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Abstract 

Trading volume and the number of trades are both used as proxies for market 

activity, with disagreement as to which is the better proxy for market activity.  

This paper investigates this issue using high frequency data for Cisco and Intel in 

1997. A number of econometric methods are used, including GARCH augmented 

with lagged trading volume and number of trades, tests based on moment 

restrictions, regression analysis of volatility on volume and trades, normality of 

returns when standardized by volume and number of trades, and Correlation 

analysis using volatility generated from GARCH and realized volatility. Our 

results show that the number of trades is the better proxy for market activity. 

 

Keywords: Trading volume; number of trades; realized volatility, GARCH 

volatility, Mixture of distribution hypothesis.

 



I. Introduction 

 

The volatility-volume relation is central to many models in finance and 

economics. Since the early 1970s, the relation between trading volume and stock 

prices volatility has been widely investigated in an impressive body of empirical 

and theoretical literature. The first treatment of the relation goes back to Osborne 

(1959) in his attempt to model the stock price change as a diffusion process with 

volatility related to the number of transactions. This was followed by the work of 

Ying (1966) and Crouch (1970), who find a statistically significance positive 

correlation between absolute returns and daily volumes for both market indices 

and individual stocks. Clark (1973) finds a positive relation between squared 

returns and aggregated volume using daily data from the cotton futures market. 

Westerfield (1977) finds a similar relation in a sample of returns and volumes for 

a number of common stocks, as do Tauchen and Pitts (1983) using daily data 

from the Treasury Bill futures market. Epps and Epps (1976) find a positive 

relation between the sample variances of returns at given volume levels using 

transactions from 20 stocks. Harris (1986, 1987) finds a positive correlation 

between volume and the square of the price change using daily data. Moreover 

Karpoff (1987, 1988), Lamaourex  and Lastrapes (1990, 1994), Liesenfeld (1998, 

2001), Richardson and Smith (1994) and Tauchen and Pitts (1983) have all 

emphasized the role of volume as an activity variable.  

 

All the work cited above on the volatility-volume relation comes under 

what is known as the Mixture of Distribution Hypothesis (MDH) model. The 

MDH model assumes volume and volatility are positively correlated, and such 

correlation arises due to positive association of both volume and volatility to the 



unforeseen information flow process. The MDH also tells us that volume is the 

best proxy for market activity; hence we expect the correlation between volume 

and any volatility proxy to be an increasing function of the accuracy of the 

volatility measure in use. However, this is not the case with the data we use here 

where the number of trades is found to show higher correlation with realized 

volatility than volume, which in turn suggests a volatility-number of trades 

relation as opposed to the volatility-volume relation implied by the MDH. 

 

 The support for the number of trades that we find in this paper is in line 

with a growing literature which tends to emphasize the role of the number of 

trades over volume. For example, March and Rock (1986) finds that the net 

number of trades has similar explanatory power as net volume. Jones et al.(1994) 

argue that trading volume has no informational content beyond that contained in 

the number of trades. As a result they suggest the use of the number of trades as a 

substitute for volume. More recent evidence can be found in the work of Easley 

and O'Hara (1992), Easley et al. (1997), Hasbrouk (1999).and Ané and Geman 

(2000). 

 

 This paper adds to the existing literature by comparing volume and the 

number of trades using high frequency data for Cisco and Intel in (1997). We 

consider a number of econometric procedures previously used to address the 

roles of these two activity variables which include: a) The direct test of the MDH 

model adopted by Richardson and Smith (1996). b) The augmenting of GARCH 

with volume as in Lamaourex and Lastrapes (1990) but extended to allow for the 

number of trades. c) The standardization of returns by volume and trades as set 



out in Harris (1986) and Ané and Geman (2000). Moreover we consider 

correlation analysis by which we look at the correlation between volume, the 

number of trades and volatility generated from a variety of commonly used 

GARCH models - exponential GARCH, threshold GARCH, GARCH in-the-

mean, fractional GARCH, fractional EGARCH, two components GARCH - and 

realized volatility. 

 

 The outline of this paper is as follows. In Section II, we discuss the data 

and the econometric procedures to be used. In section III, we discuss our 

findings. We present our conclusions in section IV. 

 

II. Data and Methodology 

 

We use the Cisco and Intel high frequency data for 1997 as used in Ané and 

Geman (2000). We did not have access to Reuters - the source used by Ané and 

Geman (2000), so we use data from the Wharton Research Data Services 

website. We calculate the intra day (9.30 am to 4 pm) returns ( ), volume ( ) 

and the number of trades ( ) at the 10, 30 and 60 minute and daily time 

intervals. 

tr tv
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We consider a number of econometric procedures / methods as previously 

used to investigate the volatility-volume and volatility-number of trades 

relationships. These methods are described below. 

 

 The first method draws from the work of Richardson and Smith (1994), 



Andersen (1996), and Liesenfeld (1998, 2001).and is based on testing the 

moment restrictions implied by the MDH model using the Generalized Method 

of Moments (GMM) J- test of overidentifying restrictions. 

 

The MDH assumes that, conditional on the information flow , returns  

and the observed "market activity"  (volume, log volume, the number of trades 

etc.) are independently and normally distributed as: 
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The model implies a set of moment restrictions that can be imposed on the data 

and evaluated using the GMM J-test of over-identifying restrictions. We consider 

the moment restrictions set out in equation 4 of Richardson and Smith (1994, p. 

106) which can be written as follows:  
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where,   denote the first three (central) moments of information, 

 denote the first three unconditional (central) moments of returns, 

denote the first three unconditional (central) moments of activity and 

denote the co-variances between  and . 
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Murphy and Izzeldin (2007) point out, the parameters rµ and 2
rσ are only 

identified up to scale since is not observed. Suppose  is replaced by with 

so that  become 

ti ti tiκ

0κ > 1 ,...,im m3
i

3
im1 ,...,imκ κ in the moment conditions. Then 

/rµ κ  and 2 /rσ κ  satisfy the new moment conditions. Thus 2,r rµ σ  and cannot 

be identified separately. To overcome this problem, we normalize the mean of 

unobserved information flow process  to one. Following normalization, the 

remaining system consists of nine moment conditions and six parameters to be 

estimated ( ). This leaves three over-identifying restrictions 

which are evaluated using the J-test of over-identifying restrictions. For example, 

if J > 7.815, then we can reject the moment restrictions at the 5 % level. The 

activity variable whose moment restrictions best fit the data, can be taken as a 

good proxy of market activity. In other words, we seek to establish whether a 

volatility-volume relation or a volatility-number of trades is appropriate for the 

volatility-activity relation implied by the MDH. 
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The second method builds on the work of Lamaourex and Lastrapes 

(1990). Lamaourex and Lastrapes (1990) extends the GARCH model by 

augmenting the GARCH variance equation with trading volume. This augmented 

model better fits the data and accommodates for persistence in the GARCH 

volatility, a result which support the role of volume as a proxy for market 

activity. We replicate their exercise by adding lagged volume or lagged trades to 

the GARCH variance equation, and check whether lagged volume or the lagged 

trades better explains the GARCH effects. 

 



 We consider the basic GARCH model outlined in Lamaourex and 

Lastrapes (1990), but with the mean equation given by 

 tr c ut tσ= +  (3)  

and the three variance equations as shown below 
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We then select the model which best fits the data using the Akaike 

information criterion (AIC), the significance of the coefficients on  and 1tv − 1tn − , 

and the level of persistence given by the sum 1 2α α+ . 

 

The third method involves comparing the performance of volume and the 

number of trades in explaining volatility changes. We consider the regressions 

outlined in Jones et al. (1994) and Ané and Geman (2000) which are as follows: 
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where a, b and c are constants, tv∆  and tn∆  are the first differences of volume 

and the number of trades, and  is the Schwert (1990) daily volatility measure. t̂s



To generate , we run a regression of the return over 12 lagged returns as 

shown in equation 6 below: 

t̂s tr

 12
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We then define  t̂s

 ˆ
2

ˆt ts
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The standardization 
2
π follows from an elementary result on the Gaussian 

distribution which asserts that if 2(0, )X N σ∼ , then ( ) 2E X πσ= . 

 

 In the fourth method we test one of the assumptions under the MDH 

which asserts that returns standardized by a good proxy for activity is normally 

distributed. Clark (1973) shows that returns subordinated/standardized using 

volume is normally distributed. Ané and Geman (2000) claims that returns 

standardized by the number of trades are normal. In our exercise we consider 

returns standardized by volume and returns standardized by the number of trades. 

The best activity proxy is the one which achieves a higher level of normality for 

the standardized returns.  

 Finally, we look at the correlation of volume and trades with volatility 

generated from GARCH ( )garchσ , exponential GARCH ( )egarchσ , threshold 

GARCH , GARCH in-the-mean ( tgarchσ ) ( )pgarchσ , fractional GARCH , 

fractional exponential GARCH 

( )fgarchσ

( )fegarchσ  and two components GARCH 

( 2 )garchσ . All these models are used extensively in the financial literature and 

have been found to provide a good fit to financial data. See for example, 



Bollerslev et al. (1994), Engle (2001) and Glosten (1993). We also consider the 

correlation between volume, trades and realized volatility. Realized volatility is 

defined as the sum of the intra-day squared returns which, in the absence of 

micro-structure effects, provides an unbiased and accurate measure of volatility. 

See, Andersen. et al. (2001) and Barndorff-Nielsen and Shephard (2001) for 

example. The realized volatility in our case is constructed by summing 5 minute 

intra-day squared returns to the daily interval. 

 

III. Results 

 

[ Table 1 around here] 

 

Table 1 reports some statistical properties for Cisco and Intel volumes, 

log volumes, trades and the number of trades. We scale volume by 1/100000 and 

the number of trades by 1/100 to make the results comparable. The higher mean 

and standard deviation of  and  for Intel over Cisco, indicate more activity 

for Intel. Log  and log  are more normal relative to  and  as shown by 

the Jarque-Bera test statistic. The table also shows the results for the 

Autoregressive fractionally integrated moving average, Arfima (p, d, q) model 

applied to , and . The fractional differencing parameter “d” 

shows higher values for l . High persistence is a stylized fact of a good 

volatility model. Hence it follows that a good activity proxy that is highly 

correlated with volatility should also possess high persistence. Since the number 

of trades is more persistent than volume indicates that the number of trades has 

more in common with volatility than volume. The results for  and  should 

tv tn

tv tn tv tn

, log ,t tv v tn log tn

og tn
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not be taken as definitive? Since the custom is to apply the Arfima for the log 

series and not the level series.  

 

[ Table 2 around here] 
 
 

Table 2 reports the estimated second and third moments of the 

information flow for Cisco and Intel along with the 2
(3)χ  statistic of the J-test of 

over-identifying restrictions. For all the time intervals considered the bivariate 

moments with trades achieves a lower value for the J-test than that with volume 

except for the Cisco (60 minute) case, where the results show more support for 

volume. These results support the MDH model with both trading volume and the 

number of trades acting as mixing variables, but with greater emphasis on the 

role of the number of trades. 

 

[ Table 3 around here] 

 

Table 3 reports the results of basic and augmented GARCH models, with 

lagged volume and number of trades. For all cases, GARCH augmented with 

lagged number of trades shows has lower AIC and lower persistence as given 

by 1 2α α+  . These results show that the number of trades enhances the fit of the 

GARCH model in a similar or better fashion to volume. 

 

[ Table 4 around here] 

 



Table 4 reports the results of regression equations (5a, 5b and 5c) as 

outlined in section II. These provide a method by which to compare the 

performance of volume and the number of trades in explaining volatility changes. 

Our results show mixed support for volume and the number of trades. For 

example, in the Cisco case, the number of trades shows a higher 2R relative to 

volume at all the time intervals considered. At the 60 minute time interval the 

combined presence of volume and the number of trades renders volume 

insignificant. Moreover, regressions 5b and 5c are not statistically different from 

each other. This shows that the number of trades has more explanatory power 

than volume. Volume contains no extra information to that provided by the 

number of trades. For Intel, volume shows a higher 2R  than the number of trades 

except for the 60 minute time interval, where 2R is higher for the number of 

trades. Moreover, and similar to the Cisco 60 minute case, the presence of the 

number of trades and volume renders the coefficient of volume insignificant.  

 

 If the Cisco results are taken to be more binding (since they tell the same 

story across all time intervals) we can conclude that the number of trades is more 

correlated with the Schwert (1990) volatility measure than is volume. Support for 

the number of trades is consistent with Jones et al. (1994) and Ané and Geman 

(2000) both of whom obtain (from a similar framework) results favoring the 

number of trades. 

 

[ Table 5 around here] 

 



Table 5 reports the results for testing the normality of returns 

standardized by volume or the number of trades, both rescaled to have a mean of 

unity. Results obtained show returns standardized by the number of trades are 

more normal than those standardized using volume, as shown by the Jarque-Bera 

test statistic. The implication is that the numbers of trades possess more filtration 

power than volume and hence are able to remove some of the factors causing 

return non-normality. To the best of our knowledge, no study has managed to 

recover full returns normality using the number of trades or volume as 

standardizing variables. 

 

[ Table 6 around here] 

 

Table 6 reports the correlation between the GARCH models, volume and 

the number of trades at the 60 minute time interval. We consider level 

correlations and log-correlations. For Cisco, level correlation shows that the 

number of trades is more closely correlated with GARCH models volatility than 

is volume. On the contrary, the log-correlation results show that volume is more 

correlated with these models. In the Intel case, results are mixed. At the level 

correlation most GARCH models show a higher correlation with the number of 

trades than with volume, with the exception of fegarchσ . Using log correlation, 

garchσ , tgarchσ , and pgarchσ  shows a higher correlation with the number of trades 

than with volume, whereas egarchσ , fgarchσ , fegarchσ , 2garchσ  are more correlated 

with volume than with the number of trades. Therefore the outcome of this 

exercise is ambiguous and depends on the functional form which best describes 

the relation between volatility and activity. 



 

[ Table 7 around here] 

 

Table 7 shows the correlation between realized volatility, volume and the 

number of trades. Our results show that realized volatility is more correlated with 

the number of trades than with volume. In contrast with the correlation for 

GARCH models, this result holds for both level and log-correlation. Given that 

realized volatility is considered more accurate than GARCH generated volatility, 

the results in table 7 have greater credibility: the number of trades is a better 

proxy for market activity than volume. 

 

IV. Conclusion 

 

A number of econometric methods including GARCH augmented with lagged 

volume or number of trades, Tests based on moment restrictions and Correlation 

analysis using volatility generated from GARCH and realized volatility are 

considered to decide which is the more appropriate measure of market activity: 

(i) volume or (ii) the number of trades. 

 

 Our general conclusion confirms other findings from recent literature: 

that the number of trades is a better measure of market activity than volume. Our 

results show that the volatility-volume relationship implied by the Mixture of 

Distribution Hypothesis model could also be stated as a volatility-number of 

trades relationship. 

 



Our study can be extended in various ways. First: to address the question 

of why the number of trades is a better proxy than trading volume. Work would 

be necessary at the microstructure level to identify differences and similarities. 

Second: to extend our results using other measures of volatility, such as implied 

volatility and realized range. Other measures of correlation might also be 

examined, for example, Copulas and frequency domain based measures of 

correlation such as Coherency. Third: to investigate whether forecasts based on 

GARCH could be enhanced by using GARCH augmented with the number of 

trades. 
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Table 1. Statistical properties of volume and the number of trades 
 Cisco Intel 
 

tv  log tv  tn  log tn  tv  log tv  tn  log tn  

 10 Minute 10 Minute 
Mean 2.679 0.667 2.508 0.661 3.784 1.057 4.096 1.180 
Std 2.352 0.825 2.099 0.717 3.187 0.762 3.551 0.654 

Skewness 2.720 -0.325 3.329 -0.09 3.712 -0.338 4.866 0.254 
Kurtosis 16.46 3.782 25.22 4.172 33.68 3.633 53.27 3.429 

JB 861111 423 219827 576 405609 349 10677603 180 
Arfima (d) 0.278 0.392 0.266 0.420 0.209 0.440 0.243 0.360 

S.e (0.032) 0.025 (0.031) (0.021) (0.040) (0.021) (0.042) (0.022) 
BIC 35814 15502 34823 10402 40794 12148 44949 7375 
ADF -5.643 -5.317 -5.497 -5.025 -6.766 -6.898 -5.774 -5.650 

 30 Minute 30 Minute 
Mean 8.099 1.833 7.534 1.795 11.322 2.193 12.256 2.296 
Std 6.552 0.727 5.704 0.670 8.867 0.718 9.631 0.647 

Skewness 2.6089 -0.240 2.554 -0.154 3.949 -1.065 4.007 -0.548 
Kurtosis 14.68 5.253 14.17 5.313 39.28 11.87 37.06 10.450 

JB 222297 722 20566 741 187931 11348 166943 7738 
Arfima (d) 0.388 0.413 0.100 0.436 0.381 0.396 0.415 0.478 

S.e (0.043) (0.038) (0.200) (0.000) (0.039) (0.039) (0.038) (0.036) 
BIC 18939 4180 18418 3259 20993 4165 2157 3060 
ADF -5.927 -5.325 -5.542 -5.182 -7.256 -8.389 -6.194 -6.503 

 60 Minute 60 Minute 
Mean 15.04 2.473 13.999 2.430 21.036 2.834 22.771 2.934 
Std 11.857 0.696 10.203 0.650 16.130 0.679 17.297 0.615 

Skewness 2.564 -0.544 2.307 -0.485 4.145 -1.262 3.833 -0.704 
Kurtosis 13.510 10.500 11.08 10.260 40.310 15.60 31.480 14.070 

JB 10032 4211 6343 3930 107160 12116 63832 9132 
Arfima(d) -0.068 0.099 -0.118 0.477 0.426 0.439 0.046 0.445 

S.e (0.040) (0.048) (0.037) (0.080) (0.061) (0.058) (0.041) (0.058) 
BIC 13119 2957 12549 2538 14318 2976 14421 2479 
ADF -5.075 -4.927 -5.208 -4.690 -6.880 -7.212 -6.265 -5.884 

Notes:  1.Variables in italics are found not significant at the 5% level. 
 2. tv  denotes volume, denotes the number of trades., Std denotes standard deviation.,. 
 JB denotes Jarque-Bera test statistic,. BIC denotes Bayesian information criterion, S.e 
 denotes standard error. 

tn

 3. Arfima (Autoregressive Fractionally Integrated Moving Average) and d is the 
 fractional differencing parameter.  
 4. ADF denotes Augmented Dickey Fuller Test. The 5% and 1% critical values are -
 2.862 and -3.433.  
 5. Truncation lags for ADF were chosen according to the AIC (Akaike information 
 criterion) and are 37, 20 and 24  for the 10, 30 and 60 minutes frequencies. 

 



 
Table 2. Estimated moments of information and J-test of over identifying 
restrictions 

 Cisco Intel 
 

2
im  3

im  2
(3)J χ∼

 
2
im  3

im  2
(3)J χ∼

 
 10 Minute 10 Minute 

0.761 1.769 4.373 1.399 5.145 8.906 Bivariate moments with 
volume (0.091) 

 
(0.252) (0.224) (0.272) (1.741) (0.031) 

0.838 2.270 1.916 1.287 5.316 2.212 Bivariate moments with 
trades (0.044) (0.253) (0.590) (0.268) (1.560) (0.530) 
       
Moments of re-centered 
volume 

0.707 1.439  0.666 1.969  

Moments of re-centered 
trades 

0.540 0.851  0.578 1.687  

 30 Minute 30 Minute 
0.781 1.664 0.218 0.751 1.877 6.211 Bivariate moments with 

volume (0.084) 
 

(0.311) (0.975) (0.090) (0.466) (0.102) 

0.881 1.926 0.122 0.863 2.220 3.517 Bivariate moments with 
trades (0.084) (0.339) (0.989) (0.124) (0.524) (0.318) 
       
Moments of re-centered 
volume 

0.548 0.896  0.506 1.127  

Moments of re-centered 
trades 

0.438 0.558  0.457 0.890  

 60 Minute 60 Minute 
0.768 1.546 0.612 0.518 0.954 5.203 Bivariate moments with 

volume (0.102) 
 

(0.325) (0.894) (0.069) (0.386) (0.157) 

0.765 0.081 1.217 0.526 0.851 4.688 Bivariate moments with 
trades (0.081) (0.263) 0.749 (0.070) (0.279) (0.196) 
       
Moments of re-centered 
volume 

0.468 0.713  0.415 0.782  

Moments of re-centered 
trades 

0.388 0.486  0.395 0.758  

 Notes:  1. GMM estimates are based on the following 9 conditions - the first three moments of 
 returns ( , the first three moments of "activity"  and the covariance’s of  , 

 ,  

)r a ( , )r a
2( , )r a 2 ,( )r a

 2.  and are the second and third moments of the information flow. The values in 

 brackets below  and  are standard errors. 
2
im 3

im

2
im 3

im

 3. J denotes the test of over-identifying restrictions and is distributed as a 2
(3)χ .  At 3 

 degrees of freedom the critical value at the 5 % significance level is 7.851. The values in 
 brackets below the J-test are p-values 



 
Table 3. GARCH, GARCH + lagged volume and GARCH + lagged number of 
trades 

 Cisco Intel 
    
Models G

 

v  ARCH 
GARCH  

+ (-1) tv
GARCH + 

(-1) tn GARCH 
GARCH 

+ t (-1) 

GARCH  

+ t (-1) n
  10 Minute  10 Minute 

1α  

 

0
(

.232 
0.004) 

0.202 
(0.002) 

0.208 
(0.000) 

0.190 
(0.005) 

0.164 
(0.006) 

0.151 
(0.006) 

2α  

 

0
(

.724 
0.004) 

0.667 
(0.003) 

0.615 
(0.003) 

0.755 
(0.003) 

0.643 
(0.007) 

0.553 
(0.010) 

3α      

  

0.008 
(0.000)   

0.004 
(0.000)  

4α      

    

0.014 
(0.000)  

0.0079 
(0.000) 

1 2α α+  0.956 0.879 0.823 0.945 0.807 0.704 

AIC 9048  8788 8622 4123 3780 3620 
  30 Minute  30 Minute 

1α  

 

0
(

.128 
0.008) 

0.198 
(0.015) 

0.185 
(0.015) 

0.234 
(0.017) 

0.221 
(0.021) 

0.164 
(0.020) 

2α  

 

0
(

.835 
0.009) 

0.558 
(0.011) 

0.556 
(0.011) 

0.522 
(0.022) 

0.222 
(0.022) 

0.222 
(0.021) 

3α      

  

0.145 
(0.006)   

0.012 
(0.000)  

4α      

    

0.018 
(0.005)  

0.014 
(0.000) 

1 2α α+  0.963 0.756 0.741 0.756 0.443 0.386 

AIC 6669  6558 6549 5231 5034 4988 
  60 Minute  60 Minute 

1α  

 

0
(

.121 
0.011) 

0.093 
(0.009) 

0.117 
(0.010) 

0.107 
(0.014) 

0.098 
(0.014) 

0.062 
(0.012) 

2α  

 

0
(

.839 
0.013) 

0.823 
(0.018) 

0.841 
(0.013) 

0.791 
(0.027) 

0.800 
(0.026) 

0.825 
(0.025) 

3α      

  

 0.0042 
(0.000)   

0.0001
(0.000)  

4α      

    

0.0044 
(0.001)  

0.001 
(0.000) 

1 2α α+  0.960 0.916 0.958 0.898 0.898 0.887 

AIC 4668  4666 4671 4028 4029 4021 
Notes:  1. The GARCH mean equation is given by t c ur t tσ= + tv

2

1t

. denotes volume and 

denotes the number of trades.  tn
2. Three specifications for the GARCH variance equation are considered: 
a) 2 2

0 1 2t trσ α α α σ
−

= + + , 

 b) 2 2 2

0 1 12 3t t t tvrσ α α α σ α
− 1−= + + +  

,c) 2 2 2

0 1 12 4t t t tr nσ α α α σ α
− 1−= + + +  



 
Table 4. Regression estimates for volume and the number of trades 
 

12

1
ˆˆ,

2t j t j t tj
sr r π

tα δ ε−=
= + + =∑ ε  

12

1
t̂ t j t j

j
ts a v sβ ρ −

=

e= + ∆ + +∑  

12

1
t̂ t j t j

j

s b n s uγ ρ −
=

t= + ∆ + +∑  

12

1
t̂ t t j t j

j
s c v n s tβ γ ρ −

=

η= + ∆ + ∆ + +∑  

 Cisco 
 

tv  tn  t tv and n  

 β  2R  γ  2R  β  γ  2R  
10 Minute        
Estimates 0.0443 0.200 0.0528 0.208 0.0148 0.0417 0.208 
Standard 

errors 
(0.0026)  (0.0026)  (0.0038) (0.0039)  

30 Minute        

Estimates 0.3822e-02 0.246 0.4627e-03 0.254 0.7663e-03 0.3871e-03 0.254 
Standard 

errors 
(0.2323e-03)  (0.2579e-04)  (0.4912e-03) (0.5943e-04)  

60 Minute        

Estimates 0.0236 0.184 0.0280 0.190 0.4889e-02 0.0227 0.190 
Standard 

errors 
(0.1743e-02)  (0.1999e-02)  (0.5546e-02) (0.6383e-02)  

 Intel 
10 Minute        
Estimates 0.0255 0.194 0.0158 0.186 0.0221 0.00367 0.194 
Standard 

errors 
(0.0015)  (0.0011)  (0.00218) (0.0016)  

30 Minute        
Estimates 0.1821e-02 0.160 0.1425e-03 0.148 0.1859e-02 -0.3809e-05 0.160 
Standard 

errors 
(0.1281e-03)  (0.1141e-04)  (0.2810e-03) (0.2486e-04)  

60 Minute        
Estimates 0.01334 0.142 0.013312 0.153 -0.4868e-04 0.013356 0.153 
Standard 

errors 
(0.9506e-03)  (0.8929e-03)  (0.2971e-02) (0.2809e-02)  

Notes:  1. Numbers shown in italics are not significant at the 5% level. 

2. denotes returns, tr t̂s denotes the Schwert (1990) daily volatility measure, denotes 

volume, and denotes the number of trades. 

tv

tn



 

Table 5. Recovering normality using re-centered (volume and the number of 
trades) 

 Cisco Intel 
 

tr  t

t

r
v

 t

t

r
n

 tr  t

t

r
v

 t

t

r
n

 

 10 Minute 10 Minute 
Skewness -2.776 -0.181 -6.840 -0.794 1.548 0.287 
Kurtosis 121.404 97.338 461.169 49.082 39.314 18.001 

JB 4.82e+06 3.05e+06 7.31e+07 766908 479126 81298 
p-values (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

 30 Minute 30 Minute 
Skewness -1.303 -0.120 -0.312 0.658 3.593 1.053 
Kurtosis 36.926 27.623 17.433 16.733 86.345 17.728 

JB 142202 74473 25603 24341 895162 28309 
p-values (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

 60 Minute 60 Minute 
Skewness -1.041 -0.548 -0.469 0.253 2.808 0.834 
Kurtosis 15.259 7.545 6.340 5.102 56.090 11.363 

JB 10412 1471 810 323 197475 5036 
p-values (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Notes:  1. JB denotes Jarque-Bera test statistic. 

 2. and denotes volume and trades and which have been re-centered prior to the 
standardization so that to have a mean of unity. 

tv tn



 
Table 6. Correlation coefficients for volume and number of trades with GARCH 
models 

 Cisco (60 Minute) 
 Level - Correlation 

 
garchσ  egarchσ  tgarchσ  pgarchσ fgarchσ  fegarchσ 2garchσ  tv  tn  

tv  0.361 0.389 0.364 0.408 0.375 0.391 0.363 1.000  

tn  0.374 0.406 0.373 0.419 0.388 0.408 0.377 0.954 1.000 

 Log - Correlation 

 
garchσ  egarchσ  tgarchσ  pgarchσ fgarchσ  fegarchσ 2garchσ  tv  tn  

tv  0.462 0.466 0.459 0.463 0.474 0.469 0.463 1.000  

tn  0.408 0.413 0.411 0.419 0.417 0.416 0.410 0.871 1.000 

 Intel (60 Minute) 
 Level - Correlation 

 
garchσ  egarchσ  tgarchσ  pgarchσ fgarchσ  fegarchσ 2garchσ  tv  tn  

tv  0.318 0.315 0.298 0.292 0.314 0.283 0.317 1.000  

tn  0.329 0.326 0.329 0.326 0.316 0.281 0.324 0.945 1.000 

 Log - Correlation 

 
garchσ  egarchσ  tgarchσ  pgarchσ fgarchσ  fegarchσ 2garchσ  tv  tn  

tv  0.316 0.321 0.300 0.301 0.328 0.313 0.323 1.000  

tn  0.323 0.319 0.324 0.320 0.310 0.276 0.317 0.755 1.000 

Notes:  1.  denotes volume and denotes the number of trades. tv tn
2. garchσ  denotes volatility from GARCH,  denotes volatility from exponential 

GARCH, denotes volatility from threshold GARCH,  denotes volatility 

from GARCH in-the-mean, 

egarchσ

tgarchσ pgarchσ

fgarchσ denotes volatility from fractional GARCH, 

fegarchσ denotes volatility from fractional exponential GARCH, and 2 garchσ denotes 
volatility from two component GARCH. 



 
Table 7. Correlation coefficients for volume and number of trades with realized 
volatility 

 Cisco (Daily) 
 Level - Correlation Log - Correlation 

 
trv  tv  tn  trv  tv  tn  

trv  1.000   1.000   

tv  0.564 1.000  0.652 1.000  

tn  0.642 0.956 1.000 0.704 0.955 1.000 

 Intel (Daily) 
 Level - Correlation Log - Correlation 

       

trv  1.000   1.000   

tv  0.649 1.000  0.637 1.000  

tn  0.668 0.934 1.000 0.688 0.858 1.000 

 Notes: 1. JB denotes Jarque-Bera test statistic, denotes realized volatility, denotes volume, 

and denotes the number of trades. 
trv tv

tn
 


