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ABSTRACT: Cognitive decline amongst older people is associated with poor health and lower quality of life. 

Previous studies demonstrate that retirement is a particularly critical period for cognitive decline and highlight 

the importance of post-retirement behaviours. Using longitudinal data from the Survey of Health, Ageing and 

Retirement in Europe, this study examines the effect of information technology usage on cognitive function, 

focusing on one specific form: internet usage. We demonstrate that post-retirement internet usage is associated 

with substantially higher scores on cognitive tests. To address the endogenous relationship between cognitive 

function and IT usage, we use pre-retirement computer exposure as a source of exogenous variation. Our IV 

results suggest smaller but still substantial moderating effects of IT usage on the cognitive decline of retirees. 

These results are concentrated amongst people who worked in middle-skill occupations that experienced large-

scale computerisation. More broadly, our results suggest a causal effect of computer usage on the cognitive 

function of retirees. 
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1. Introduction  

Across developed economies, the share of older people in the population is increasing. Furthermore, 

more people are living substantially beyond retirement age, even while these retirement ages have been 

rising. Previous research has highlighted that retirement from the workforce is a critical period for 

cognitive function (Rohwedder and Willis, 2010; Bonsong et al, 2012; Mazzonna and Peracchi, 2012; 

Celidoni et al, 2017; Atalay et al, 2019). It is well-known that cognitive function declines with age, and 

that cognitive function predicts a range of key health outcomes amongst older people. Atalay et al (2019) 

further demonstrate how certain behaviours, particularly mental activities, can have a moderating effect 

on post-retirement cognitive decline. Related to this, other studies have suggested a role of various forms 

of information technology in promoting behaviours that are protective of cognitive function. In practice, 

however, little is known about the relationship between IT usage and cognitive function over larger 

populations and the existing evidence cannot typically be interpreted causally. Our study returns to this 

issue and aims to provide estimates of the effect of a particular form of IT usage, internet usage, on the 

cognitive function of older people. We do this using a large, multi-country longitudinal dataset, and we 

adopt empirical strategies that provide estimates which we argue can be interpreted causally.  

Why might IT usage affect the cognitive function of older people? A range of potential benefits from 

computer usage have been highlighted such as the facilitation of routine tasks, access to information, 

entertainment, social connection, and mental stimulation, all of which have the potential to improve 

quality of life (Czaja et al., 1993, 2001; Jones and Bayen 1998; McConatha et al., 1994). The potential 

for computers to affect cognitive function has motivated a series of small scale experimental studies, 

primarily in psychology, to assess the effect of computer and internet usage on various outcomes such 

as loneliness, depression, physical functioning, and general life satisfaction (White et al., 2002; Shapira 

et al., 2007; Slegers et al., 2008, 2009). In general, these studies have found no relationship between 

measures of computer competency, computer usage, and well-being. However, these results are difficult 

to interpret and generalise because of the non-random computer usage of older people, because of a lack 
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of pre-study controls for personal characteristics salient for cognitive function, and because these studies 

often utilise convenience samples drawn from older people living in community dwellings or nursing 

homes.  

A related body of literature uses larger cross-sectional datasets to examine conditional associations 

between computer usage and life outcomes of older people. This literature has found mixed results. For 

instance, Lelkes et al., (2012) examines the European Social Survey and report a positive and statistically 

significant association between regular internet usage and life satisfaction after controlling for many 

personal characteristics. Similar associations have been found using U.S. datasets such as the Health and 

Retirement Study (HRS) and Midlife in the United States (MIDUS) (Tun and Lachman 2012; Heo et al., 

2015). On the other hand, Elliot et al., (2014) found no association between computer usage and mental 

health using the National Health and Aging Trends Study for the US.  

It has been widely discussed that computer-based activities might influence many aspects of older 

people’s cognitive function such as attention, memory, spatial abilities, and problem solving (see Rogers 

et al., 2005). But relatively few studies have focused explicitly on the effect of computer usage on the 

cognitive function of older people. Earlier studies showed a positive effect of computer-based 

interventions on cognitive function (McConatha et al., 1994). However, Slegers et al., (2009), again in 

a small-scale experimental setting, found no effect of a training program and subsequent computer usage 

on cognitive function. In contrast, evidence from larger samples suggest a positive association between 

computer usage and cognitive function across adulthood when conditioning on a range of controls for 

personal characteristics (Tun and Lachman 2012; Slegers et al., 2012). Overall, although there is a 

widespread belief that computer usage improves older people’s cognitive function, the current literature 

provides mixed evidence. 

The critical challenge in identifying the causal effect of computer usage on cognitive function is the 

endogenous nature of computer usage. The incidence and frequency of computer usage among older 

people reflects a range of factors that, themselves, are likely to be related to cognitive function. In the 
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absence of an empirical strategy to address this endogeneity, it is unwise to interpret statistical 

associations between computer usage and cognitive function causally. For instance, omitted or 

inaccurately measured factors such as wealth and income are likely to influence both cognitive function 

and computer usage.1 Likewise, there is a clear potential for reverse causality between cognitive function  

and computer usage.  

We estimate the effect of computer usage on the cognitive function of retirees using a sample drawn 

from a large longitudinal dataset, the Survey of Health, Ageing and Retirement in Europe (SHARE). 

Partly due to measurement issues in the data, we focus on a particular form of IT usage, internet usage. 

We focus on a specific sample of those who have been retired since 2004, and focus on their cognitive 

function in 2013. Our choice of sample has two advantages. First, it reduces the interconnections 

between computer usage, retirement decisions, and cognitive function (Friedberg 2003; Banks et al., 

2010; Bonsang et al., 2012; Mazzonna and Peracchi 2012). Second, the retirees in this specific sample 

embarked on careers during the period before the general introduction of workplace computers that 

occurred from the 1980s onwards, and retirees in the sample typically retired before computers became 

ubiquitous in workplaces. The timing of the computerization of work places motivates our instrumental 

variable strategy, where we rely on differential rates of computerization that occurred during these 

individuals’ working lives but are unlikely to have been a feature of their original occupational choice. 

We use this within-career variation in pre-retirement computer usage as a source of exogenous variation 

in the likelihood of post-retirement internet usage. Variation in pre-retirement computer usage, in 

practice, proves to be a highly relevant instrument, and we investigate the robustness of our results to 

potential violations in the exclusion restriction. We demonstrate that post-retirement internet usage leads 

                                                           
1 A range of research in gerontology and psychology attempts to explain the determinants of computer usage among 

older people (e.g. Zheng et al., 2015; Silver 2014). Education, income, health, and prior computer experience are 
significantly predictive of computer usage among older people. Similarly, a mixture of qualitative and quantitative studies 
about the attitudes and perceptions of computer and internet usage among older people suggests that barriers to usage 
include the cost of equipment, learning difficulties, sceptical attitudes towards computers, lack of social connections, and 
physical and cognitive problems (Gatto et al.,2008; Lee et al.,2011).  
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to marked reductions in the rate of decline of cognitive function among retirees. This positive effect of 

internet usage on cognitive function is seen across a range of sub-group analyses and model 

specifications. Together, this evidence suggests marked roles for IT access and behaviours in retirement 

in reducing the rate of cognitive decline.  

In the next section, Section 2, we describe our data. In Section 3, we discuss our model. In Section 

4, we present our main results. In Section 5, we present our robustness checks. Finally, in Section 6, 

we summarize and discuss our findings.  

2. Data 
Our data are drawn from the Survey of Health, Ageing and Retirement in Europe (SHARE), a large 

longitudinal pan-European study that collects information about health, employment history, and the 

socio-economic status of older people. People aged fifty and older were eligible to participate in SHARE 

when it started in 2004; thus, the youngest people in the sample were born in 1954. We restrict our 

sample to participants observed in the first (2004), fourth (2011), and fifth (2013) waves of SHARE 

because these waves contain the information necessary for our analysis. For example, the first wave 

contains detailed information about the previous occupations of the participants. While in the fourth and 

fifth waves, participants were asked about internet usage, computer skills, and computer (or a tablet) 

usage at their current job or their final job before retirement.2 To reduce concerns about the endogeneity 

of retirement with respect to cognitive function, we restrict our sample to retirees only. Specifically, we 

restrict our sample to those who retired before the first wave of SHARE in 2004 and who did not later 

re-join the workforce. 3  Our final sample consists of 3798 older people from across ten European 

                                                           
2  Specifically, participants are asked “’During the past 7 days, have you used the internet, for emailing, searching for 
information, making purchases, or for any other purpose at least once?’’. The question about computer usage in the final job 
asks, “Did your last job before retiring require using a computer?” where a computer could be a PC or a tablet. This question 
is only asked if participants had retired.  

3 Appendix Table A1 enumerates the attrition between waves of SHARE and also shows the size of our sample relative 
to the entire sample in SHARE. As shown in Table A1, we also excluded participants in SHARE younger than fifty. These 
people were interviewed in SHARE because their partners were older than fifty. We excluded this younger group from our 
sample because trends in their cognitive function might be quite different from the over fifties. Finally, we excluded 
participants with missing values for the variables used in our analysis.  
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countries: Austria; Belgium; Denmark; France; Germany; Italy; the Netherlands; Spain; Sweden; and 

Switzerland. 

Our main outcome of interest is cognitive function measured at Wave 5 of SHARE in 2013. In 

SHARE, there is a range of measures of cognitive function relating to different aspects such as 

orientation, vocabulary, numeracy, verbal memory, etc. We focus on the word recall test in which older 

people are told a list of ten words and are then asked to recall the words immediately and then again 

after a delay of five minutes. While our main analysis focuses on this outcome, in additional analysis, 

we also examined alternative measures of cognitive function. From Table 1, we can see that the average 

number of words recalled was 3.11. This was a decrease from 2011, when the average number of words 

recalled was 3.27.   

INSERT TABLE 1  

The aim of our study is to examine whether computer usage among older people affects their 

cognitive function. In Table 1, we can see that 27% of older people used the internet during the past 

seven days. For these people, it is less likely that their internet usage is through using a smartphone or 

other mobile device. For instance, in 2012/2013 nearly 70% of older people in the UK report using a 

desktop or laptop computer as their device to access internet (Matthews and Nazroo, 2015). From Table 

1, we can also see that, on average, 26% of our sample used a computer in their final job before retirement.  

The relationship between pre-retirement computer usage and post-retirement internet usage forms the 

basis of our instrumental variable strategy that we discuss in the next section.  

INSERT FIGURE 1 

Figure 1 displays a range of patterns in both post-retirement internet usage and computer usage in 

the final job before retirement. It shows that the proportion of internet users decreases with age, cognitive 

function, and years since retirement. We can also see that the proportion of those who used a computer 

in their final job before retirement increases along the distribution of cognitive function, while 
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decreasing with age and years in retirement. In relation to the income distribution, there is a “U”-shaped 

relationship between position in the distribution and internet usage. Usage is lowest among the second 

quartile. The frequency of internet usage in the ten European countries in our sample also varies: no 

more than 10% report internet usage in Italy, but the figure is over 60% in Spain although both countries 

have lower than average scores on the recall test.4 

Table 1 also shows the descriptive statistics of the other covariates used throughout the analysis. In 

terms of life history, the average person in the sample was 77.2 years old in 2013; hence, they were born 

during the mid-1930s. On average, they attended full-time education for 9.74 years. By Wave 5 of 

SHARE in 2013, they had been retired for an average of 17.68 years; hence they had retired during the 

early/mid-1990s. Nearly one fifth of the sample never worked (predominantly women). In terms of 

household characteristics, 63% of the sample were married or cohabiting, 26% were widows or 

widowers, and the remainder were single or divorced/separated. On average, there were 1.8 people in 

each household. 10% lived in a large city, 30% lived in rural areas, and the remainder lived in towns or 

suburbs. 72% owned their own home, and just a tiny fraction, less than 1%, lived in a nursing home. The 

average annual income was €21,384 after adjusting for differences in prices between countries. The 

descriptive statistics indicated poor health and health behaviours among people in the sample. For 

example, average Body Mass Index was 26.65, and the average person visited their doctor 8.5 times. 86% 

of the sample had a chronic disease. 19% were physically inactive; 10% had drank more than two glasses 

of wine or equivalent each day; and 42% were daily smokers.    

The final two columns of Table 1 show the difference in the means of these variables between those 

who use the internet versus those who do not. On average, internet users can recall 1.5 extra words on 

the recall test compared to non-internet users. However, internet users are also clearly different in other 

characteristics compared to non-users. They are more likely to be male, younger, better educated, to 

have always worked, and have been retired for a shorter period. Furthermore, internet users appear to be 

                                                           
4  See Appendix Table A2 for more detail. 
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in better health, although they drank and smoked more during their lives. Most of these differences are 

statistically significant at standard levels. These differences motivate our multivariate analysis that aims 

to control for these observable differences. But these differences also suggest that unobservable factors 

influence internet usage; thus, we the need for an empirical strategy to address this.  

3. Methodology  
For our main estimates, we estimated the following value-added education production function: 

  𝑌𝑌𝑖𝑖𝑖𝑖 =  𝛼𝛼1𝑌𝑌𝑖𝑖𝑖𝑖−1 + 𝛾𝛾𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 + 𝛼𝛼2𝑋𝑋𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖     (1) 

In the fourth and fifth waves of SHARE, people were tested in word recall, immediate and delayed, 

and numeracy. Hence 𝑌𝑌𝑖𝑖𝑖𝑖 is cognitive function measured at time t (at the fifth wave of SHARE in 2013) 

for individual i. Initially, we focus on the raw score and the standardized score of the delayed recall test.5 

In our main estimates, we adopt a specification where we include an lagged measure of cognitive 

function,  𝑌𝑌𝑖𝑖𝑖𝑖−1, measure at the fourth Wave of SHARE in 2011. We assume this declines with age at a 

rate of 𝛼𝛼1. Introducing this lagged measure helps to condition on past confounding inputs into cognitive 

function, including effects of past computer usage. In additional estimates, we examine the robustness 

of our results to alternative functional forms. 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 is a binary variable indicating whether an 

individual used the internet for e-mailing, searching for information, shopping, or for any other purpose 

at least once during the seven days before the survey. Thus 𝛾𝛾 is the main parameter of interest. 𝑋𝑋𝑖𝑖𝑖𝑖 is a 

vector of individual level characteristics used to control for demographics, life history, health status, and 

household conditions. A full list of these controls are included as notes to the main tables of estimates 

(see, for instance, Table 2). The demographic and life history variables include gender, age, country of 

survey, years of education, and years since retirement. The measures of health status are Body Mass 

Index, the number of visits to a doctor per year, whether the respondent has long-term chronic diseases, 

whether the respondent drinks more than two glasses of wine or equivalent every day, and whether the 

                                                           
5 As an alternative, we could estimate (1) using a log transformation of the dependent variable, but this transformation 

would result in the loss of 831 observations where individuals could not recall any words.  
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respondent ever smoked every day. The measures of household characteristics were marital status, 

household size, living in urban, rural areas or a town, house ownership, living in a nursing home, and 

annual household income.6 One concern with a number of these variables is that they themselves may 

be a function of internet access and / or prior cognitive function. In this way, they may constitute ‘bad 

controls’ (Angrist and Pischke, 2008).  In the empirical analysis, we examine the robustness of our 

results to the inclusion of controls that could, conceivably, be outcomes themselves. 

Non-random variation in internet access and usage means that 𝛾𝛾 cannot be readily interpreted as a 

causal effect. Unobservable factors that influence internet usage are likely to also influence the rate of 

cognitive decline. Additionally, there could be feedback between cognitive function and internet usage. 

For example, those with higher rates of cognitive decline might be less likely to use the internet. These 

problems motivate our use of an instrumental variable strategy. We rely upon individuals’ work history, 

motivated by the non-uniform computerization of occupations that occurred from the 1980s onwards, as 

documented in a large literature (see for instance, Autor et al., 1998, 2003, 2015), as a source of variation 

in post-retirement internet usage.7 The intuition behind our strategy follows from two main observations. 

First, those in the SHARE sample began working during the 1950s and 1960s, long before the 

computerization of workplaces that occurred from the 1980s onwards. Hence, these people are likely to 

have made important career decisions before expectations of computerisation could reasonably have 

been formed.8 This computerisation, while not random, was unevenly spread across the distribution of 

jobs.  Thus, we observe variation in work-life exposure to computers which is likely to affect post-

retirement computer usage. 

Our Instrumental Variable strategy is to estimate the following set of equations: 

                                                           
6 In our main specification, the measure of income is a multi-stage imputed measure obtained by an aggregation at the 
household level of all individual income components. Additional information on the imputation procedure can be found in 
De Luca et al.,(2015). 
7 As noted by Bresnahan (1999), the diffusion of computer technology started to increase after the late 1950s. After which,  
personal computers (e.g. Apple II in 1977, IBM in 1981) emerged and spread. 
8 Also, it is unlikely that these older people, or most of them, would have trained in computing while in school or university. 
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𝑌𝑌𝑖𝑖𝑖𝑖 =  𝛼𝛼1𝑌𝑌𝑖𝑖𝑖𝑖−1 + 𝛾𝛾𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 + 𝛼𝛼2𝑋𝑋𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖      (2a) 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 =  𝛽𝛽1𝑌𝑌𝑖𝑖𝑖𝑖−1 + 𝜗𝜗𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑋𝑋𝑖𝑖𝑖𝑖 + 𝜇𝜇𝑖𝑖𝑖𝑖     (2b) 

The most important feature of equations (2a) and (2b) is that, when combined with our control for prior 

cognitive function, our exclusion restriction is that pre-retirement computer usage does not directly 

influence post-retirement cognitive decline. Controls for prior cognitive function along with controls for 

education mean that exposure should not be a function of, for instance, the skill level of the worker. 

Later, we demonstrate that our IV results are concentrated amongst workers in middle-skill occupations, 

the group where routine tasks have been shown to be most concentrated. These results fit with the idea 

that it is these middle-skill workers who had unexpected shocks to computer usage during their working 

life. We also provide descriptive information showing the uneven spread of computerisation across 

industries and occupational groups.  

In practice, the main form of computer exposure examined in this study is dictated by data 

availability. Specifically, we examine whether the individual used a computer in their final pre-

retirement job as our source of variation in post-retirement internet usage. In Section 5.1, we explore the 

robustness of our results to alternative versions of this instrumental variable, which are also linked to 

variations in workplace exposure, as well as examining likely sources of violation of the exclusion 

restriction. In addition, we estimate analogues of (2a) and (2b) where we adopt alternative strategies to 

modelling the relationship between current and prior cognitive function.  

A final concern is the difference in retirement age patterns across individuals. Our main strategy is 

to focus solely on those who retired before 2004 and did not return to work. Hence, our sample have all 

been retired for several years before our period of analysis. Thus, we address the likely effects of 

endogenous retirement that has been a focus of recent literature (Banks et al., 2010; Mazzonna and 

Peracchi 2012). In further robustness checks, we examine alternative treatments of the timing of 

retirement, and years since retirement. 
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4. Initial Results 
Table 2 provides initial estimates of (1) and provides the association between internet usage and 

the delayed recall test. In the first two columns, the sample includes both men and women. The estimates 

indicate that people who use the internet after they retired can recall 0.487 more words in the delayed 

recall test.9 To aid interpretation of the magnitude of this relationship, the second column presents a 

corresponding estimate where the dependent variable is instead the normalised number of words. The 

results show that internet usage is associated with an increase of around 0.233 of a standard deviation in 

the delayed recall test.  

INSERT TABLE 2 

Table 2 also reports selected coefficients of other covariates. In general, the signs of the 

coefficients fit with expectations. Current cognitive function is strongly related to cognitive function two 

years previous. Cognitive function declines with age but is positively correlated with education and 

income. There are substantial gender differences in cognitive function with males having 0.151 (approx. 

1/3 word) of a standard deviation lower cognitive function. This gender difference motivates us to 

estimate models separately for men and women. The middle and right panels of Table 2 display the 

estimated coefficients when we split the sample by gender. We can see in these panels that although the 

size of the internet usage coefficients is larger for women, the coefficients are broadly of the same 

magnitude.  

As discussed above, non-random patterns of home computer ownership and internet usage present 

a challenge to the interpretation of these estimates. We use computer usage in pre-retirement jobs as a 

                                                           
9 Appendix Table A3 shows that, without conditioning for other variables, internet usage is associated with a 0.723 of a 
standardized deviation increase in the delayed word recall test, approximately 1.3 more words recalled from a list of ten 
words. Adding cognitive function tested two years prior decreases the coefficient by over 50%. Controlling for education 
further decreases the size of the coefficient. The inclusion of additional controls has little effect on estimates of our 
parameter of interest. In particular, health and household characteristics leave the main result essentially unaffected. This is 
worth noting as these variables might be viewed as bad controls. We highlight that, in practice, their inclusion does not 
change our main results. This remains true for all additional models.   
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source of exogenous variation in the likelihood of internet usage post-retirement. Figure 2 shows the 

variation at industry-level in average computer usage in the participants’ final jobs before retirement. 

Unsurprisingly, the computer manufacturing/retailing industry ranks the highest in average pre-

retirement computer usage in the workplace with over 80% of those who used to work in computer 

manufacturing/retailing reporting that they used a computer, a percentage far higher than the overall 

average of 26%.10 Other industries which had a high exposure to computers were financial services and 

research and development. Most manufacturing jobs are near the middle range of our ranking of 

computer usage. On the other hand, computers were rarely used in industries such as recycling and 

agriculture. Figure 3 provides similar information focusing on occupations rather than industries. 

Computer usage was widespread in professional and technical jobs, and managerial jobs. Beyond these 

jobs, there is lot of variation in pre-retirement exposure by occupation. This fits with a view of 

occupational spread of computerisation that was not simply a function of worker skill level. It is this 

variation in computerisation that provides us with variation conditional on prior cognitive function and 

education level. Figure 2 and Figure 3 also show that pre-retirement computer usage in work is a good 

predictor of post-retirement internet usage. In general, people who rarely used a computer in their final 

job have lower rates of post-retirement computer usage. 

INSERT FIGURE 2 

INSERT FIGURE 3  

Table 3 presents the resultant instrumental variable estimates that correspond to equations (2a) and 

(2b). The bottom panel reports the first stage coefficient on having used a computer in the final, pre-

retirement, job on current internet usage. This coefficient is of a large magnitude: using a computer in 

this job increases the likelihood of using the internet by 30 percentage points. This coefficient is 

statistically significant at the 1% level even conditional on a variety of individual characteristics relating 

                                                           
10 When we re-estimated our main OLS and IV estimates excluding those working in the computer industry, our results were 
largely unaffected. 
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to prior cognitive function, income, education, health and the household, and easily passes standard 

thresholds for weak instruments.11  

INSERT TABLE 3 

The top panel of Table 3 reports the IV estimates of the effect of internet usage on word recall, 

where again we report these estimates for the entire sample and for separate samples of men and women 

only. These estimates reveal positive effects that are roughly twice the size of the OLS estimates. These 

are large effects. For instance, the pooled estimates suggest that internet usage increases word recall by 

just under one word. These estimates reveal even more dramatic gender differences. Women who use 

the internet can recall 1.24 more words than similar women can; whereas men who use the internet can 

recall about 0.67 more words than similar men.  

5. Robustness 

5.1 Alternative Outcomes, Covariates, Specifications, and Instruments 
We found that internet usage amongst retirees increases cognitive function, focusing on word recall. In 

this section, we explore a range of further estimates to assess the robustness of these findings across 

alternative outcomes, empirical specifications, and matters related to instrument choice.  

First, while we have focused on delayed word recall, alternative measures of cognitive function 

are available in SHARE. In the 2013 wave of SHARE, immediate word recall is also available. This 

measure of cognitive function is similar to delayed word recall with the obvious difference that 

participants immediately list those words they remember after the list is read out. Estimates of the effect 

of internet usage on immediate word recall, estimated by OLS and IV, are reported in Panel A of Table 

4. These results have a similar pattern to those in previous tables, although effect sizes are smaller. It is 

notable, however, that the IV estimates for men are small and not statistically different from zero. Second, 

                                                           
11 A fuller set of first stage coefficients is shown in Appendix Table A4. Because the endogenous variable is binary, 

we also display the marginal effects from a logistic regression. The marginal effects from the logistic regression are very 
similar to the first stage 2SLS coefficients.   
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a measure of numerical ability is available in the 2013 wave, along with past measures in 2011 and 

2004.12 In practice, there is very little variation in numeracy score between 2011 and 2013, so instead 

we estimated a model including the 2004 numeracy scores as the lagged measure.  The resultant 

estimates are shown in Panel B of Table 4. Again, these results largely conform to previous estimates, 

although the IV estimates from the men-only sample are sizeable but not statistically significant. Finally, 

there is a later measure (2015, Wave 6 of SHARE) of delayed word recall available for a smaller 

sample.13  Again, these estimates reveal positive and statistically significant effects of internet usage on 

cognitive function that are larger for the IV estimates. Together these estimates suggest our results are 

not driven by our choice of cognitive function measure, and that the effects of internet usage on cognitive 

function appear larger and more robust amongst women.  

INSERT TABLE 4 

Next, we examine the robustness of our results to a variety of alternative model specifications and 

control variables. In the upper panel of Table 5, we report estimates of two models that make different 

assumptions to the baseline value-added model. Alternative Model A removes the control for prior 

cognitive function. In comparison with our baseline value-added model, under Alternative Model A, the 

effect of internet usage is almost twice as large. This result suggests that the lagged dependent variable 

in the baseline model captures unobserved characteristics which affect both internet usage and cognitive 

scores. In Alternative Model B, we estimate the effect of internet usage on the change in test scores 

rather than on the level, conditional on initial test scores. Again, this specification leads to larger, more 

positive, estimates than our main specification. The lower panel of Table 5 demonstrates the robustness 

of our main estimates to a range of alternative controls, such as household assets, years since reaching 

their national statutory retirement age, measures of depression, and partner’s age and education. All of 

these controls are potential confounding factors, although one must be careful when interpreting the 

                                                           
12  The measure of numeracy is based on a series of questions where respondents are presented with everyday 
situations where they have to calculate fractions and show awareness of compounding. 
13 In the main, we did not use the 2015 data for our analysis because the sample size in 2015 is 27% smaller than the sample 
size in 2013. 
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resultant estimates as again these control variables themselves could be influenced by cognitive function 

and hence could be considered ‘bad controls’. With this said, the estimates of interest are largely 

unaffected by the inclusion of these alternative controls. The only exception are models where we 

include both measures of depression and partner’s education and age. In those models, while OLS 

estimates are unchanged, the IV estimates fall by roughly half and are only statistically significant at the 

10% level.  

INSERT TABLE 5 

Next, we explore our IV strategy further. The intuition behind our instrument is that people 

choosing careers and occupations prior to the computerisation of workplaces from the 1980s onwards 

are subsequently exposed to different levels of computerisation because of factors related to ease of 

computerisation, task mix etc. Ideally, we would measure exposure to computers over an entire career 

but the data do not allow us to. Questions about usage of computers at work were only introduced in 

Wave 5 of SHARE which means that our main identification strategy utilises computer usage in the final 

job before retirement. While the intuition of our identifying assumption is clear, it is in practice not clear 

how best to operationalise our IV strategy. Here, we investigate the robustness of our IV results to 

alternative strategies. First, we adopt a strategy complementary to our original IV strategy that aims to 

capture duration of exposure to computers in the final job by interacting computer usage in the final job 

with years worked in this job. The resultant IV estimates are reported in Column 4 of Table 6. The 

estimates of the effect of internet usage on word recall are effectively unchanged by this strategy.  

INSERT TABLE 6 

An additional concern with our strategy is that while differences in computer usage between 

occupations might be random with respect to individuals’ original job choices, individual variation in 

actual computer usage within occupation might be non-random. For instance, people might be sorted 

into workplaces, or into specific tasks within workplaces, based on their computer aptitude, and this 

aptitude could be related to later cognitive function. As an alternative strategy, we use average computer 
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usage in the respondent’s final occupation where the average values were generated from the SHARE 

data (excluding the ith individual). The results are reported in Column 5 of Table 6. This instrumental 

variable passes standard thresholds to detect weak instruments, and results in a larger estimate of the 

effect of internet usage on delayed word recall (0.762 of a standard deviation increase). Finally, the rate 

of computerisation of occupations is likely to have varied across countries. With this in mind, Column 

6 provides further estimates where we use averages of computer usage in last job by occupation-country 

cells (again omitting the ith individual). The results are qualitatively unchanged. 

INSERT TABLE 6 

On a related point, a concern is that the task- and skill- mix of occupation might themselves 

influence the rate of cognitive decline. As a first step to investigating this, Table 7 reports estimates 

(OLS and IV) where we first include controls for whether the final job was in self-employment or as an 

employee in the public or private sector, followed by a range of controls for occupational skill level. 

Hence, the IV estimates are identified by within-occupation and within-employment type variation in 

computer usage in the respondent’s final job. The main results are robust to these alternative strategies. 

For instance, the within-occupation estimates reveal that internet usage is leads to a 0.337 of a standard 

deviation increase in cognitive function. This estimate suggests that it is not occupational skills, and 

their correlation with computer usage, that is generating the increases in cognitive function.  

INSERT TABLE 7 

In the lower panel of Table 7, we further investigate the role of different skilled jobs in post-

retirement internet usage. Notably, the growth in workplace computerisation was concentrated in high 

skill occupations, but also in medium skill occupations where jobs consisted disproportionately of tasks 

that were routine in nature and hence more readily replicated by algorithm (Autor, Levy and Murnane 

2003). We sorted occupations into four skill-level groups according to ISCO (International Labour 

Organisation, 1990) classification: elementary; medium-level; technicians and associate professionals; 

and professionals. The bottom panel of Table 7 reports OLS and IV estimates for these four occupational 
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groups. Across all groups, OLS estimates reveal a positive relationship between internet usage and 

cognitive function, possibly largest amongst low skill workers. However, the IV effects are concentrated 

entirely amongst medium skill workers, even while the instrument passes standard tests of instrument 

weakness for technicians/associate professionals and professionals, respectively.  These results fit with 

one interpretation of the local average treatment effect estimated by our IV strategy: People who 

otherwise might not have been exposed to computers are those who benefit from internet usage. Higher 

skilled workers, for instance, might have been more likely computer adopters in the absence of 

workplace exposure. It also raises two caveats regarding our results. Naturally, we cannot say anything 

causal about these always-takers, nor can we say anything about those not exposed to the instrument 

(e.g. low-skill workers). At the same time, one other aspect of the process of computerisation of routine 

jobs is the reduction of employment in medium skill jobs and movement into lower-skill jobs, although 

the extent of this varies by country (Goos et al, 2008).  

As further robustness checks, we re-estimated our main models excluding specific groups who 

either might have substantially different patterns of computer usage and cognitive function and/or for 

whom our instrumental variable strategy is less likely to be applicable. First, we re-estimated our model 

excluding people who never worked. Clearly, these people cannot have been directly affected by 

computerisation patterns in the workforce, so they do not contribute to identifying the IV estimates. 

Second, we excluded people who retired early because they might have retired early due to negative 

health shocks which, in turn, might affect their post-retirement cognitive function and internet usage. 

Specifically, we drop all people who retired at least three years earlier than their national retirement age.  

Finally, we re-estimated our model excluding people who retired before 1980 because these people are 

less likely to have been affected by the large-scale computerization in workplaces from the 1980s on. In 

unreported estimates, excluding these people left both the OLS and IV estimates essentially unchanged.  

5.2 Heterogeneity and Mechanisms 
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One issue is that our estimates might largely be caused by people from socio-economically 

advantaged backgrounds. For example, people with more schooling or greater ability are more likely to 

select skilled occupations that involve more computer usage, and their health outcomes, including 

cognitive function, are likely to be better irrespective of computer usage. To investigate this issue, we 

estimated our models separately across education qualifications using three combined categories of the 

International Standard Classification of Education (ISCED). These results are presented in Table 8. For 

the sake of precision, we estimate models pooled across genders. We can see from Table 8 that internet 

usage increases cognitive function across all three educational categories. There is some indication that 

these effects, while present, are smaller for people with secondary education as their highest qualification. 

However, some caution must be taken as these estimates, particularly the IV estimates, are quite 

imprecise and the confidence intervals overlap for all three educational categories.  

INSERT TABLE 8 

A second issue is the potential for age to affect attitudes towards technology. Younger cohorts 

might have more positive attitudes towards new technology, and they were more exposed to 

technological change in the workplace after the 1980s. In our data, 36% of people younger than 70 in 

2013 reported using the internet; whereas, only 26% of people older than 75 reported using the internet. 

In unreported estimates, we find very little variation in either our OLS or IV estimates when we split our 

sample by age group (for instance 58-70 versus 70+). Likewise, we examined whether our results varied 

markedly by years since retirement. Again, there was little indication of variation by years since 

retirement. These results for age and retirement are additionally helpful in so for as our results were 

largely unchanged in younger (< 70) and shorter retirement period (< 15 years) groups where attrition 

due to death and incapacity will be less of a problem.  

INSERT TABLE 9 

Finally, while to this point we have found a robust positive effect of internet usage on cognitive 

function, this finding raises the question of what mechanisms are driving this positive effect. There are 
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a range of potential mechanisms, but one point that must be highlighted is that this is not internet usage 

conditional on computer usage. As a result, and as highlighted earlier, it is not clear whether our results 

capture effects of computer usage more broadly, or specifically internet usage. SHARE does, however, 

contain a range of information on behaviours which we report in Table 9. These are presented as 

unconditional mean differences between internet users and non-users. These provide some indication of 

potential mechanisms. The categorical manner in which this data is reported makes comparisons 

sometimes difficult, but internet users read more frequently, and there is some indication that they are 

more likely to participate in clubs. There is little difference across puzzle games, card games and 

voluntary or charity work.  

6. Conclusion and Discussion 
 Cognitive decline amongst older people is a leading indicator of a range of negative outcomes. 

This study examined the role of information technology, specifically internet usage, in influencing the 

cognitive function of people after retirement. In a large-scale multi-country setting, we estimate a value 

added model which demonstrates a positive association between internet usage and cognitive function. 

Furthermore, we adopt an instrumental variable strategy based on pre-retirement workplace exposure to 

computers to provide estimates of the effect of post-retirement IT usage on cognitive function. In this 

way, we go beyond existing correlational studies regarding how technology affects the well-being of 

older people.   

 We demonstrate that internet usage has substantial effects on the cognitive function of older 

people. Our IV estimates suggest that internet usage increases word recall by approximately 0.445 of a 

standard deviation. These results are larger for women, and are robust to a range of alternative measures 

of cognitive function, sample selection, functional form, and potential violations of our exclusion 

restriction. In practice, these effects could be generated by a range of mechanisms. Future research 

should focus on identifying the specific mechanisms through which IT usage influences the cognitive 

function of retirees. 
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Table 1: Summary Statistics 

Notes: 
n=3798 
* significant at 10% level; ** significant at 5% level;  ***significant at 1% level.   
All values are for 2013 unless otherwise indicated 
The values of retirement year, age at retirement, and years worked exclude people who never worked.  
 

 

 
Mean Std. Dev. Min. Max. Mean of 

Internet 
Users 
Minus 
Mean of 
Non-Users 

 P-value of 
Difference by 
Internet Usage 

Cognitive function:       
Delayed word recall 3.11 2.09 0 10 1.51 0.000*** 
Delayed word recall (2011) 3.27 2.07 0 10 1.50 0.000*** 
       
Computer Usage:       
Uses internet (post-retirement) 0.27 0.45 0 1   
Used computer in final job (pre-retirement) 0.26 0.44 0 1 0.43 0.000***  
       
Demographics and Life History:       
Male 0.45 0.50 0 1 0.18 0.000*** 
Age 77.2 7.05 59 102 -2.94 0.000*** 
Years of education 9.74 4.46 0 25 3.64 0.000*** 
Never worked 0.19 0.39 0 1 -0.15 0.000*** 
Years retired 17.68 7.54 0 56 -3.02 0.000*** 
       
Household Characteristics:       
Married or living with partner 0.63 0.48 0 1 0.09 0.000*** 
Widow(er) 0.26 0.44 0 1 -0.11 0.000*** 
Household size 1.8 0.73 1 7 -0.04 0.107 
Resides in large city 0.10 0.30 0 1 0.01 0.279 
Resides in rural area 0.30 0.46 0 1 -0.10 0.000*** 
Home owner 0.72 0.45 0 1 0.03 0.084* 
Living in nursing house 0.003 0.06 0 1 0.004 0.001*** 
Total annual household income in Euro 21384 28033 0 895719.1 7861.8 0.000*** 
       
Health:       
Body mass index  26.65 4.56 15 67 -0.68 0.000*** 
Number of visits to doctor 8.5 10.1 0 98 -1.73 0.000*** 
Has long-term chronic disease 0.86 0.34 0 1 -0.06 0.000*** 
Physically inactive 0.19 0.39 0 1 -0.17 0.000*** 
Ever drank more than two glasses of wine daily  0.10 0.30 0 1 0.07 0.000*** 
Ever smoked every day 0.42 0.49 0 1 0.15 0.000*** 
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Table 2: OLS Estimates of the Effect of Internet Usage on Cognitive Test Score 

 

Notes:  * significant at 10% level; ** significant at 5% level;  ***significant at 1% level.  
Robust standard errors clustered at household level in parentheses. There are 3199 clusters for all observations, 1717 for 
men only, 2076 for women only.  
Regressions also control for years retired, health status, household characteristics, and country fixed effects. For those who 
never worked, years retired were replaced with years since reaching national statutory retirement age.  Health status 
comprised standardized body mass index, standardized number of doctor visits, whether has long-term chronic disease, 
whether physically inactive, whether drinks (more than two glasses) every day, and whether smokes every day. Household 
characteristics comprised marital status, household size, living in city, town or countryside, home ownership, whether 
living in nursing house, and quartiles of total household income (transformed using PPP index).  

Yt:  Delayed Recall Test Score (2013) 
 All Observations Men Only Women Only 
 𝒀𝒀𝒕𝒕 𝑺𝑺𝒕𝒕𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝒀𝒀𝒕𝒕 𝒀𝒀𝒕𝒕 𝑺𝑺𝒕𝒕𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝒀𝒀𝒕𝒕 𝒀𝒀𝒕𝒕 𝑺𝑺𝒕𝒕𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝒀𝒀𝒕𝒕 

Uses internet (D=1)  0.487*** 0.233*** 0.430*** 0.205*** 0.557*** 0.266*** 
 (0.071) (0.034) (0.098) (0.047) (0.103) (0.049) 
𝑌𝑌𝑖𝑖−1 (2011) 0.456*** 0.451*** 0.400*** 0.396*** 0.495*** 0.49*** 
 (0.016) (0.016) (0.024) (0.024) (0.021) (0.021) 
Age -0.064 - 0.031 -0.127 -0.061 -0.034 - 0.016 
 (0.064) (0.030) (0.101) (0.048) (0.083) (0.040) 
Age2/100  0.024 0.011 0.067 0.032 -0.003 -0.001 
 (0.041) (0.019) (0.064) (0.031) (0.054) (0.026) 
Men -0.317*** -0.151***     
 (0.068) (0.032)     
Years of education 0.048*** 0.023*** 0.054*** 0.026*** 0.040*** 0.019*** 
 (0.008) (0.004) (0.011) (0.005) (0.012) (0.006) 
Income (top 25%) 0.251** 0.120** 0.320* 0.153* 0.213 0.102 
 (0.120) (0.057) (0.188) (0.090) (0.155) (0.074) 

       
R-squared 0.390 0.344 0.441 
n 3798 1717 2081 
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Table 3: IV Estimates of the Effect of Internet Usage on Cognitive Test Score 

Yt:  Delayed Recall Test 
Score (2013) 

   

 All Male Female 
Uses internet (D=1)  0.932*** 0.669* 

[0.320] 
1.238*** 
[0.591] [0.445]  

 
  

(0.240) (0.344) (0.370) 

Yt-1  (2011) 0.442*** 0.391*** 0.476***  
(0.017) (0.028) (0.023) 

Age -0.062 -0.113 -0.041  
(0.063) (0.101) (0.083) 

Age2/100 
 

0.025 0.060 0.005  
(0.041) (0.064) (0.054) 

Men -0.370***      
(0.073)     

Years of education 0.040*** 0.049*** 0.032***  
(0.009) (0.012) (0.012) 

Income (top 25%) 0.204* 0.292 0.155  
(0.123) (0.189) (0.162) 

IV first-stage coefficient  
   

Computer in final job  0.305*** 0.290*** 0.302*** 
before retirement (0.020) (0.028) (0.031)     

Kleibergen-Paap F statistic 227.51 104.63 95.63 
Partial R-squared 0.085 0.081 0.075 
R-squared 0.383 0.342 0.429 
N 3798 1717 2081 

 
Notes:  * significant at 10% level; ** significant at 5% level;  ***significant at 1% level.  
Estimates where outcome is standardized measure of cognition are shown in square brackets. 
Robust standard errors clustered at household level are in parentheses. There are 3199 clusters for the All Observations, 1717 for Men, 2076 for Women.  
Controls are as per Table 2. 
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Table 4: The Effect of Internet usage on Other Measures of Cognitive Function 

Panel A Immediate Word Recall (2013) 
 All Observations Men Only Women Only 
 OLS IV OLS IV OLS IV 

Uses internet (D=1)  0.199*** 0.303*** 0.135*** 0.030 0.259*** 0.606*** 
 (0.034) (0.117) (0.047) (0.165) (0.048) (0.187) 

N 3798 1717 2081 
Kleibergen-Paap F statistic  237.33  110.18  100.81 

  
Panel B Numeracy (2013) 

 All Observations Men Only Women Only 
 OLS IV OLS IV OLS IV 

Uses internet (D=1)  0.184*** 0.316*** 0.010** 0.252 0.279*** 0.460** 
 (0.034) (0.116) (0.046) (0.160) (0.051) (0.193) 

N 3792 1714 2078 
Kleibergen-Paap F statistic  233.97  110.89  96.96 

  
Panel C Delayed Word Recall (2015) 

 All Observations Men Only Women Only 
 OLS IV OLS IV OLS IV 

Uses internet (D=1)  0.217*** 0.392*** 0.110* 0.355* 0.344*** 0.526** 
 (0.041) (0.146) (0.057) (0.189) (0.059) (0.247) 

N 2783 1227 1556 
Kleibergen-Paap F statistic  154.45  78.69  56.91 

Notes:  * significant at 10% level; ** significant at 5% level;  ***significant at 1% level.  
Robust standard errors clustered at household level are in parentheses.   
All controls are as per Table 2. 
The raw scores of the numeracy test (ranges from 0-5) were used. The lagged values of numeracy were from 2004 
because of the trivial changes in numeracy scores between the 2011 and 2013.  Word recall scores were standardized.  
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Table 5: Specification Checks to Models and Alternative Controls: 

Notes:  * significant at 10% level; ** significant at 5% level;  ***significant at 1% level.  
Robust standard errors clustered at household level are shown in parentheses.  
 The Upper Panel shows other specifications. The Lower Panel shows alternative controls such as retirement year, household net worth, depression scores (Eurod) in the year 
2004, and partner’s information 
  

𝑌𝑌𝑖𝑖:  Delayed Recall Test Score (2013) 
Upper Panel:  Standardized 𝒀𝒀𝒕𝒕 𝒀𝒀𝒕𝒕 − 𝒀𝒀𝒕𝒕−𝟏𝟏   
Alternative Specifications Alternative Model A Alternative Model B   

 OLS IV OLS IV     
Uses internet (D=1)  0.394*** 0.856*** 0.487*** 0.932***     
 (0.038) (0.125) (0.071) (0.240)     
𝑌𝑌𝑖𝑖−1 (2011)         
R-squared 0.240 0.209 0.267 0.259     
N 3798 3798   
Kleibergen-Paap F statistic  254.45  227.51     

         
Lower Panel:  Standardized 𝒀𝒀𝒕𝒕 
Alternative Controls         
 OLS IV OLS IV OLS IV OLS IV 
Uses internet (D=1)  0.233*** 0.441*** 0.232*** 0.433*** 0.225*** 0.428*** 0.223*** 0.232* 
 (0.034) (0.111) (0.034) (0.115) (0.034) (0.116) (0.041) (0.139) 
Alternative Controls          
Household Asset           
Years Since Statutory Retirement Age          
Depression Score         
Partner's Age and Education          
R-squared 0.389 0.383 0.390 0.384 0.390 0.384 0.373 0.373 
N 3778 3798 3757 2359 
Kleibergen-Paap F statistic  243.73  226.79  223.86  145.59 
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Table 6: IV Estimates of the Effect of Internet Usage on Cognitive Function Using Alternative Instruments 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: 
* significant at 10% level; ** significant at 5% level;  ***significant at 1% level.  
Robust standard errors are clustered at household level and are shown in parentheses.   
All controls are as per Table 2. 
Over-identification test is the Hansen J statistic with a null hypothesis that the instruments are uncorrelated with the error term, and that the excluded instruments are correctly 
excluded from the estimated equation. Endogeneity test is under the null hypothesis that the specified endogenous regressors can actually be treated as exogenous. All these 
tests are heteroskedasticity robust. The test statistic is reported.  
In SHARE, the original four-digit occupation code (ISCO-88) has more than 500 categories. We use 44 two-digit ISCO code. For the people who never worked, the variables 
of computer usage in the final job before retirement, and ISCO codes are replaced with zero. All control variables are the same as the main OLS specifications.  
 
 
 
 
 
 

Outcome: Standardized Delayed Word Recall (2013)  
  
 (1) (2) (3) (4) (5) (6) 
 OLS IV IV IV IV IV 
Uses internet (D=1) 0.233*** 0.445*** 0.443*** 0.462*** 0.778*** 0.451*** 
 (0.034) (0.115) (0.115) (0.113) (0.155) (0.149) 
       
Excluded Instruments       
Used computer in final job before retirement       
Years worked in final job before retirement       
Used computer * Years worked       
ISCO computer usage mean in final job        
ISCO-country computer usage mean in final job       
R-squared 0.390 0.383 0.383 0.382 0.348 0.383 
n 3798 3798 3782 3782 3796 3764 
Number of excluded instruments  1 2 3 1 1 
Partial R-squared  0.085 0.085 0.087 0.051 0.051 
       
Kleibergen-Paap F statistic  227.28 112.51 79.65 155.95 146.82  
Over-identification test   0.00 0.85   
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Table 7: OLS and IV Estimates and Occupation 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes:  * significant at 10% level; ** significant at 5% level;  ***significant at 1% level.  
Robust standard errors are clustered at household level are shown in parentheses. 
All controls are as per Table 2. 
Employment Type has four categories: employed (public sector, non-civil servant),  employed (public sector, civil servant), employed (private sector), and self-employed. 
Occupation skills level is defined by the International Labour Organization (ILO). “Elementary” group covers occupations whose main tasks is selling goods in the street, 
doorkeeping, cleaning, or labouring in agriculture, fishing, mining, construction and manufacturing. “Technician and Associate Professionals” group includes occupations 
whose main tasks require technical knowledge and experience in one or more fields of physical and life sciences, or social sciences. “Medium” group includes clerks, service 
workers, shop sales assistants, skilled agricultural and fishery workers, craft and related trade workers, plant and machine operators and assemblers. “Professionals” group 
includes occupations whose main task require a high level of professional knowledge and experience.    

Upper Panel: Adding Occupation Controls   
Outcome: Standardized Delayed Word Recall (2013) 
 Employment Type Occupations    
 OLS IV OLS IV     
Uses internet (D=1) 0.212*** 0.452*** 0.195*** 0.337**     
 (0.034) (0.115) (0.035) (0.150)     
n 3798 3778    
Kleibergen-Paap F statistic  227.79  134.90     
         
Lower Panel:  Occupation Skills Level 
Outcome: Standardized Delayed Word Recall (2013) 

 Elementary Medium 
Technicians & 

 Associate Profs Professionals 
 OLS IV OLS IV OLS IV OLS IV 

Uses internet (D=1) 0.318** -1.262 0.159*** 0.772*** 0.215** - 0.288 0.166* 0.039 
 (0.139) (1.503) (0.056) (0.211) (0.088) (0.363) (0.091) (0.301) 

Mean: Delayed word recall 
(2013) 2.31 2.96 3.79 4.19 
Mean: Uses internet 0.09 0.21 0.45 0.55 
Mean: Used computer in 
final job  0.05 0.19 0.45 0.43 

n 
 
338 1457 437 426 

Kleibergen-Paap F statistic  2.17  75.61  20.21  34.52 
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Table 8: OLS and IV Estimates by Education 

 
 
 
 
 
 
 
 
 
 
 
 
 

Notes:  * significant at 10% level; ** significant at 5% level;  ***significant at 1% level.  
Robust standard errors are clustered at household level are shown in parentheses.   
All controls are as per Table 2. 
 

Outcome: Standardized Delayed Word Recall 
 ISCED Categories 

 Pre-primary & Primary Secondary Bachelor & Above 
 OLS IV OLS IV OLS IV 
Uses internet (D=1) 0.237*** 0.545** 0.192*** 0.337** 0.230*** 0.518* 
 (0.071) (0.267) (0.047) (0.172) (0.073) (0.305) 
       
Mean: Delayed word recall (2013) 2.30 3.42 4.33 
Mean: Uses internet 0.10 0.32 0.58 
Mean: Used computer in final job  0.07 0.29 0.45 
n 1541 1634 623 
Kleibergen-Paap F statistic  34.14  91.96  31.76 
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Table 9: Activities and Internet Usage 

 
 
 
 
 

 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: n = 3758 
* significant at 10% level; ** significant at 5% level;  ***significant at 1% level.   
The “inactive Internet users” refer to the people who report no recent internet use during previous seven days.  The last column 
presents the p-values of difference by current internet usage. The activities reported here are taken from wave 5 (2013).  
 
 
 
 

Activities Mean Mean 
(Internet User) 

Mean 
(Inactive 

Internet User) 

p-value of 
Difference by 

Internet Usage 
Reading     
Almost everyday 0.61 0.83 0.52 0.000*** 
Almost every week 0.08 0.06 0.09 0.000*** 
Less often 0.01 0.004 0.01 0.02** 
Never 0.29 0.11 0.36 0.000*** 
     
Puzzle Games     
Almost everyday 0.28 0.43 0.23 0.000*** 
Almost every week 0.11 0.15 0.09 0.000*** 
Less often 0.01 0.02 0.01 0.274 
Never 0.58 0.38 0.65 0.000*** 
     
Card Games     
Almost everyday 0.07 0.09 0.06 0.000*** 
Almost every week 0.13 0.18 0.11 0.000*** 
Less often 0.04 0.05 0.04 0.03** 
Never 0.70 0.58 0.75 0.000*** 
     
Clubs (Sports, social etc.)     
Almost everyday 0.03 0.07 0.02 0.000*** 
Almost every week 0.16 0.27 0.11 0.000*** 
Less often 0.02 0.03 0.02 0.01** 
Never 0.73 0.54 0.80 0.000*** 
     
Voluntary or Charity work     
Almost everyday 0.03 0.07 0.02 0.000*** 
Almost every week 0.09 0.16 0.06 0.000*** 
Less often 0.03 0.04 0.02 0.01*** 
Never 0.81 0.66 0.87 0.000*** 
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Appendix 
Table A1: Sample Selection and Descriptive Statistics 

Notes:  * significant at 10% level; ** significant at 5% level;  ***significant at 1% level.  
Our sample comprises this who have been retired since 2004. Because of missing variables, we have a sample of 3798 in the main analysis.   
In the lower panel, the comparison group is the people who are aged over 50 and also participated in all Waves 1,4 and 5 but who were still working or doing other temporary 
paid jobs in Wave 5. The last column in the lower panel reports the difference of the mean measures across two samples. For those who never worked, years retired were 
replaced with years since reaching national statutory retirement age.  
†household income is imputed using the fully conditional specification method and was obtained by aggregating individual income components at the household level. For 
more details, see De Luca et al. (2015).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Upper Panel : Sample Selection 
     

 
 

      
 

 

Wave Participation  Interviewed Age>=50 Retired Retired Since 2004 Never Worked Total      
    

Wave 1 (2004) 27984 26942 12547 12547 2426 14973  
Waves 1 & 4  (to 2011)  12478 12427 6960 4378 957 5335  
Waves 1, 4 & 5 (to 2013) 9902 9884 6057 3164 760 3924  
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Table A2: Summary Statistics by Country 
Country n Delayed Word 

Recall 
Uses 

Internet 
(Mean) 

Used computer 
in Final Job 

(Mean)† 

Statutory 
Retirement 
Age Men‡ 

Statutory 
Retirement 

Age Women‡ 

Never 
Worked 

Austria 269 3.74 0.22 0.25 65 60 11.8% 
Germany  247 3.56 0.30 0.26 65 60 4.9% 
Sweden 356 3.30 0.38 0.45 67 67 0.5% 
Netherlands 272 3.32 0.47 0.30 65 65 19.9% 
Spain 465 2.04 0.62 0.03 65 65 50.1% 
Italy 622 2.59 0.09 0.09 60 55 28.5% 
France 507 3.31 0.33 0.27 65 65 8.7% 
Denmark 250 3.68 0.49 0.30 67 67 1.2% 
Switzerland 122 3.38 0.32 0.30 65 63 9.8% 
Belgium 688 3.34 0.33 0.22 65 60 20.9% 

Notes: 
†Past computer usage in the final job before retirement excludes the people who never worked.  
‡National statutory retirement age as per the Wave 3 of SHARE.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



34 
 

Table A3 OLS Estimate of the Effect of Internet Usage on Cognitive Function 

Notes:  * significant at 10% level; ** significant at 5% level;  ***significant at 1% level.  
n=3798 for all specifications 
Robust standard errors clustered at household level are in parentheses and there are 3199 clusters in total.  
Health controls are physical inactivity, Standardized body mass index, Standardized number of doctor visits, whether has long-term chronic disease, whether drink (more than 
two glasses) every day, whether smoke every day. Regression also includes controls for years retired. For those who never worked, years retired was replaced with years since 
reaching national statutory retirement age.  Household characteristics were controls for marital status, household size, living area (urban, rural, or town), house ownership, 
whether at nursing house, and Standardized total household income (transformed using PPP index). 

Outcome: Standardized Delayed Recall Test Score (2013) 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 
Uses internet (D=1)  0.723*** 0.339*** 0.316*** 0.315*** 0.331*** 0.255*** 0.256*** 0.251*** 0.240*** 0.235*** 0.233*** 
 (0.034) (0.031) (0.031) (0.031) (0.032) (0.033) (0.033) (0.033) (0.033) (0.033) (0.034)             
𝑌𝑌𝑖𝑖−1 (2011)  0.530*** 0.510*** 0.510*** 0.506*** 0.476*** 0.476*** 0.468*** 0.460*** 0.458*** 0.451*** 
  (0.014) (0.015) (0.015) (0.015) (0.015) (0.015) (0.015) (0.016) (0.016) (0.016) 
Age   -0.013*** 0.003 0.011 0.004 0.003 -0.022 -0.032 -0.034 -0.031 
   (0.002) (0.029) (0.030) (0.029) (0.029) (0.030) (0.030) (0.030) (0.030) 
𝐴𝐴𝐴𝐴𝐼𝐼2/100    -0.010 -0.015 -0.011 -0.010 0.005 0.012 0.013 0.011 
    (0.019) (0.019) (0.019) (0.019) (0.019) (0.019) (0.020) (0.019) 
Men     -0.069*** -0.087*** -0.097*** -0.141*** -0.164*** -0.156*** -0.151*** 
     (0.026) (0.026) (0.026) (0.029) (0.031) (0.032) (0.032) 
Years of education      0.027*** 0.026*** 0.024*** 0.023*** 0.023*** 0.023*** 
      (0.003) (0.003) (0.003) (0.003) (0.003) (0.004) 
Household Income (Top 25%)       0.085** 0.082** 0.087** 0.095** 0.120** 
       (0.038) (0.038) (0.038) (0.040) (0.057) 
Retired Years        0.001 0.002 0.002 0.002 
        (0.002) (0.002) (0.002) (0.002) 
Never worked        - 0.152*** -0.125*** -0.117*** -0.091** 
        (0.040) (0.040) (0.041) (0.044) 
Health Controls            
Household Characteristics            
Country Fixed Effects            

            
R Squared 0.104 0.356 0.364 0.364 0.365 0.376 0.377 0.380 0.386 0.387 0.390 
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Table A4: First Stage Results of Instrumental Variable Estimation 

 
Notes:  * significant at 10% level; ** significant at 5% level;  ***significant at 1% level.  
Cluster robust standard errors are in parentheses.   
Regressions also include other controls that are similar in our main specification, and this Table only presents a few 
selected factors of interest.   
The column of estimated Logit model reports average marginal impact.  
 

First-stage Coefficients  Whether Use Internet (2013)   

 
All Observations Men Only Women Only Alternative 

Specification 
 OLS OLS OLS Logit  
Used computer in final job before retirement 0.305*** 0.290*** 0.302*** 0.169*** 
 (0.020) (0.028) (0.031) (0.013) 
Cognitive function (2011) 0.053*** 0.068*** 0.043*** 0.049*** 
 (0.007) (0.012) (0.009) (0.007) 
Age -0.013 -0.05* -0.001 -0.006 
 (0.013) (0.026) (0.014) (0.015) 
Men 0.092*** 

  
0.085*** 

 (0.016) 
  

(0.014) 
Years of education 0.013*** 0.016*** 0.010*** 0.013*** 
 (0.002) (0.003) (0.002) (0.002) 
Income (top 25%) 0.074*** 0.068* 0.074** 0.088** 
 (0.024) (0.040) (0.031) (0.035) 
Physical Inactive -0.029* -0.020 -0.042*** - 0.064*** 
 (0.014) (0.026) (0.016) (0.018) 
Household Size -0.018** -0.026* -0.015* -0.032** 
 (0.008) (0.015) (0.009) (0.013) 
Never married -0.058** -0.124*** -0.012 - 0.061* 
 (0.028) (0.046) (0.036) (0.032) 
Suburbs of big cities 0.072*** 0.085*** 0.054* 0.071*** 
 (0.022) (0.032) (0.028) (0.020) 
R-squared 0.383 0.357 0.318 0.334 
n 3798 1717 2081 3786 
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Figures 
Figure 1: Internet Usage in Subgroups 
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Figure 2: ICT use by Industry 

 
Note: Sorted by the pc use in the final job before retirement. 
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Figure 3: ICT use by Occupation (based on ISCO-88) 

 

Note: Sorted by the computer usage in the final job before retirement.  
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