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Voronoi Game On Disjoint Open Curves

Marcin Dziubiński a

aDepartment of Economics, Lancaster University, Lancaster LA1 4YX, UK

Abstract

Two players are endowed with resources for setting up N locations on K open
curves of identical lengths, with N > K ≥ 1. The players alternately choose these
locations (possibly in batches of more than one in each round) in order to secure the
area closer to their locations than that of their rival’s. The player with the highest
secured area wins the game and otherwise the game ends in a tie. Earlier research
has shown that, if an analogical game is played on disjoint closed curves, the second
mover advantage is in place only if K = 1, while for K > 1 both players have a tying
strategy. It was also shown that this results hold for open curves of identical lengths
when rules of the game additionally require players to take exactly one location
in the first round. In this paper we show that the second mover advantage is still
in place for K ≥ 1 and 2K − 1 ≤ N , even if the additional restriction is dropped,
while K ≤ N < 2K−1 results in the first mover advantage. We also study a natural
variant of the game, where the resource mobility constraint is more stringent so that
in each round each player chooses a single location and we show that the second
mover advantage re-appears for K ≤ N < 2K − 1 if K is an even number.

Key words: Competitive locations, Disjoint spaces, Winning/Tying strategies,
Equilibrium configurations.
JEL: C72, D21, D72.

1 Introduction

Games involving choice of locations has long been an important area of study
in economics. The corresponding literature centers around the seminal work
by Hotelling (1929) which considers a profit maximizing firm’s decision about
optimal location when the consumers are located uniformly on a line seg-
ment. Subsequently, this was extended to the celebrated circular city model
in Chamberlin (1953) and later by Salop (1979). While in Hotelling (1929),
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Chamberlin (1953) and Salop (1979) simultaneous-move games are consid-
ered, Prescott and Visscher (1977) and Economides (1986) study the problem
when firms are allowed to enter sequentially on a line segment and circular city
respectively to show that the outcomes of a sequential location game can differ
significantly from those obtained in a simultaneous-move scenario. In Cheong
et al. (2002) the existence of a winning strategy for the second mover is shown,
even for a single round location game played on a two dimensional closed plane.
In Chawla et al. (2003) an upper bound for the size of the first mover disad-
vantage is provided in a game where firms compete to maximize market shares
and consumers are distributed over a d-dimensional Euclidean space. For an
overview of competitive facility location models see Eiselt and Laporte (1989)
and Tobin et al. (1989).

A recent work in this respect is a game of influence studied by Ahn et al.
(2004), where there are two players who are each endowed with the same
number N of facilities to locate (possibly in batches of more than one facilities)
on a closed or an opened curve in a sequential manner. In order to win the
game, a player must secure as much area as possible that is closer to its
locations than those of its competitor. Each player faces a resource mobility
constraint such that not all facilities can be located in the first round. They
show that in such a game (to be described precisely in section 2) where play
must involve at least two rounds, the second mover always has a winning
strategy and the game would always result in a tie if players were forced to
end the game in a single round. The result for the case of the game played
on open curves was established with additional restriction, that players are
forced to take exactly one location in the first round.

A variant of the above mentioned games of influence is where players compete
over a collection of disjoint areas in which locations can be placed. For example,
retail chains set up stores in different cities or countries. Such variant of the
game played on multiple disjoint closed curves was studied by Datta et al.
(2007) and it was shown that additional spaces of this type lead to existence
of tying strategies for both players. This paper addresses analogical location
game played on a family of disjoint open curves.

We show that the second mover advantage, as in Ahn et al. (2004), holds as
long as 2K − 1 ≤ N , while in the case of K ≤ N < 2K − 1 we have the
first mover advantage. This improves the result from Ahn et al. (2004), in
particular, as we do not require additional restrictions in rules of the game for
the case of K = 1 for our result to hold.

We also study a natural variant of this game, where each player takes exactly
one location at each round. In this extended game we show that the second
mover advantage reappears for K ≤ N < 2K − 1, if and only if K is an even
number.
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The rest of the paper is structured as follows. In section 2 we define the game.
Section 3 states and proves our results and the paper concludes in section 4.

2 The multiple line-segments game

A Voronoi game, as introduced in Ahn et al. (2004), involves two players called
White (W ) and Black (B) each having N points to place in a metric space
S, so that no two points can occupy the same location. After the points are
placed, a division of space into areas of points lying closer to a particular point
than the others (i.e. a Voronoi diagram) is created. The player whose points
attract bigger area in total wins the game.

We extend this game to multiple disjoint metric spaces (c.f. Datta et al. (2007))
and focus our attention on Voronoi games played on multiple disjoint open
spaces of identical lengths. Since we want to study only a natural class of
distance function, where distance between any two points is simply the length
of interval between them, so we assume from now on, that all these open spaces
are line-segments of equal lengths.

Players place their points in rounds and that player W places his points first
at each round. Moreover, (i) each player must place at least one point in
each round, (ii) in the first round when play begins, W cannot place all N
points (perhaps because not all resources are available at the beginning of the
game), 1 (iii) the game ends only after all players have placed all 2N points
and (iv) at any round, the total points placed so far by B cannot exceed that
of W . 2

This results in a sequential game where roles (that is first and second mover
identities) cannot be reversed and the number of rounds is endogenous and
can be controlled by W subject to the restriction that there must be at least
2 rounds. The objective of each player is to maximize the total length of
fragments of the curves that are closer to that player’s locations than to the

1 Condition (ii) enforces at least two rounds of the game. In the case of one round
game, either there is a simple winning strategy for the first mover or the second
mover can win using strategies for games with at least two rounds. We will comment
on the one round variant of the game throughout the paper.
2 This is basically a condition required to preserve the first and second mover iden-
tities over any play. These identities could be preserved even with the assumption
that players place equal number of points in each period. In this sense, the condition
given in Ahn et al. (2004) and used here is general and hence weaker. We shall also
study a natural variant of this game where each player must place exactly one point
in each round.
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other one’s, so that a player wins if and only if the area it secures is strictly
the largest one. Otherwise there is a tie.

It is shown in Ahn et al. (2004) that when this game is played on a closed
curve, then B always has a winning strategy, though W can bring its size of
influence arbitrarily close to that of B’s. An analogical result for this game
played on an open curve is also shown, however under additional restriction
requiring players to place exactly one point in the first round.

In Datta et al. (2007) a generalized version of the game, with players placing
their points on multiple disjoint close curves of equal lengths, is studied to
show the existence of tying strategies for both players. This result shows that
it is possible to enforce fair spreading of influence with rules of the game
in question. It is also shown in Datta et al. (2007) that the second mover
advantage is in place again, in a natural extension where players place exactly
one point in each round.

Our objective is to check if extending the settings of the game from one to
multiple open-curves of identical lengths leads to similar results as in case of
moving from one to multiple closed curves. We now give a formal presentation
of a Voronoi game on disjoint line-segments of equal lengths.

Let {W,B} be the set of players, where W stands for White and B stands for
Black. The game on the family of disjoint line-segments is defined by a pair〈
N, {Lj}Kj=1

〉
, such that N > K ≥ 1 and {Lj}Kj=1 is a family of K disjoint

line-segments having equal lengths.

The game ends when each player p ∈ {W,B} selects a total of N points on K
line-segments. The set of points selected by W is Γ ⊆ ⋃K

j=1 Lj and the set of

points selected by B is Ω ⊆ ⋃Kj=1 Lj. Players re-arrive in alternating sequence
with W moving first, and are in principle allowed to place points in batches.

Let Γr be the set of points that W places in round r ≥ 1 while Ωr be the same
for B. The game ends when all 2N points are placed on the line-segments. 3

We will use w ∈ Γ (b ∈ Ω) to denote a point placed by W (B) during the game.
We will call points placed by the player W white points and those placed by
the player B black points.

As discussed above, the game has the following conditions:

(1) |Γr| , |Ωr| ≥ 1, for every r ≥ 1.
(2) |Γ1| < N .

3 Note that we put no restriction on how players distribute these points across the
line-segments (some line-segments are allowed to remain empty, in which case it is
ignored while computing payoffs).
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(3)
∑r
i=1 |Γi| ≥

∑r
i=1 |Ωi|, for every r ≥ 1.

(4)
∑
i≥1 |Γi| =

∑
i≥1 |Ωi| = N .

The endogenously determined number of rounds in a given play of the game
will be denoted by R. Obviously Γ =

⋃R
r=1 Γr and Ω =

⋃R
r=1 Ωr. Notice that

the restrictions of the game imply that R ≥ 2.

Let L be a line-segment and let (x, y) be an ordered pair of elements of L.
Then d (x, y) = |x− y| is the distance between x and y. Notice that d (x, y) =
d (y, x) ∈ [0, 1]. Given an interval (x, y), the volume (or length) of (x, y) is
d (x, y). Let

AW (L) =
{
x ∈ L : min

w∈L∩Γ
d(x,w) < min

b∈L∩Ω
d(x, b)

}
be a set of points on L that are closer to points placed by W on L than to
points placed there by B. Similarly we can define AB(L). Notice that AW (L)
and AB(L) are finite sets of pairwise disjoint line-segments covering L.

Let A be a finite set of intervals and let V (A) denote the volume (sum of
lengths) of the intervals in A. When the game ends, each player p receives
a score Sp equal to the volume of the set of intervals constituting the set of
points closest to positions chosen by that player over all line-segments, that is

Sp =
K∑
k=1

V (Ap(Lk))

for p ∈ {W,B}. Given these scores, the payoff of the players is up(Sp, Sq) =
Sp−Sq, where {p, q} = {W,B}. We say that the game is a tie if Sp = Sq, while
player p wins if Sp > Sq. A strategy is a contingent plan for every possible
history of the game. We do not need to define this general notion formally
although we lay out complete specifications of the strategies we report. We
will use uppercase letters X, Y to denote pure strategies. Strategy X is called
a winning strategy (a tying strategy) for player p if no matter what player q
does, by using X player p guarantees that Sp > Sq (Sp ≥ Sq).

2.1 Definitions and preliminary observations

We first develop some concepts and notations. Let PW and PB, such that
PW ∪ PB = P , be sets of all white and all black points in P , respectively.
Then an interval (x, y) ⊆ L such that {x, y} ⊆ PW ({x, y} ⊆ PB) is called a
white (black) interval. An interval that is neither white nor black is called a
bichromatic interval and an interval which is not bichromatic shall be at times
referred to as a monochromatic interval. Additionally the segment between the
left end of a line-segment and the leftmost point placed on it is called a left
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segment. The notion of a right segment is defined symmetrically. A border
segment is either a left or a right segment. The union of the left and the right
segment is called a border interval. A border interval is called balanced if both
border segments have equal sizes. Similar to non-border intervals, a border
interval can be white, black, monochromatic or bichromatic.

We will use wL (bL) to denote the number of white (black) points placed on
line-segment L. We will also use IW (L) (IB (L)) to denote the number of
white (black) intervals on L.

Let m be a positive natural number and L a line-segment. Then the set of key
positions 4 on L determined by m is the set

κ (L,m) = {p ∈ L : p = 1/ (2m) + l/m, where l ∈ {0, . . . ,m− 1}} .

A point placed in a key position will be called a key point and an interval
formed by two key points will be called a key interval. Key positions 1/ (2m)
and 1 − 1/ (2m) are called extreme key positions and a point placed in any
of them is called an extreme key point. Notice that border intervals, like any
other intervals, may be key intervals as well. A border segment formed by a
key point is called a key border segment.

The following lemmas and a corollary, which are generalizations of the lemmas
presented in Ahn et al. (2004) for more than one line-segment, will be useful.

Lemma 1 Let {Lk}Kk=1 be a family of line-segments. Then

K∑
k=1

IW (Lk)−
K∑
k=1

IB (Lk) =
K∑
k=1

wLk −
K∑
k=1

bLk ,

i.e. the difference between the number if white points and black points placed
on the family of line-segments is equal to the difference between the number of
white and black intervals on that family of line-segments.

Proof. In Ahn et al. (2004) it is shown that for any line-segment L it holds that

IW (L)−IB(L) = wL−bL. Then
∑K
k=1

(
IW (Lk)− IB (Lk)

)
=
∑K
k=1

(
wLk − bLk

)
,

and so
∑K
k=1 I

W (Lk)−
∑K
k=1 I

B (Lk) =
∑K
k=1w

Lk −∑K
k=1 b

Lk .

The following corollary is immediate from the above lemma.

Corollary 2 Let {Lj}Kj=1 be a family of line-segments where each of the play-
ers W and B placed the same number of points. Then the number of white
and black intervals is the same.

4 We use the term key position here for what was called a key point in Ahn et al.
(2004). We prefer to use a term key point to refer to a point placed at a key position.
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Lemma 3 Let {Lk}Kk=1 be a family of line-segments with key positions with
respect to some M for each line-segment. Assume that:

(i) all KM key positions are covered,
(ii) there exists a line-segment L with bL < M black points and

(iii) each line-segment contains at most one white interval and none of them
contains a white key interval.

Then there must exist a bichromatic key interval. Moreover, if all white inter-
vals are border intervals, then there must exist a non-border bichromatic key
interval.

Proof. Let L be a line-segment with bL < M black points. Since there can
be at most one white interval on L, so, by Lemma 1, it must be that wL ≤
bL + 1 ≤M . Notice first that it cannot be that all key points are white. This
is because if it was the case, then there would be M white key intervals on L,
and after distributing bL < M black points on them, there would have to be
at least one empty white key interval, which violates point (iii). Hence there
must be at least one white and at least one black key point on L, as all key
positions are taken and bL < M . If there is at least one white and at least one
black key point on L, then there are at least two bichromatic intervals there.
Suppose that there are Q black key points and M −Q white key points on L.
Then two cases are possible: (a) Q ≥M −Q and (b) M −Q > Q.

Assume first that case (a) holds and that there are P white key intervals
on L. Then, by Lemma 1, there are 2Q − M + P black key intervals and
M − (2Q − M + 2P ) = 2(M − Q − P ) ≥ 2 bichromatic key intervals on
L. Now all remaining ≤ M − Q − 1 black points are distributed over the
key intervals on L. Since there is no empty white key interval and there is
at most one white interval on L, so there must be at least one black point
in each white key interval. This leaves ≤ M − Q − P − 1 black points to
be distributed over remaining black and bichromatic key intervals. Suppose
that all of them are distributed over bichromatic key intervals. Then there are
2(M −Q−P )− (M −Q−P − 1) = M −Q−P + 1 bichromatic key intervals
without a black point inside. Since M − Q − P ≥ 1, so there are at least 2
bichromatic key intervals without a black point inside. Also, all remaining ≤ Q
white points must be distributed over M key intervals. If there is no white
interval on L, then all of these points must be placed inside black intervals,
and there will be at least two empty bichromatic key intervals, one of them
not being a border interval. If there is a white interval on L then at most one
of remaining white intervals can be placed inside a bichromatic key interval.
Thus there will be at least one empty bichromatic key interval and, if the
white interval is a border one, the empty bichromatic key interval must be a
non-border interval.
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Now assume that case (b) holds and that there are P black key intervals on
L. Then, by Lemma 1, there are M − 2Q + P white and M − (M − 2Q +
2P ) = 2(Q − P ) ≥ 2 bichromatic key intervals on L. Now all remaining
≤ M − Q − 1 black points are distributed over the key intervals on L. Since
there are no empty white key intervals and there is at most one white interval
on L, so there must be at least one black point in each white key interval. This
leaves ≤ Q − P − 1 black points to be distributed over remaining black and
bichromatic key intervals. Suppose all of them are distributed over bichromatic
key intervals. Then there are 2(Q − P ) − (Q − P − 1) = Q − P + 1 ≥ 2
bichromatic key intervals without a black point inside. Also, all remaining
≤ Q white points must be distributed over M key intervals. By arguments
analogical to those used for case (a), there must remain at least one empty
bichromatic key interval and this interval cannot be a border one, if there is a
border white interval on L. This completes the proof. We now move to our
main results.

3 Results

We will consider two cases separately: the one with K |N and the other with
K -N .

3.1 Case of K |N

We show that for any game
〈
N, {Lj}Kj=1

〉
with K |N and N > K, the second

mover has a winning strategy for any K ≥ 1. Notice that this case includes
the case studied in Ahn et al. (2004) as a special case.

Consider Strategy Y ∗L presented below. Player B places one or two points at
each round, apart from the last one, when he has to place all remaining points
(proceeding according to the strategy). Key positions are defined on each of
line-segments with respect to N/K. Player B has to monitor the number of
white border key intervals, which can change between rounds and which is
denoted by M(r), for a given round r.

Theorem 4 Let
〈
N, {Lj}Kj=1

〉
define a game on a family of disjoint line-

segments, with N > K. If K |N then Y ∗L is a winning strategy for B.

Proof. The game played when B uses Y ∗L can be divided into three subse-
quent stages: (a) taking key positions (B plays option (a)), (b) breaking white
intervals (B plays option (b)) and (c) the last move (B plays option (c)).
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Strategy Y ∗L

if there is an empty key position left then
(a) place a point on a key position, preferring extreme key positions to the

other and preferring line-segments with one extreme white key point to
the other

else if B has > M(r) + 1 points left then
(b) if there exits a non-border white interval then
(1) place a point inside a maximal white non-border interval

else if there exists an unbalanced white border interval with one key
border segment and length of the other border segment is l then

(2) place a point in the key border segment of this interval at distance
< K/ (2N)− l from the key point

else if M(r) = 0 then
(3) place a point in a non-border bichromatic key interval at distance of

< K/N − l from its white end point, where l is length of a maximal
white border interval

else
(4) place two points in a white border key interval creating a balanced

black border interval of length > l, where l is length of a maximal
white non-key interval

else
(c) if M(r) > 0 then
(1) place all points in different white key border segments at distance

< δ/(M(r) + 2) from white key points, where δ is the difference
between a key interval and maximal white non-key interval (if such
interval exists), or the difference between a key border segment and
maximal white non-key border segment (otherwise)

else if there is exactly one white interval and its length is l then
(2) place a point in a bichromatic key interval at distance < K/N − l

from its white endpoint

else if there is a non-border white interval then
(3) place a point in a non-border white interval

else
(4) place a point in a non-border bichromatic key interval at distance

< K/N − l from the white endpoint, where l is length of a maximal
white border interval

Suppose that the game ended in the first stage. This means that B took all
N key positions. By Lemma 1, the number of white and black intervals is
the same after the game is over and every black interval must be larger than
white interval (as all black intervals are key intervals). Moreover any white
border segment must be smaller than black border segment and if there is no
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white interval, there must be a white border segment, as W must have placed
a point within a black border key interval. Thus if the game ended in the first
stage, B must be a winner.

Now suppose that the game ended after the first stage, which means that W
took at least one border key position. Observe that option (b) is always appli-
cable. Clearly, if one of cases (1) or (2) holds, then the corresponding moves
by B are possible. If neither of above cases hold, then all white intervals must
be border ones with neither border segment being a key segment. Moreover
at least one such interval exists, as W has at least one point more on the
line-segments.

Suppose that case (3) holds, meaning that there is no white border key interval
and each line-segment contains at most one white interval, and this interval is
a border one. Then, by Lemma 3, there exists a non-border bichromatic key
interval, and so the corresponding B’s move is applicable (notice that since
there are < N black points placed on the line-segments, so there must be a
line-segment with < N/K black points).

Obviously if case (4) holds, then the corresponding move is applicable, as there
is at least one white border key interval.

Before showing that all moves in stage (c) are applicable and make B win the
game, we will show three claims, crucial for this part of the proof.

Claim 5 Assume that W took M border key intervals in stage (a). Then W
must be ≥M + 1 points ahead before B’s first move after stage (a).

Proof. Notice that every time W takes a white border key interval, he either
places two points to take both border key positions or he places one point (per
border key interval) to take one remaining empty key position. In the second
case, he must be at least two points ahead (per border key interval) before
B’s move in the previous round, as otherwise B would have the remaining free
border key interval in his move in the previous round. Thus W is ≥ M + 1
points ahead before any B’s move at any round r during stage (a) and before
B’s first move after this stage. Above argument is valid only for N > K, so
that two points are needed to take a border key interval.

Claim 6 If M(r) > 0 at the beginning of stage (c), then B must have exactly
M(r) + 1 points left before his move at this stage.

Proof. By Claim 5, W is at least M + 1 points ahead after stage (a), which
means that B has at least M + 1 points after stage (a). Hence, if no point is
placed in stage (b), then the claim is true. Suppose that at least one point
was placed in stage (b). Player B places one or two points in each round r of
this stage and before he does this, he has > M(r) + 1 points left. Obviously, if

10



he places exactly one point, then he will have ≥M(r) + 1 points left after his
move. Assume that he places two points. This means that case (4) is applied
and the two points are placed within a white border key interval. Thus the
number of white border key intervals falls by 1 and the number of points B
has left falls by 2, and so after his move B has ≥ M(r) + 1 points left at the
beginning of the next round.

Claim 7 Suppose that there exists a white non-border key interval at the be-
ginning of stage (c). Then at the beginning of stage (c), there must exist a
white border key interval, all black intervals are key intervals and either

(i) there exists a white non-key interval or
(ii) there exists a white non-key border segment and a black key border seg-

ment.

Proof. Assume that B took Q key positions in stage (a). Rules of the game
and strategy Y ∗L guarantee that Q > 0.

Let M denote the number of white border key intervals created in stage (a).
Assume first that M = 0. If no white key interval was created in stage (a),
then the claim is trivially satisfied. Hence assume that there is at least one
white key interval created in stage (a). Then there must exist a bichromatic
key interval (as otherwise there would have to exist at least one white border
key interval). This means that there are ≤ N − Q − 1 white non-border key
intervals. Since B has N−Q points left after stage (a) and N−Q > 1 (as there
is at least one white key interval and taking it requires two white points, if
N > K), so B will place at least one point in stage (b), starting with breaking
white key intervals and he has enough points to break them all, as he will
place N − Q − 1 points in this stage. This shows that if there are no white
border key intervals after stage (a), then there cannot be a white non-border
key interval at the beginning of stage (c).

Suppose now that there exists a non-border white key interval before B’s move
at the beginning of stage (c). This means that the only option B could apply
throughout stage (b) was (b)(1) (as he would try to break white non-border
key intervals first). It implies, in particular, that the number of white border
key intervals will not change during stage (b) and will be M at the beginning
of stage (c). By what we have shown above, this implies that M > 0, so there
must exist a white border key interval then.

Moreover, since B never created a black interval in stage (b), as he was only
breaking white key intervals in this stage, so all black intervals must be key
intervals at the beginning of stage (c).

Since there are ≤ N − Q white key intervals created in stage (a) and M of
them are border key intervals, so there are ≤ N − Q −M white non-border
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key intervals created in stage (c). If B did not place any point in stage (b),
then he must have ≥M +1 points left after stage (a), that is N −Q ≥M +1.
If B placed at least one point in stage (b), then he broke N − Q − (M + 1)
white non-border key intervals during this stage, which means that there are
≤ N −Q−M − (N −Q− (M + 1)) = 1 white non-border key intervals at the
beginning of stage (c).

For the last part of the proof, notice first that if there is a bichromatic key
interval after stage (a), then the number of white non-border key intervals is
≤ N −Q− 1−M . Hence N −Q > M + 1, so B will place at least one point
in stage (b), and he will break all white non-border key intervals in this stage,
as he can break N −Q− (M + 1) of them.

Now assume that there is a white non-border key interval at the beginning of
stage (c). As we have shown above, this implies that M(r) = M > 0 at the
beginning of this stage and that B could only be breaking non-border white
key intervals throughout stage (b). Also, there cannot exist a bichromatic key
interval, and so there are Q black and N − Q white key intervals created in
stage (a).

If there is a white non-key interval at the beginning of stage (c), then our
claim holds. If there is no such interval at the beginning of stage (c), then all
Q > 0 points W placed in stage (b) must have been placed within Q black
key intervals, each point in a different one (notice that the only black intervals
are key intervals as B could not create any other black interval in stage (b)).

Since there were no bichromatic key intervals created in stage (a) and B was
taking border key positions first, so there is at least one black border key
interval. Hence one of white points must be placed there, and so there must
exist a white non-key border segment and a black key border segment after
all white points are placed.

Now we will show that option (c) of Strategy Y ∗L is always applicable during
stage (c) and that B will win the game after this stage. Suppose that case (1)
holds. This means that there are M(r) > 0 white border key intervals. By
Claim 6, B has exactly M(r) + 1 points left in this case. Suppose that there
are Q white intervals before B’s move. Since B has M(r) + 1 points left, so,
by Lemma 1, there exist Q ≥ M(r) + 1 white and Q −M(r) − 1 ≥ 0 black
intervals.

Two cases are possible at this stage: (i) there exist a white non-border key
interval or (ii) all white key intervals are border intervals. If case (i) holds,
then, by Claim 7, all black intervals are key intervals and either there exist
a non-key white interval or a non-key white border segment and a key black
border segment. Hence the move corresponding to case (1) of option (c) is
applicable and B places M(r)+1 points in different white key border segments,
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breaking all white border key intervals and creating one black border interval.
Now the area of all old Q −M(r) − 1 black intervals is not smaller than the
area of a maximal of Q − M(r) − 1 of remaining white intervals and B is
losing on M(r) bichromatic border intervals with white key border segment
by < M(r)δ/(M(r) + 2), where δ is as defined in Strategy Y ∗L .

If there exists a white non-key interval, then the newly created black interval
is larger than it by > δ − 2δ/(M(r) + 2), and it is easy to check that the
difference between the area controlled by B and the area controlled by W is
> 0. Hence B wins in this case.

If there is no white non-key interval then the remaining one white interval
is a key interval and is larger than the newly created black interval by <
2δ/(M(r) + 2), while B has black key border segment bigger than some white
non-key border segment by δ. Again, it is easy to check that difference between
area controlled by B and area controlled by W is > 0, and so B wins in this
case as well.

Now suppose that case (ii) holds. Then all of Q−M(r) white intervals which
are not border key intervals are non-key intervals. Strategy Y ∗L guarantees that
for any black interval there exists a unique smaller white interval and so only
one of these Q −M(r) white intervals can be bigger than all black intervals.
Moreover, by Lemma 1, Q−M(r) ≥ 1, as B has M(r) + 1 points left and so
the move corresponding to case (1) of option (c) is applicable. As in case (i),
B places M(r) + 1 points in different white key border segments, breaking all
white border key intervals and creating one black border interval larger than
a maximal of white intervals by > δ−2δ/(M(r) + 2). On the other hand, B is
losing on M(r) bichromatic border intervals with a white key border segment
by < M(r)δ/(M(r) + 2). It is easy to check that the difference between the
area controlled by B and area controlled by W is > 0. Hence B wins the game.

Observe that, by Claim 7, all white intervals must be non-key intervals, if
there are no white border key intervals. Now suppose that case (2) holds.
Then, by Lemma 3, there exists a bichromatic key interval and so B’s move
is applicable and B wins. This is because, by similar arguments to those used
for case (ii) above, after B places his last point, for each black interval there
exists a unique smaller white interval, all black border segments being a part
of a bichromatic border interval are larger than their opposite white border
segments and there is at least one black interval at the end of the game.

If case (3) holds, then there are at least two white intervals and no white
key interval. Thus the corresponding move is applicable and, by the same
arguments as those used above, B wins the game.

Lastly, suppose that case (4) holds. Then, by Lemma 3, the corresponding
move of B is applicable and, by similar arguments to those used for case (2),
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B wins.

Remark 8 (One-by-one variant of the game) Notice that Strategy Y ∗L is
a valid winning strategy for B even for one-by-one variant of the game, where
each player places exactly one point at each round. This is because it never asks
B to place more points than his opponent did in the same round, throughout
stages (a) and (b). Moreover if W places exactly one point at each round, then
B will have to place exactly one point in the last stage (c).

In the case of N = K the situation changes and the first mover advantage
appears for K > 2. As we show below, the following Strategy Y ′L is a winning
strategy for W in this case. Key positions are points in the middle of line-
segments. We will refer to them as middle positions in this case (and we will
call points placed at this positions middle points), for reasons that will become
clear when the case N = 2K − 1 will be considered.

Player W places one or two points at each round. Two points may be placed
only once in the whole game and only if 2 |K.

Strategy Y ′L

if there is an empty middle position left then
(a) if 2 |K, there are exactly 2 middle positions left and all opponent’s

points are middle points then
place two points taking both the remaining middle positions

else
place a point on a middle position

else
(b) if there exists a non-border interval of the opponent then
(1) place a point inside a maximal non-border interval of the opponent

else
(2) place a point in a border segment of the opponent of size 1/2, at a

distance < 1/2− l from opponent’s point, where l is length of
maximal border segment of the opponent smaller than 1/2

Theorem 9 Let
〈
N, {Lj}Kj=1

〉
define a game on a family of disjoint line-

segments, with N = K > 2. Then Y ′L is a winning strategy for W .

Proof. The game played by a player using Strategy Y ′L can be divided into two
subsequent stages: (a) taking middle positions – the player plays option (a)
and (b) breaking intervals of the opponent – the player plays option (b). Notice
that moves prescribed for W in stage (a) are valid only for K > 2.

Suppose first that W took all middle positions, and so the game ended in
stage (a). Then obviously he has to be a winner, since all intervals he created
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are larger than intervals of the opponent (as length of these intervals is 1), all
border segments he created are larger than border segments of the opponent
(as length of all these border segments is 1/2) and there must be at least
one empty white border segment of length 1/2 and at least one black border
segment of length < 1/2 at the end of the game, as number of border segments
of length 1/2 is 2N > N for N > 0.

Now suppose that there is at least one black middle point after stage (a). Let
Q be the number of white middle points. Then N − Q > 0 is the number of
black middle points. Notice that Strategy Y ′L guarantees that Q > N − Q.
Notice also that there will always be an empty black segment of length 1/2
throughout stage (b). This is because number of rounds in stage (b) is N −Q
and there are 2(N − Q) black border segments of length 1/2 after last move
of W in stage (a) (recall that N − Q > 0). To show that all W ’s moves in
stage (b) are applicable, we need to show that in case (2) of option (b) there
must always be a black border segment of length < 1/2.

If B places at least one point not in a middle position in stage (a), then ob-
viously after this stage there is at least one black border segment of length
< 1/2. If B places his points in middle positions only, then the strategy guar-
antees that W is the last one to take a middle position in stage (a) (recall
that K > 2). Hence B will have to create a black border segment of length
< 1/2 in his subsequent move. This shows that there will be a black border
segment of length < 1/2 at W ’s first move in stage (b). Since throughout this
stage W places his points in non-border black intervals or in black border
segments of length 1/2, so there will always exist at least one black non-key
border segment throughout this stage.

Observe also that whenever B does not create a new border segment of length
< 1/2 in stage (b), he must create a black non-border interval, so W will
play according to case (1) of option (b) in his next move. This shows that
whenever W plays according to case (2) of option (b), there is a unique black
border segment of length < 1/2 smaller than a white border segment created
by W ’s move. Since the strategy guarantees that there are more white border
segments of length 1/2 than black border segments of length 1/2 after the
game, and for any white border segment of length < 1/2 there exists a unique
smaller black border segment, so W must win the game.

Strategy Y ′L is not valid for one-by-one variant of the game, as it may require
W to place two points in cases where 2 |K. Indeed, as we show below, in this
variant of the game Strategy Y ′L is a winning strategy for B, if 2 |K. If 2 -K,
then Strategy Y ′L is a valid strategy for W even in one-by-one variant of the
game and, as shown above, it is a winning strategy.

Theorem 10 Let
〈
N, {Lj}Kj=1

〉
define a game on the family of disjoint line-
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segments with N = K and assume that players place exactly one point at a
time. If 2 |K, then Y ′L is a winning strategy for B.

Proof. The proof is very similar to proof of Theorem 9 and most of the
arguments are analogical to those used there. The only difference, which is
crucial to the result, is that now with 2 | K, player B will be the last one
to take a middle position in stage (a) (if W does not play outside middle
positions in this stage). Thus there will be a white border segment of length
< 1/2 at the beginning of stage (b).

Corollary 11 Let
〈
N, {Lj}Kj=1

〉
define a game on a family of disjoint line-

segments, with N = K = 2. Then Y ′L is a winning strategy for B.

Proof. For N = 2 the restrictions of the game lead effectively to a one-by-one
game, so Theorem 10 applies.

Remark 12 (One round game) Notice that if W could place all N points
in the first round, then W could win by taking all key positions in his first
move. As it is shown in proof of Theorem 4, a player who manages to control
all key positions must be a winner.

3.2 Case of K -N

The case of K -N is arguably more difficult than the case of K |N , as it is
impossible to define key positions uniformly for all line-segments, so that there
are N key positions in total. It turns out that an extension of Strategy Y ∗L
with new cases, that can appear only when K -N , is a winning strategy for B,
if N > 2K. Before introducing the aforementioned extension, we will define a
notion of advantage a player can have, which will be important in the definition
of the extended strategy.

Definition 13 Let {Lj}Kj=1 be a family of line-segments with white and black
points placed on them. We say that player p has an advantage of size ασ if for
any interval I of p, there exists a unique interval σ(I) of the opponent such
that

∑
I∈Ip

(I − σ(I)) + β = ασ > 0,

where Ip denotes the set of all intervals of p and β is the difference between
p’s and opponent’s border segments of bichromatic border intervals. The as-
signment σ is called an advantageous assignment.
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Consider the following extension of Strategy Y ∗L , which covers two new cases,
one for option (b) and one for option (c), that can appear if K - N . Key
positions are determined with respect to bN/Kc.

Extended strategy Y ∗L

if there is an empty key position left then

(a)
...

else if B has > M(r) + 1 points left then

(b)
...

else if M(r) = 0 and there exists a bichromatic key interval then
(3) place a point in a non-border bichromatic key interval within a

distance of < K/N − l from its white end point, where l is length of a
maximal white border interval

else if M(r) > 0 then
(4) place two points in a white border key interval creating a balanced

black border interval of length > l, where l is length of a maximal
white non-key interval

else
(5) place a point in a white border interval to keep advantage

else

(c)
...

else if there is a bichromatic key interval then
(4) place a point in a non-border bichromatic key interval at a distance

< K/N − l from the white endpoint, where l is length of a maximal
white border interval

else
(5) place a point in a white border interval to keep advantage

Notice that, as we proved above, if K |N , then none of these new cases would
be played by B. They may be used only when K -N . We will refer to extended
version of Strategy Y ∗L as Y ∗L .

Theorem 14 Let
〈
N, {Lj}Kj=1

〉
define a game on a family of disjoint line-

segments, with N ≥ 2K. Then Y ∗L is a winning strategy for B.

Proof. The result holds for the case K | N , as stated in Theorem 4. Now
assume that that K -N . Like before, the game played when B uses Strategy Y ∗L
can be divided into three subsequent stages (a), (b) and (c). Unlike in the
case of K |N , the game cannot end in the first stage and W can take all key
positions.

First we would like to note that this new setting affects neither proof of Claim 5
nor Claim 6 and these claims hold for extended Strategy Y ∗L as well.
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Proof of Claim 7 used the fact that there is at least one black key point, which
does not have to be true in case of K -N . Nevertheless even a stronger version
of the claim holds in this case, as stated below.

Claim 15 There is no empty white non-border key interval at the beginning
of stage (c) and hence there exists a white non-key interval then.

Proof. Assume that B took Q key positions in stage (a) (Q ≥ 0 this time).
Let P denote the number of all key positions (2K ≤ P < N). Then there are
≤ P −Q white key intervals at the beginning of stage (b).

Let M denote the number of white border key intervals created in stage (a).
Then there are ≤ P −Q−M white non-border key intervals after this stage.
Suppose that P − Q − M > 0, then P − Q ≥ M + 1 and, since N > P ,
N−Q > M+1. This means that B will place at least one point in stage (b) and
he can break all white non-border intervals during this stage, as the number
of points he can place in stage (b) is N − Q − (M + 1) ≥ P − Q −M . Thus
there can be no white non-border key intervals at the beginning of stage (c).

Since W is M(r)+1 points ahead at the beginning of stage (c), so, by Lemma 1,
there are ≥ M(r) + 1 white intervals. Because M(r) is the number of white
border key intervals and these are the only white key intervals, so there must
be at least one white interval which is not a key interval.

Observe that if B ends the game by playing according to one of cases (c)(1)–
(4), then he must win the game. This is because there did exist either a white
border key interval or a bichromatic key interval throughout stage (b) and
at the beginning of stage (c), and so case (b)(5) was never played. Hence the
argumentation used in proof of Theorem 4 is valid here (as we shown above,
Claim 6 still holds and Claim 7 is implied by stronger Claim 15).

Suppose then, that B played according to case (c)(5) in the last round. This
means that it was also possible that he played according to case (c)(5) through-
out stage (b). If all these moves were applicable, then he will obviously win,
as he will have an advantage and there is the same number of white and
black intervals after the game. Hence it is enough to show that B’s moves in
cases (b)(5) and (c)(5) are always applicable. The following two claims are
crucial for this to hold.

Claim 16 Let r be a round at which B plays according to case (b)(5) or (c)(5).
Then either there exists a black interval or an unbalanced bichromatic border
interval with black key border segment, before B’s move at round r.

Proof. Suppose either (b)(5) or (c)(5) is to be played at some round r. This
means that there are no white key intervals, no bichromatic key intervals
and each line-segment contains at most one white interval, which is a border
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interval.

By Lemma 3, each line-segment must contain ≥ bN/Kc black points. Since
N < KdN/Ke (asK -N), so there must be a line-segment L with wL ≤ bN/Kc
white points. Thus it must be, that wL ≤ bL on this segment. If bL > wL, then
by Lemma 1, there must exist a black interval on L.

Assume that bL = wL = bN/Kc. Notice that in this case it is impossible that
all key points on L are white. This is because according to Strategy Y ∗L , B
never places one point within a white border key interval, so this would mean
that there is a white key interval on L, which is impossible. Assume then that
all key points are black on L. Then either there is a white and a black interval
on L, or all intervals are bichromatic. The second case means that there is an
unbalanced bichromatic border interval with a black key border segment.

Lastly, assume that there exist black and white key points. If there is a white
interval on L then, by Lemma 1, there must be a black interval on L as well.
Otherwise, all intervals are bichromatic and each key interval contains exactly
one point. This means that the border key interval must be black and must
contain a white point. This is because according to Y ∗L , B never places one
point within white key interval, and the only case when he can place one point
within a bichromatic border key interval is (c)(2). If there is one white point
within a black border key interval, then there is an unbalanced bichromatic
interval with a black key border segment.

Claim 17 Let r1 and r2 be subsequent rounds at which B is to play according
to case (b)(5) or (c)(5). Then(

IBr1 ∪ KI
BW
r1

)
∩
(
IBr2 ∪ KI

BW
r2

)
6= ∅,

where IBr denotes the set of black intervals before B’s move at round r and
KIBWr denotes the set of unbalanced bichromatic border intervals with black
key border segment, before B’s move at round r.

Proof. Notice that after playing according to case (b)(5) at round r1, player
B can play according to (b)(1) only, at any round between r1 and r2 (because
cases (b)(2)–(4) cannot reappear at this stage of the game).

Thus he is never creating any black intervals or any black key border segments
between these rounds. By Claim 16 we know that one of these must remain
between rounds r1 and r2, which completes the prove.

Now we will show how B can maintain an advantage when playing according
to case (b)(5) or (c)(5) at round r. By Claim 16, there is either a black interval
or an unbalanced bichromatic border interval with a black key border segment
before B’s move at round r. Strategy Y ∗L guarantees that whenever a black
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interval is created, there exists a unique white interval not larger than it.
Moreover, equal sizes of these intervals are possible in case of key intervals
only, and since there are no white key intervals at this point of the game,
it must be that for any black interval there exists a strictly smaller white
interval. Hence there must exist an advantageous assignment for B.

Let σ∗ be an advantageous assignment that maximizes the advantage and let

a(r) = min
({
I − σ∗(I) : I ∈ IBr

}
∪
{
δB(I) : I ∈ KIBWr

})
,

where δB(I) is the difference between black and white border segments of
bichromatic interval I. Observe also that since W is ≥ 1 points ahead before
B’s move, so, by Lemma 1, there is at least one more white interval than black
intervals.

If B places his point in a white border interval which is not assigned to any
black interval by σ∗ and creates a black border segment smaller than the
opposite white border segment by < a(r)/K, then B will maintain the advan-
tage. Moreover, if at some round r′ > r he is to play according to case (b)(5)
or (c)(5) again, then he will still be able to maintain some advantage, as
Claim 17 guarantees that a(r′) ≥ a(r) and there cannot be more than K white
border segments with black point placed by playing according to case (b)(5)
or (c)(5).

Remark 18 (One round game) Notice that if K -N , then the proof above
works even if W places all his points in the first round. Hence, in this case,
Strategy Y ∗L is a valid winning strategy for B even in a one round game.

Remark 19 (One-by-one variant of the game) Extended Strategy Y ∗L is
a valid winning strategy for B even for the one-by-one variant of the game,
just like its version for K |N case.

In the case of K < N < 2K the result depends on K. We start by analysing
case of K < N ≤ 2K − 2, for which the following Strategy Y ′L, which is an
extension of strategy Y ′L used for N = K, is a winning strategy for W . Like in
case of N = K, key positions are middle positions of line segments and, like
before, we will refer to them as middle positions. Player W places either one
or two points at each round.

Theorem 20 Let
〈
N, {Lj}Kj=1

〉
define a game on a family of disjoint line-

segments, with K < N ≤ 2K − 2. Then Y ′L is a winning strategy for W .

Proof. Like in case of N = K, the game played by a player using extended
Strategy Y ′L can be divided into two subsequent stages: (a) taking middle po-
sitions (player W plays option (a)) and (b) breaking intervals of the opponent
(player W plays option (b)).
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Extended strategy Y ′L

if there is an empty middle position left then

(a)
...

else

(b)
...

else if there are two border segments of the opponent with different
lengths then

(2) place a point in a maximal border segment of the opponent at
distance < (l − l′)/4 from opponent’s point, where l is length of
maximal border segment of the opponent and l′ is length of maximal
border segments of the opponent smaller than l

else
(3) place a point in a border segment of the opponent at distance

(1− 2l)/(4(K − 1)) from opponent’s endpoint, where l is length of
border segment of the opponent

If W never plays according to case (b)(3), then clearly he will win the game.
Arguments here are similar to those used in proof of Theorem 9 – for any
white border segment there will be a unique smaller black border segment
and there are no white non-border intervals. Like in proof of Theorem 9 it is
crucial here that at the beginning of stage (b) there exists at least one black
border segment of length < 1/2.

Throughout the rest of proof we will use m to denote the size of a minimal
black border segment, when W was placing his first point not in the middle
of a line-segment. As argued in proof of Theorem 9, m < 1/2.

Since N ≤ 2K − 2, so at the end of the game there must exist either one
line-segment without black points (and hence with only one white point in
the middle) or two line-segments with only one black point in each (and hence
with at most two white points). Notice that if case (b)(3) is applied at least
once during the game, then it must be that each line segment with only one
black point either contains two white points (if the black point is in the middle)
or a white border segment of size 1/2 (if the black point is not in the middle).
This is because, if case (b)(3) holds, than all black border segments must be
of length ≤ m.

This means that when the game is over and case (b)(3) was applied at least
once, there will be either ≥ 2 white border segments of length 1/2, or one
white border segment of length 1/2 and ≥ 2 white border segments of length
> 1/2 − (1/2 −m)/4 = 3/8 + m/4, or ≥ 4 white border segments of length
> 3/8 +m/4.
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Suppose that 2 -K. In this case both players place exactly one point at each
round. Assume that at some round r, W plays according to case (b)(3), cre-
ating a white border segment of length l−α, where l is length of black border
segment. If in his move at round r player B creates a black border segment
of size > l and r is not the last round, then in the next round player W will
place his point in this black border segment. If player B creates a black border
segment if size l and r is not the last round, then in next round player W will
have to play according to case (b)(3) again. If r is the last round than B can
create a black border segment of length ≤ 1/2 − ε, where ε > 0 and may be
arbitrarily small (recall that maximal white border segment may have length
≤ 1/2).

Notice that if player B maximizes his outcome, than at the end of the game
there will be no black non-border intervals. This is because this black border
interval would have to be created in the last round and would have to be
created by placing a point in a black border segment. It is more profitable for
B to place a point in a white border segment in the last round, than in a black
one.

Hence there must be K black and K white border segments after the game is
over (by Lemma 1, the numbers of white and black intervals must be equal).
Now three cases are possible: (i) there are two white border segments of size
1/2, or (ii) there is one white border segment of size 1/2 and ≥ 2 white border
segments of size > 3/8 +m/4, or (iii) there are ≥ 4 white border segments of
size > 3/8 +m/4. In all cases (i) – (iii), the remaining white border segments
could have been created by applying case (b)(3), and so their length is ≥ l−α,
where α is the distance from the black end of a border segment, at which white
point is placed to create a white border segment and l is length of maximal
black border segment before W ’s move in the last round. The length of each of
the black border segments (apart from the one created in the last round) must
be≤ l, and it is easy to check that in all cases (i) – (iii), α = (1−2m)/(4(K−1))
makes the difference between area controlled by W and the area controlled by
B positive, so that W wins.

Now Suppose that 2 |K. It is possible in this case, that player W places two
points at some round, and so B have to place two points at some round as well.
If W placed exactly one point each round, then the same argumentation as
this used above shows that he wins. Assume then, that W placed two points
at the last round of stage (a) to take two remaining middle positions. It is
possible then, that B places two points in the last round creating two black
border segments of length ≤ 1/2 − ε, where ε > 0 and may be arbitrarily
small. If the game ends with at most one such black border segment, then the
same arguments as those used for case 2 -K show that W wins.

22



Hence assume that B created two black border segments of size ≤ 1/2 − ε.
Then after stage (a) there are K/2 + 1 white middle points and K/2 − 1
black middle points. Now remaining ≤ 2K − 2− (K/2− 1) = 3K/2− 1 black
points are distributed over line-segments in such way that two of them are
placed in white border segments of size 1/2. Suppose that at the end of the
game there are no white border segments of length 1/2. This means that each
line-segment with white a middle point contains ≥ 2 black points and there
are ≤ 3K/2 − 1 − 2(K/2 + 1) = K/2 − 3 black points that are placed in
remaining K/2− 1 line-segments (notice that this situation is possible only if
K/2−3 ≥ 0, that is when K ≥ 6). This means that there are ≥ 4 white border
segments of length > 3/8 +m/4 created in black border segments of size 1/2
at the end of the game. The remaining K − 4 white border segments are of
size ≥ l−α, where α is the distance from the black end of a border segment in
which white border segment is created and l is the length of a maximal black
border segment before W ’s move in the last round. Length of each of the black
border segments (apart from the two created in the last round) must be ≤ l
and it is easy to check that α = (1 − 2m)/(4(K − 1)) makes the difference
between area controlled by W and area controlled by B positive, and W must
be the winner.

The above case was possible only for K ≥ 6. The remaining case to consider
is K = 4 (the case of K = 2 is considered already, as 2K − 2 = K for K = 2
and so it is the situation where N = K). If K = 4 then, as shown above, it is
impossible that there is no white border segment of length 1/2 at the end of
the game. Suppose then, that there is at least one such white border segment.
Then there are ≤ 3K/2− 1− (2(K/2 + 1)− 1) = K/2− 2 = 0 black points to
be placed elsewhere. Hence, in the worst case, W has one border segment of
length 1/2, two border segments of length > 3/8 +m/4 and remaining K − 3
white border segments have length ≥ l − α. Again, it is easy to check that
α = (1− 2m)/(4(K − 1)) makes the difference between area controlled by W
and area controlled by B positive, and W must be the winner.

Like in case of Strategy Y ′L for N = K, the extended Strategy Y ′L is not valid
for one-by-one variant of the game, as it may require W to place two points
in cases where 2 |K. Similar to the case N = K, in this variant of the game,
Strategy Y ′L is a winning strategy for B, if 2 |K. If 2 -K, then the extended
Strategy Y ′L is a valid winning strategy for W even in the one-by-one variant
of the game.

Theorem 21 Let
〈
N, {Lj}Kj=1

〉
define a game on the family of disjoint line-

segments with K < N ≤ 2(K − 1) and assume that players place exactly one
point at a time. If 2 |K, then Y ′L is a winning strategy for B.

Proof. The proof is very similar to proof of Theorem 20 and most of the
arguments are analogical to those used there. The crucial point now is that in
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case of the one-by-one game with 2 |K, player B will be the last one to take
a middle position in stage (a) (if W does not play outside middle positions in
this stage). Thus there will be a white border segment of length < 1/2 at the
beginning of stage (b).

Let m denote the size of a minimal white border segment, when B is placing
his first point not in the middle of a line-segment. As pointed out above,
m < 1/2.

If case (b)(3) is never applied during the game then B wins, as argued in
proof of Theorem 20. Otherwise one of the following three cases must hold at
the end of the game (cf. proof of Theorem 20): (i) there are two black border
segments of size 1/2, or (ii) there is one black border segment of size 1/2 and
≥ 2 black border segments of length > 3/8 +m/4, or (iii) there are ≥ 4 black
border segments of length > 3/8 +m/4.

Strategy Y ′L guarantees that at the end of the game there will be no white
non-border intervals and there must be K black and K white border segments
after the game is over (by Lemma 1). The size of white border segments must
be ≤ m and, unlike in the case of W using Strategy Y ′L in the unrestricted
variant of the game, if W creates a white border segment larger than other
white border segments, then B will place a point in this segment in his move,
so the opponent cannot create a larger border segment in the last round. Hence
the size of all white border segments must be ≤ m.

In all cases (i) – (iii), the remaining black border segments could have been
created by applying case (b)(3), so their length is ≤ l−α, where α is a distance
between the white end of a border segment and a black end of the black border
segment created in it, while l is length of maximal white border segment before
B’s move in the last round. Length of each of the white border segments must
be ≤ l and it is easy to check that α = (1− 2m)/(4(K − 1)) makes difference
between area controlled by B and area controlled by W positive, so that B
must be the winner.

For the last case of N = 2K−1, we will show that there is a winning strategy
for B. The strategy we present below combines Strategies Y ′L and Y ∗L with some
additional moves, covering new cases that may arise in this setting. Again,
notion of key position and key point is used and key positions are determined
with respect to dN/Ke = 2. Notions of middle positions and middle points
are also important as B may switch to using Strategy Y ′L during the course of
the game.

Theorem 22 Let
〈
N, {Lj}Kj=1

〉
define a game on a family of disjoint line-

segments, with N = 2K − 1, K ≥ 2. Then Y ′∗L is a winning strategy for B.

24



Strategy Y ′∗L

if W placed exactly one point taking a key position in the first round then
(1) if r = 1 then

place a point in the middle of the line-segment with white point

else
play according to Strategy Y ′L

else if there exists a white key point and two black key points in different
line-segments then

(2) play according to Strategy Y ∗L
else if W took all 2(K − 1) key positions on K − 1 line-segments then

(3) if r = 1 then
place a point in the middle of a non-border white interval

else
place a point in each empty white non-border interval, fix some
positive δ < 1/4
if there exists an empty line-segment then

place a point in an empty line-segment

else if there exists a line-segment with only one, white, point then
place two points in a line-segment with one white point, on its
both sides at a distance δ from it

place each of remaining points in a different white border key interval
at a distance < (1− 4δ)/(2(K − 2)) from white point

else if there exists a white key point then
if r = 1 then

(4.1) take two key positions in different line-segments, taking line-segment
with one white key point first

else
(4.2) take a key position in a line-segment without black key point, taking

line-segment with one white key point first

else if B has > 1 points left then
(5) place a point in a key position, taking empty line-segments first

else
(6) place a point in a maximal white non-border interval, maximal

bichromatic interval or maximal white border segment, depending on
which one of these moves gives largest area; if the point is placed within
bichromatic interval or white border segment, then place it close enough
to white point to win the game

Proof. Strategy Y ′∗L consists of two main options that may be taken by player
B at the beginning of the game. These options are recognized in the first
round, after player W placed his points. The options are as follows: (i) player
W placed exactly one point, taking a key position (case (1)) and (ii) player
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W either placed ≥ 2 points or did not take a key position in his first move.

If option (i) is taken, then player B continues his play using strategy Y ′L and
B’s strategy concentrates around notion of middle positions. As we observed
in previous proofs, the game played by a player using Strategy Y ′L can be
divided into two subsequent stages: (a) taking middle positions – a player
plays option (a) and (b) breaking intervals of the opponent – a player plays
option (b).

If B never plays according to case (b)(3), then clearly he will win the game.
Arguments here are similar to those used in proof of Theorem 9: for any black
border segment there will be a unique smaller white border segment and there
are no non-border black intervals. It is crucial here, that at the beginning of
stage (b) there exists at least one white border segment of length < 1/2, the
one created in the first round (recall that W took a key position determined
by 2, which is not a middle position).

If B plays according to case (b)(3) at least once during the game, then there
must exist a black border segment of length > 1/2− (1/2− 1/4)/4 = 7/16, at
the end of the game. For assume that B took Q ≤ K middle points in stage (a)
(which means that W took remaining K − Q ≥ 0 of them). If there were no
black border segment of length > 7/16 at the end of the game, then W would
have to place at least one white point in each of black border segments in
line-segments with black point in the middle and at least one white point in
each half of each line-segment with one white point in the middle. Such play
by W requires 2K points and hence is impossible, so there must exist at least
one black border segment of length > 7/16 at the end of the game. On the
other hand all white border segments must have length ≤ 1/4 (as case (b)(3)
was applied at least once during the game, and there exist a white border
segment of length 1/4 after the first round).

Since Strategy Y ′L guarantees that there are no white non-border intervals at
the end of the game, so numbers of white and black border segments must be
the same then (recall that by Lemma 1 there must be the same number of white
and black intervals at the end of the game). Thus there are K black border
segments and at most K − 1 of them can be smaller than any white border
segment. The difference between black border segment of length > 7/16 and
a minimal white border segment is > 7/16−m, where m is length of minimal
white border segment. On the other hand, the difference between remaining
white border segments and remaining black border segments is < (K−1)(1−
2m)/(4(K − 1)) = 1/4−m/2. Thus the difference between area controlled by
B and area controlled by W is > 7/16−m−(1/4−m/2) = 3/16−m/2 ≥ 1/16,
as m ≤ 1/4. Hence B wins the game.
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If option (ii) is taken, then B’s strategy concentrates around notion of key
positions and he starts by placing his points in key positions. Since number of
key positions is greater than number of points each player has, so B cannot
simply apply Strategy Y ∗L here. As we will show below, this strategy can be
safely applied only when at least one key position is taken by player W and B
can secure two key positions for himself. Apart from that, two other situations
are possible: one where player W takes 2(K − 1) key positions on K − 1
line-segments and another, where player W does not take any key positions
throughout the game.

Assume first that at some point of the game there was one white key point and
two black key points in two different line-segments. The game in this case can
be divided in three stages, like it was in previous cases of B using Strategy Y ∗L :
(a) taking key positions, (b) breaking white intervals – B plays option (b) and
(c) the last move – B plays option (c). The game can never end in the first
stage, as B has at least two key positions W has at least one.

For validity of Strategy Y ∗L , observe that Lemma 3 can be used to show that
moves for cases (b)(3), (c)(2) and (c)(4) are applicable, like in proof of The-
orem 4 (as there will always exist a line-segment with < 2 black points).
Applicability of moves for cases (b)(1), (b)(2), (b)(4) and (c)(3) is also easy
to see (cf. proof of Theorem 4).

For case (c)(1) we need to show first the following, weaker, replacements for
Claims 5 and 6.

Claim 23 Assume that W took M border key intervals in stage (a). Then W
must be ≥M points ahead before B’s first move after stage (a).

Proof. If player B places only one point at each round throughout stage (a),
then, by the same arguments as those used in proof of Claim 5, player W must
be ≥M + 1 points ahead before B’s first move after stage (a).

Notice that the only round when player B can place more than one point in
stage (a) is the first round when case (4.1) of Strategy Y ′∗L is applied. This case
is applied after player W places at least two points in the first round, leaving
at least two line-segments with empty key positions (as otherwise option (1)
would be taken by B or case (3) would applied). Since player B places two
points in this case and then places exactly one point throughout the rest of
stage (a), so W must be ≥M points ahead after stage (a).

Above argumentation is valid only for N > K, so that two points are needed
to take a border key interval.

Claim 24 If M(r) > 0 at the beginning of stage (c), then either
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(i) B has exactly M(r) + 1 points left or
(ii) B has exactly M(r) points left and all black points are key points.

Proof. If player W was ≥ M + 1 points ahead before B’s first move after
stage (a), then, by the same arguments as those used in proof of Claim 6, B
must have exactly M(r) + 1 points left before his move at the beginning of
stage (c). Similarly, if player W was M points ahead before B’s first move
after stage (a) and he placed at least one point in stage (b).

If W was M points ahead before B’s first move after stage (a) and he placed
no point in stage (b), then all black points must be key points at the beginning
of stage (c).

Claim 7 still holds, however it requires a different proof, which we give below.

Proof of Claim 7. Assume that B took Q key positions in stage (a). Since
player B switched to Strategy Y ∗L , so 2 ≤ Q < 2K. Observe also that if B
placed any point in stage (b), then this point must have been placed within
white non-border key interval (as there exists a white non-border key interval
at the beginning of stage (c)). This means, in particular, that no black interval
can be created in stage (b) and so all black intervals at the beginning of
stage (c) must be key intervals.

If there is a white key non-border interval at the beginning of stage (c), then
there must exist a white border key interval (in the same line-segment), as
there are 2 key positions on each line-segment and B does not place any point
within white border intervals. Moreover, since Q ≥ 2, so the number of white
key points is 2K − Q ≤ 2K − 2 < N and there must be at least one white
point which is not a key point, at the beginning of stage (c).

If at least one of points W placed out of key position was placed within white
or bichromatic interval, then there must exist a white non-key interval at the
beginning of stage (c), as B does not place any points within white non-key
intervals. Similarly, if at least two of these points were placed within a black
key interval, then there must exist a white non-key interval at the beginning
of stage (c), as well.

Assume that each of these points was placed in a different black key interval.
If any of them was placed in black border segment, then there exists a white
non-key border segment and a black key border segment (the one in the same
line-segment). If all of them were placed in black non-border key intervals,
then in each of line-segments with these intervals there is a black border key
interval (as there are 2 key positions on each line-segment).

Now we will show that B’s move for case (c)(1) is applicable. If this case
holds, then there are M(r) > 0 white border key intervals. By Claim 24, B
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has either M(r) or M(r) + 1 points to place. Suppose first that he has M(r)
points to place. Then, by Claim 24, all black points are key points. Moreover,
since there are 2 key positions on each line-segment, so each line-segment
with white border key interval contains also at least one white non-border
interval. Hence there are Q ≥ 2M(r) white intervals and, by Lemma 1, there
are Q −M(r) black intervals. All of these intervals must be key intervals, as
all black points are key points.

Also, since every line-segment with white border key interval contains a non-
border key interval, so there must exist a white non-key interval or a white
non-key border segment and a black key border segment. This is because
either one of these line-segments contains a non-key non-border white interval
or all of them contain a white non-border key interval. In the second case
Claim 7 applies. Hence the move corresponding to case (1) of option (c) is
applicable and B places one point in each white border key interval. After
all points are placed, player B loses by < M(r)δ/(M(r) + 2) on bichromatic
border segments with white key border segment and wins by ≥ δ on remaining
intervals. It is easy to check that the difference between area controlled by B
and area controlled by W is positive and so B wins in this case.

If B has M(r) + 1 points to place, then it can be shown that B wins by using
the same argumentation as in proof of Theorem 4. Similarly with B’s moves
for cases (2)–(4) of option (c). Thus we have shown that if B can switch to
Strategy Y ∗L , he can win the game.

Assume now that B could not switch to Strategy Y ∗L . Then one of two sit-
uations must have occurred during the course of the game: either W took
2(K−1) key positions on K−1 line-segments, so that B was unable to secure
key positions in two different line-segments or W did not take a key position
till the end of the game.

Suppose that the first situation is the case. Then the game must have two
rounds and it must be that player B placed only one point in the first round
(if he placed two points, than he would have taken 2 key positions, so this
situation would not be possible). Two situations are possible in the first round:
(i) player W placed 2(K−1) points taking all these key positions or (ii) player
W placed exactly one point, not taking a key position and B placed exactly
one point taking a key position on a different line-segment.

In situation (i), in the second and last round player W places his last point
in a new line-segment or in a line segment with key white interval creating a
non-key white interval. In situation (ii) player W places 2(K − 1) points on
K − 1 line-segments without black point, taking all 2(K − 1) key positions
(notice that it means that there will be a line-segment with three white points
then).
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Now three cases are possible before B’s move in the last round: (i) there is
an empty line-segment, (ii) there is a line-segment with one white point and
without black points and (iii) there is a line-segment with one black key point
and without white points.

If case (i) holds, then it could have been created by situation (i) only, so there
is already a white non-border interval with black point inside. In his last move,
player B starts by placing K− 1 points in white non-border intervals and one
point in empty line-segment. If case (iii) holds, then it could have been created
by situation (ii) only, so there is a line-segment with one black point only. In
his last move, player B starts by placing K points in white border intervals.

Observe that at this point situation in two of these cases is the same for B,
before his remaining K − 2 are placed. Player B places these K − 2 points
in white border key intervals (notice that if K = 2, then no point is placed
in white border key intervals). After this move there are no white non-border
intervals, B loses by (K−2)(1−4δ)/(2(K−2)) = 1/2−2δ on border intervals
with white key border segment (if K > 2) and wins by ≥ 1/2 over remaining
white interval. Thus B wins the game by ≥ 2δ.

If case (ii) holds, then it could have been created by situation (i) only, so there
is already a white non-border interval with black point inside. Player B places
K−2 points in white non-border intervals, breaking all of them. Then he places
two points in the line segment with one white point and remaining K−2 points
in white border key intervals (again, if K = 2, then no point is placed in white
border key intervals). After this move B loses by (K−2)(1−4δ)/(2(K−2)) =
1/2 − 2δ on border intervals with white key border segment (if K > 2) and
wins by > 1− 2δ− 1/2 = 1/2− 2δ on the two remaining white intervals. Thus
B wins the game.

For the last situation that can occur when option (ii) is taken by player B,
assume that W did not take any key position throughout the game. In his last
move, player B plays according to case (6) of Strategy Y ′∗L . Before B’s move
there are K − 2 line-segments with two black key points and 2 line-segments
with one black key point. Notice also, that either there exists a white border
segment or a non-border white interval, as W placed more points than B and,
by Lemma 1, there must exist a white interval. Hence B’s move corresponding
to case (6) is applicable, as long as it is possible to gain enough area to win
the game.

Assume first that one of line-segments with one black key point contains no
white point. If B took a key position on another line-segment with one black
key point, then at the end of the game there would be K−1 line-segments with
2(K− 1) black key points and 2K− 1 white points and one line-segment with
one black point only. Notice that W can be winning by < 1/2 on the K−1 line-
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segments, as he has only one point more there than B (so by Lemma 1 there is
one white interval more than black intervals), none of his border segments can
be larger than black border segment and all white intervals must have length
< 1/2, while all black ones have length 1/2. On the other hand, B is winning
by 1 on the line-segment with one black key point only and hence B would
win the game. Observe that Strategy Y ′∗L may ask B to place his last point in
some place other then the key position in a line-segment with one black point
only, but it would only increase his advantage.

Now assume that one of line-segments with one black key point contains ≥ 3
white points. If B placed his last point on a key position in another line-
segment with one black key point, then at the end of the game there would be
K − 1 line-segments with 2(K − 1) black key points and 2(K − 1)− 2 white
points. Notice that B must be winning by ≥ 1 on the K − 1 line-segments,
as by Lemma 1 there are two black intervals more than white intervals, all
black intervals have length 1/2 and are larger than white intervals, and none
of black border segments can be smaller than white border segment. On the
other hand, B is losing on the line-segment with one black key point only by
< 1 and so he would win the game. Again, if Strategy Y ′∗L asked B to place
his point in a different place than a key position in a line-segment with one
black point, then he would only increase his advantage.

The remaining cases to analyse are the following: (i) each of line-segments with
one black key point contains exactly two white points, (ii) one of line-segments
with one black key point contains exactly one white point and another exactly
two white points and (iii) each of line-segments with one black point contains
exactly one white point.

Consider case (i) first. The K−2 line-segments with 2(K−2) black key points
contain 2(K − 2)− 1 white points, so, by analogical arguments to those used
above, B is winning there by ≥ 1/2. If any of the two line-segments with one
black key point contains a black border segment of length ≥ 1/4, then B is
losing by < 1/2 there, as area controlled by W on this line-segment is < 3/4.
Hence B is winning on K−1 line-segments and B can win the game by taking
a key position on the remaining line-segment, as he will be winning there after
such move. If Strategy Y ′∗L asked B to play anywhere else, then he would only
increase his advantage.

If none of black border segments of length 1/4 is empty on the two line-
segments with one black key point, then there are white border intervals in
each of them. If any of these white intervals has length < 1/2, then B can win
the game by taking key position in another line-segment. Suppose then that
each of these white intervals has length ≥ 1/2. Suppose that B places his point
in maximal white border segment of maximal of these white border intervals,
at a distance δ from the white point. Let a1, a2, b1 and b2 denote lengths of
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white border segments (as presented in Fig. 1), so that a2 ≥ b2. Then after B’s
move difference between area controlled by W and area controlled by B on the
two line-segments is a1+b1+b2−a2+δ ≤ a1+b1+δ < 1

2
, for δ < 1/2−(a1+b1),

so B wins the game. If Strategy Y ′∗L asked B to play anywhere else, then he
would only increase his advantage.

Consider case (ii) now. The K − 2 line-segments with 2(K − 2) black key
points contain 2(K − 2) white points in this case, so B is winning there by
some ε > 0. If the line-segment with one white point and one black key point
contains a white border segment of length ≤ 1/4, then B is not losing on
this line-segment and B can win the game by placing his last point in a key
position on another line-segment with only one black key point. If the strategy
asked B to play anywhere else, then he would only increase his advantage.

If the line-segment with one white point and one black key point contains a
white border segment of length > 1/4, then two cases are possible: (a) there
is a non-border white interval on line-segment with one black key point and
two white points or (b) there is a white border interval there.

Suppose that case (a) holds and assume that player B placed his last point in
maximal white border segment, at a distance δ from white point. Let a1, a2 and
b denote lengths of white border segments (as presented in Fig. 2) and assume
(without loss of generality) that a ≥ b. Notice that a1 < 1/2, as a2 > 1/4. After
B’s move, the difference between area controlled by B and area controlled by
W on the two line-segments is 1/2 − a1 − b + a2 − δ ≥ 1/2 − a1 − δ > 0, for
δ < 1/2 − a1. Hence B wins the game and if Strategy Y ′∗L asked him to play
anywhere else, then he would only increase his advantage.

Now suppose that case (b) holds and assume that player B placed his last
point in maximal white border segment, at a distance δ from white point. Let
a1, a2 and b denote lengths of white border segments (as presented in Fig. 3)
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and assume (without loss of generality) that a ≥ b. Then, after B’s move, the
difference between area controlled by W and area controlled by B on the two
line-segments is a1 + b − a2 + δ − 1/4 ≤ a1 − 1/4 + δ < 0, for δ < 1/4 − a1.
Thus B wins the game and if Strategy Y ′∗L asked him to play anywhere else,
then he would only increase his advantage.

Lastly, consider case (iii). The K − 2 line-segments with 2(K − 2) black key
points contain 2K−3 white points in this case, so B is losing there by 1/2−ε
(where ε > 0). If any of the line-segments with one white point and one black
key point contains a white border segment of length ≤ 1/4, then B is not
losing on this line-segment and B can win the game by placing his last point
in a key position on the other line-segment with only one black key point, as
he will be winning by ≥ 1/2 on this line-segment after his move. If the strategy
asked B to play anywhere else, then he would only increase his advantage.

If both the line-segments contain white border segments of length > 1/4, then
let a and b denote lengths of white border segments (as presented in Fig. 4)
and assume that a ≥ b. After B’s move, the difference between area controlled
by B and area controlled by W on the two line-segments is a− b− δ + 1/2 ≥
1/2− δ > 1/2−ε, for δ < ε. Hence B wins the game and if Strategy Y ′∗L asked
him to play anywhere else, then he would only increase his advantage. This
completes the proof

Remark 25 (One round game) Notice that we never used assumption that
W takes more than one round to place all his points in proof above. Even in
the case of him taking 2(K−1) key positions on K−1 different line-segments,
where we studied two round game for identifying all possible cases only. Hence
Strategy Y ′∗L is a valid winning strategy for B even for the one round game.

Remark 26 (One-by-one variant of the game) Notice that Strategy Y ′∗L
is a valid winning strategy for B even for one-by-one variant of the game, as
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it never asks B to place more points than his opponent did in the same round.

3.3 Opponent’s defence

Although in all possible configuration of the game studied above there is a
winning strategy for one of the players, it is always possible for a player to
make the size of his defeat as small as he wants, as showed below.

Theorem 27 Let
〈
N, {Lj}Kj=1

〉
define a game on a family of disjoint line-

segments. Then for any player P ∈ {B,W} and any ε > 0, P can make the
difference between his and his opponent’s area < ε at the end of the game.

Proof. Assume a player keeps placing his points at key positions or middle
positions, where relevant (if possible), or in his opponents non-border intervals
(if possible), or in his opponents border intervals at a distance < ε/N from end
point of maximal of the two border segments, or in bichromatic intervals with
opponents point being a key point, at a distance < ε/N from this point. Then
at the end of the game a difference between any of his and any of opponent’s
intervals will be< ε/N (similarly with his and his opponents border segments).
Since there can be at most N intervals of a player at the end of the game, so
he cannot lose the game by ≥ ε.

4 Conclusions

We have studied a two-player Voronoi game of Ahn et al. (2004) played on
multiple disjoint open curves of equal lengths. We have shown that there is
either the first or the second mover advantage, depending on number of points
players have to place and number of open curves they will play on. Strategies
we proposed make as little assumptions as possible about number of points
players place in each round, in particular they guarantee that the second mover
never has two place more points than his opponent in his moves. This makes
these strategies valid for more restricted variants of the game, the one were
players place exactly one point at each round, in particular.

Our results show that, arguably a desirable property of existence of a tying
strategy (i.e. “fairness”), is not in place for disjoint open curves, as it was
in the case of analogical game played on more than one closed curves Datta
et al. (2007). The interesting question in this respect is, whether it is possible
to enforce fairness by designing rules of the game so that only number of
points placed by players at each round are restricted and players identity is
preserved, while positions at which points are placed are not affected by the
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rules. Our hypothesis is that it is impossible without affecting positions where
points are placed.

Another interesting direction of further research would be to study Voronoi
games in question when played on possibly intersecting multiple disjoint curves.
This would lead two Voronoi games on graphs (see for example Dürr and
Thang (2007)).
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