Developing intelligent tutoring support for forecasting

The Forecasting Intelligent Tutoring System
Modern education: challenges

• Facilitating large classrooms
• Designing assessment and marking
• Providing individually tailored feedback
• Encouraging participation
• Developing resources: nature, type and quantity

“I have too much homework to mark. It becomes almost impossible to give effective feedback for everyone.”
Anonymous
Current landscape of business forecast education

• Expensive specialist forecasting training courses1,2
• Self taught using text books and/or a combination of ad hoc web-based content and online tutorials
• Short online courses
• A handful of universities provide a module on business forecasting at the Undergraduate and Masters level
• A handful of universities provide modules on business forecasting at the Undergraduate and Masters level
• \textit{Forecasting and decision support systems}

1 CPDF In Demand Forecasting [Online] Available at: http://cpdftraining.org/ (Accessed March 19, 2015)
3 Lancaster University Management School [Online] Available at http://goo.gl/osS7gA (Accessed March 31, 2015)
Research objectives

1. Develop individualised tutoring support for the business forecasting curriculum
2. Understand how individuals/forecasters *learn* 'key' forecasting task
Developing ‘intelligent’ tutoring support

Immediate and customized training individually tailored to the user
Intelligent tutoring systems

- Educational software systems that use artificial intelligence techniques to adapt the instruction to the individual student.
- Immediate and customized training individually tailored to the user
- Underpinning theories include:
 - Ohlsson's theory of learning from performance errors (Ohlsson, 1996)
- Learning from negative and positive feedback (Mitrovic, Ohlsson, & Barrow, 2013).
The Domain: time series decomposition

• A first step in creating forecasts and a prerequisite in all time series analysis.

• Allows an understanding of the underlying components present in the time series.

Classical time series decomposition:

• The additive model: assumes that seasonal variation is relatively constant over time is as follows: \(y_t = S_t + T_t + E_t \)

• The multiplicative model: assumes that seasonal variation increases over time is given as follows: \(y_t = S_t \times T_t \times E_t \)
Conceptual design informed by:

- Research Literature
 - Forecasting
 - Education and learning
 - Human computer interaction
 - Psychology
 - ...

- Experts
 - Forecasting
 - Pedagogical design
 - Intelligent Tutoring Systems
 - Protocol analysis
 - ...

- Think-aloud Protocols
 - The ‘student voice’
Conceptual design: literature

• Feedback
 • Keep records of forecasts and use them appropriately to obtain feedback. Reduce forecasters reliance on memory of previous performance
 • ‘outcome feedback’ e.g. related to the accuracy (Harvey 2001)
 • Immediate (Bolger and Wright 1994; Fischer and Harvey 1999)

• Presentation of data
 • Present data in graphical form
 • Forecasts of trended series presented graphically are much less biased than forecasts presented in tabular form (Harvey and Bolger 1996).

• Data availability
 • Increases event recall
 • A positive correlation between availability and speed and confidence in task execution (Goldstein and Gigerenzer 1999)
1. **Interface** – controls interaction between student and tutor e.g. select/change domains/problems, submit solution for evaluation etc.

2. **Student model** – maintains a long-term model of the student’s knowledge

3. **Pedagogical module** - decides how to respond to each student request.

FITS Architecture

- **Interface**
- **Session Manager**
- **Pedagogical Module**
 - **Diagnostic Module**
 - **Domain Manager**
- **Log Manager**
- **User Manager**
- **Domain models Logs, Users**

The FITS Architecture
Knowledge representation

• “If <relevance condition> is true, then <satisfaction condition> had better also be true, otherwise something has gone wrong.

• Example of a syntax constraint:

```
(and (equalp (page-number *ss*) 1)
  (not (null (Trend *is*)))
  (not (null (Trend *ss*)))
  (component-available-p (Trend *ss*))
  (match '(?*d1 <i> ?id "Trend" ?p0 </i> ?*d2) (Trend *ss*) *bindings*))
  (not (equalp "" ?p0))
```

Feedback Message: “You have forgotten to specify a value for the trend”
Problem 1: Airline Passenger

The following is a time series of monthly observations of airline passenger arrivals. Using the classical time series decomposition method, provide the multiplicative decomposition of the time series into its individual components.

<table>
<thead>
<tr>
<th>A</th>
<th>E</th>
<th>AF</th>
<th>AG</th>
<th>AH</th>
<th>AI</th>
<th>AJ</th>
<th>AK</th>
<th>AL</th>
<th>AM</th>
<th>AN</th>
<th>AO</th>
<th>AP</th>
<th>AQ</th>
<th>AR</th>
<th>AS</th>
<th>AT</th>
<th>AJ</th>
<th>AV</th>
<th>AW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Period</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
</tr>
<tr>
<td>3</td>
<td>Time series</td>
<td>548</td>
<td>559</td>
<td>463</td>
<td>407</td>
<td>362</td>
<td>405</td>
<td>417</td>
<td>391</td>
<td>419</td>
<td>461</td>
<td>472</td>
<td>535</td>
<td>622</td>
<td>606</td>
<td>508</td>
<td>461</td>
<td>390</td>
<td>432</td>
</tr>
</tbody>
</table>
Pilot Study Evaluation

The "two-sigma problem" - students who receive one-on-one instruction perform two standard deviations better than students who receive traditional classroom instruction (Bloom 1984).
Pilot Study: Design

• Participants:
 • Masters level students enrolled on business forecasting module at Lancaster University (approx. 70).
 • Management Science, Accounting and Finance, Commuting and Communications
 • Knowledge of decomposition: students had previously received a lecture and workshop on time series decomposition

• Experiment Setup:
 • Week 1: Students do pre-test
 • Week 2-3: Students are able to use the system
 • Week 4: Students do post-test
Pilot Study: Results

Pre-test:
- 17 students
- Avg. score of 4.41 out of 15
- Min score 0
- Max score 15

Post-test
- 9 students
- Avg. score 7.11 out of 15
- Min score 0
- Max score 15

<table>
<thead>
<tr>
<th>Participant</th>
<th>Constraints Used</th>
<th>Solved Problems</th>
<th>Messages</th>
<th>Time (Mins)</th>
<th>Pre-test</th>
<th>Post-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participant 1</td>
<td>43</td>
<td>10</td>
<td>140</td>
<td>87.23333</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>Participant 2</td>
<td>38</td>
<td>1</td>
<td>26</td>
<td>15.95</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>Participant 3</td>
<td>43</td>
<td>10</td>
<td>144</td>
<td>110.38333</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>Participant 4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.05</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
The team

• Developers
 • Prof. Tanja Mitrovic – University of Canterbury (middle)
 • Mr. Jay Holland – University of Canterbury (left)
 • Dr. Devon Barrow [Principle Investigator] – Coventry University (right)

• Contributors
 • Dr. Nikoloas Kourentzes – Lancaster University
 • Dr. Mohammad Ali [Co-investigator] – Coventry University

• Comments
 • Dr. Stephan Kolassa and Dr. Roland Martin
Questions?

Devon K. Barrow
School of Strategy and Leadership
Coventry University
Coventry, CV5 7HA, UK
Tel.: +44 024 7765 7743
Email: devon.barrow@coventry.ac.uk

This project is funded under the Coventry University pump-prime grant scheme
References

