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Agenda
ƒ Forecasting Customer Demand: Problem Setting & Test Set-up

ƒ Forecast Models: Focus on Neural Networks

ƒ Model comparison and benchmarking

ƒ From forecasting to decision making (planning)
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Forecasting Customer Demand at the Geräte-Werk Erlangen (GWE)

Problem Setting:

ƒ Predict the customer demand for products for
the next year in weekly time buckets (i.e. 52 forecasts)

ƒ Forecast objects are so-called MLFBs (fine granularity, e.g.
a product with a specific configuration). We have about
1100 active MLFBs

ƒ Forecasts should be used for production planning
and material sourcing

ƒ A fully automated forecast and planning process
should be established
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Test Set-Up

ƒ We predict the customer demand under “real-world-conditions” (so-called backtest)

ƒ Test horizon:

ƒ We measure the performance in terms of absolute error in pieces and the standard
deviation of the error over the forecast objects

Training data
(used to develop the forecast models)

10/2012 09/2017

Model Genaralization
(Test Data)

10/2017 09/2018
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Model Inputs
ƒCalendar effects
ƒWeekOfMonth
ƒWeekOfQuarter
ƒWeekOfYear

ƒWork days per week
ƒGerman public holidays

ƒCustomer demand on preferred delivery date. Data is available
from 2011 to 2018 (daily bookings weeks)

ƒMacroeconomic data: Business climate of the top 10 customer
sectors and top 5 regions (both monthly data).
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Agenda
ƒ Forecasting Customer Demand: Problem Setting & Test Set-up

ƒ Forecast Models: Focus on Neural Networks

ƒ Model comparison and benchmarking

ƒ From forecasting to decision making (planning)
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Mathematical Neural Networks in Nonlinear Regression
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Deep Feed-Forward Neural Networks

The extended net acts as a hierarchical filter
Forward path: feeding the inputs to all
intermediate layers avoids a loss of the
input information.

Backward path: learning is not only applied
to the final target but to all intermediate
layers.

The learning is improved if we use
backward false in the hidden backbone
(hidden → hidden connections learn, but
transfer no error flow)

We can add information highways to
spread information (faster) across the
network
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Rectified Linear Unit (ReLU, Alternative Basis Function)

Squashing functions differ in their impact on
the backpropagation algorithm.
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For x>0, the error flow is not squeezed
For x<0, we have no error flow anymore.
For x=0 the function is not differentiable.

ReLU Variant

ReLU
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Deep Neural Networks and Deep Learning
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ƒ Multi-level information processing: Enrichment of the
information flow by multiple hidden-to-hidden and input-
to-hidden connections

ƒ Multiple outputs (same task) enrich the learning

ƒ Non-linear regression approach and universal function
approximator

ƒ All tasks are solved by a single information processing
layer. Tends to overfit the data
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Finite unfolding in time transforms time into
a spatial architecture. We assume, that
xt=const in the future.

The analysis of open systems with RNNs
allows a decomposition of the autonomous
& external driven part.

Long-term predictability depends
on a strong autonomous subsystem.
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Dynamical Systems and Recurrent Neural Networks (RNN)
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Echo State Neural Networks
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In echo state networks we have large state space
with a fixed, sparse transition matrix A and matrix C
for incorporating the inputs. We learn a linear filter B.
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Causal & Retro-Causal Neural Networks (CRCNN)

- We explain observations by a symmetric
superposition of causal & retro-causal subnets.

- Both subnets are universal learners, but the more
appropriate branch learns faster and reduces the
error flow of the opposite branch.

- In non-unique optimization, we have to have
attention on the path to the optimum!!!
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Additional Benchmarks

ƒ Random Forests incorporating gradient boosting

ƒ Support vector machines (SVM)



Restricted © Siemens AG 2018

Agenda
ƒ Forecasting Customer Demand: Problem Setting & Test Set-up

ƒ Forecast Models: Focus on Neural Networks

ƒ Model comparison and benchmarking

ƒ From forecasting to decision making (planning)
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Model comparison and benchmarking
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accumulated abs error in pcs error std. deviation

Model
accumulated
abs error in pcs

error std.
deviation

ECHOSTATE NN 1461094 62651
DEEP NN (id0) 1465803 62768
RANDOM Forests 1481960 63263
CAUSAL RETRO CAUSAL NN 1484119 64194
SVM 1496393 65694
RECURRENT NN 1497693 64807
DEEP NN (tanh) 1510528 67733
MLP (tanh) 1520819 67777

Accumulated absolute error in
pieces over 52 weeks and all
products (MLFBs) on test data.
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Paradigms for the Computation of Uncertainty / Risk:
ƒ Volatility as a risk measure implies a naive, constant forecast

(a high frequency wave has high volatility without
uncertainty).

ƒ Backward risk is the error between model and real-world.
Here distributional features of the risk depends on the chosen
model.

ƒ Forward risk can be estimated by an ensemble forecast:
many models fit the past perfectly and still give diversifying
forecasts.

ƒ Risk is often not double-sided within the uncertainty
distribution, e.g. unexpected gain or unexpected loss!

On Risk and Forecasting Uncertainty
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