Modelling multiple seasonalties across hierarchical aggregation levels

Daniel Waller, John Boylan, Nikolaos Kourentzes

Lancaster University Management School

20/06/2016
What are multiple seasonalities?

- Time series are often broken down into three components:
 - Trend - the rate of increase/decrease of the series.
 - Seasonality - a pattern which repeats regularly over a fixed period.
 - Error - a random quantity.
- Implicit assumption that there is only one seasonal pattern.
- Holt-Winters exponential smoothing based on this assumption, as are many other base forecasting methods.
What are multiple seasonalities?

- Sometimes there is clearly more than one seasonal influence on the time series.
- For instance, half-hour of day and half-hour of week both have a seasonal effect on the demand of electricity in the series below.
Exponential-smoothing based approaches in the literature:

- Double/triple seasonal ES (Taylor 2003, 2010).
- Intraday ES (Gould 2008)
- TBATS (De Livera et al. 2011)
- Parsimonious ES (Taylor and Snyder 2012).

Main motivation has been short-term load forecasting for electricity (other utilities as well).
A new motivation - retail

Demand in retail may be subject to multiple seasonal influences:

- Can we use multiple seasonal techniques?
- What adaptations need to be made?

Retail forecasting differs from short-term electricity load forecasting in a few respects:

- Exogenous variables (price, promotions, etc.)
- Substitutable/complementary product effects.
- More hierarchies/levels to forecast.
Double-seasonal ES

Adaptation of Taylor (2003) to single-seasonal ES.

Additive version:

Level: \[l_t = \alpha(y_t - s_{t-m_1} - d_{t-m_2}) + (1 - \alpha)(l_{t-1} + b_{t-1}) \]

Trend: \[b_t = \beta(l_t - l_{t-1}) + (1 - \beta)b_{t-1} \]

Seas 1: \[s_t = \gamma(y_t - l_{t-1} - b_{t-1} - d_{t-m_2}) + (1 - \gamma)s_{t-m_1} \]

Seas 2: \[d_t = \delta(y_t - l_{t-1} - b_{t-1} - s_{t-m_1}) + (1 - \delta)d_{t-m_2} \]

with forecasting equation:

\[\hat{y}_{t+1} = l_t + b_t + s_{t+1-m_1} + d_{t+1-m_2} + \phi(y_t - l_{t-1} - b_{t-1} - s_{t-m_1} - d_{t-m_2}) \]

for a horizon of 1.
Double-seasonal ES

Adaptation of Taylor(2003) to single-seasonal ES.

Multiplicative version:

- **Level:**
 \[
 l_t = \alpha \frac{y_t}{s_{t-m_1}d_{t-m_2}} + (1 - \alpha)(l_{t-1} + b_{t-1})
 \]

- **Trend:**
 \[
 b_t = \beta (l_t - l_{t-1}) + (1 - \beta)b_{t-1}
 \]

- **Seas 1:**
 \[
 s_t = \gamma \frac{y_t}{l_t d_{t-m_2}} + (1 - \gamma)s_{t-m_1}
 \]

- **Seas 2:**
 \[
 d_t = \delta \frac{y_t}{l_t s_{t-m_1}} + (1 - \delta)d_{t-m_2}
 \]

with forecasting equation:

\[
\hat{y}_{t+1} = (l_t + b_t)s_{t+1-m_1}d_{t+1-m_2} + \phi(y_t - (l_{t-1} + b_{t-1})s_{t-m_1}d_{t-m_2})
\]

for a horizon of 1.

Daniel Waller
Lancaster University

Modelling multiple seasonalities across hierarchical aggregation levels
Parsimonious ES

\[e_t = y_t - \sum_{i=1}^{M} I_{it} s_{i,t-1} \]

\[s_{it} = s_{i,t-1} + (\alpha + \omega I_{it}) e_t \quad i = 1, 2, \ldots, M \]

\[I_{it} = \begin{cases} 1 & \text{if period } t \text{ occurs in season } i \\ 0 & \text{otherwise} \end{cases} \]

with forecasting equation:

\[\hat{y}_{t+1} = \sum_{i=1}^{M} I_{i,(t+1)} s_{i,t} + \phi e_t \]
Parsimonious ES

Advantages

- Allows unconstrained clustering of periods.
- Fewer number of initial terms to estimate.

Limitations

- Cannot incorporate exogenous information.
- Clustering of seasons non-automatic/non-scalable.
Empirical testing

We use the example of fuel - below is a plot of demand:

- Daily totals
- Aggregated over a sample of retail sites
Empirical setup

- Comparing three methods:
 - Single-seasonal ES (benchmark)
 - Double-seasonal ES
 - Parsimonious ES
- Estimation: 1st 2 years (730 obs.)
- Holdout: Last year (365 obs.)
- Horizon - Up to 21 days
PES Model Selection

23 seasons:

- 14 seasons around Christmas
- 2 seasons around Easter
- 7 seasons for ‘normal’ day of week
Results

MAPE for one-step-ahead forecasts:

Table: Excluding Christmas/Easter

<table>
<thead>
<tr>
<th></th>
<th>MAPE</th>
<th>MAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PES</td>
<td>3.33%</td>
<td>936,422</td>
</tr>
<tr>
<td>DSHW</td>
<td>4.79%</td>
<td>1,388,141</td>
</tr>
<tr>
<td>ES</td>
<td>3.95%</td>
<td>1,131,649</td>
</tr>
</tbody>
</table>

Table: Christmas/Easter only

<table>
<thead>
<tr>
<th></th>
<th>MAPE</th>
<th>MAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PES</td>
<td>14.28%</td>
<td>3,286,438</td>
</tr>
<tr>
<td>DSHW</td>
<td>8.80%</td>
<td>1,800,825</td>
</tr>
<tr>
<td>ES</td>
<td>36.20%</td>
<td>4,908,546</td>
</tr>
</tbody>
</table>
Accuracy vs. Horizon

Graph shows overall MAPE against horizons of up to 21 observations.
Multivariate testing

Compare univariate results to 2 regression models:

- Seasonal dummies only.
- Inclusion of exogenous information:
 - Price
 - Weather vars x11
- Use naïve for future values of exogenous predictors.
Results

- PES best at short horizons.
- Regression is robust at long horizons.
Conclusions

• Multi-seasonal methods may hold promise in retail.
• Univariate PES is most accurate at short horizons.
• Longer horizons/short data histories potentially problematic.

Research Plan

• Extension of PES to multivariate case.
• Scalable/automatic approach to season clustering.
• Multiple series/hierarchies.
Any questions?

Thank you for your attention!

Daniel Waller
Lancaster Centre for Forecasting
Lancaster University Management School

d.waller1@lancaster.ac.uk