
ς2, ς3 respectively from left to right, then we solve the following optimization
problem to solve for prices of r1, r2, and r3
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max r1 + r2 + r3 || s.t r2 + r3 ≤ ς1, r1 + r2 ≤ ς2, r1 ≤ ς3, ri ∈ Z
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Figure 9: General network and an equivalent parallel network

In theory there can be many paths between any two nodes in a network.
However, in practice especially in real world transportation networks the
number of paths between any two nodes/cities is usually small or limited.
Also, many paths between pairs of cities are far from optimal in any of the
scenarios, that is they are usually dominated by a few number of paths. We
observed this in Chicago data where there may be several paths between two
cities but most often it was only few paths which were optimal with many
paths never optimal, not even in a single state. So, in practice even if there
are many paths we can still use the above approach.

6.2 Dynamic pricing

In practice a toll setter may be able to revise the toll. However, as we already
mentioned toll prices are often subject to controls such as increase in price
and the number of increases is usually constrained. The two point approach
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can be naturally extended to dynamic case where toll setter observes the us-
age till latest tolling period and recalculates the toll. To give a first idea we
treated the 2500 instances used in our experiments as periods and we fixed
toll equal to average of UFN tolls found using 50 history data sets. In Fig-
ures (10a)- (10d), we report the cumulative regrets over time. By cumulative
regret we mean regret up to period t calculated against a static optimal price.

The assumption of toll setter able to observe the cost may not be true. In
Dokka et al. (2017), the UFN model is extended to the case with price controls
and toll setter learns the distribution by changing the price dynamically and
observing the usage.
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