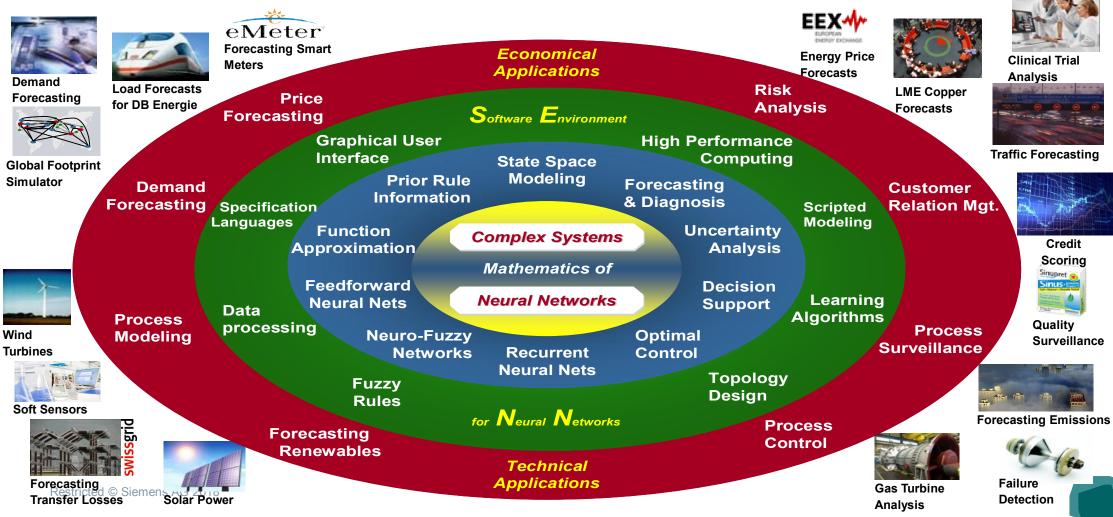


Forecasting Customer Demand with Deep Neural Networks

Ralph.Grothmann@siemens.com

Data Visions _ SIEMENS

Neural Networks @ Siemens



- Forecasting Customer Demand: Problem Setting & Test Set-up
- Forecast Models: Focus on Neural Networks
- Model comparison and benchmarking
- From forecasting to decision making (planning)

SIEMENS Forecasting Customer Demand at the Geräte-Werk Erlangen (GWE)

Problem Setting:

Data Visions

- Predict the customer demand for products for the next year in weekly time buckets (i.e. 52 forecasts)
- Forecast objects are so-called MLFBs (fine granularity, e.g. a product with a specific configuration). We have about 1100 active MLFBs
- Forecasts should be used for production planning and material sourcing
- A fully automated forecast and planning process should be established

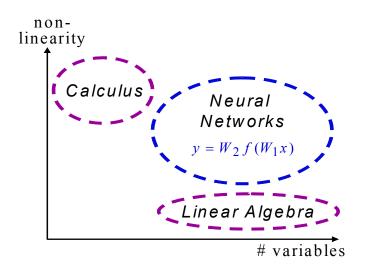
- We predict the customer demand under "real-world-conditions" (so-called backtest)
- Test horizon:

Training data	Model Genaralization	
(used to develop the forecast models)	(Test Data)	
10/2012 09/2017	10/2017	09/2018

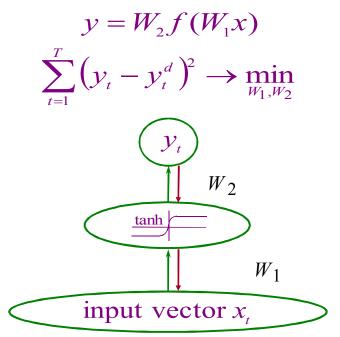
 We measure the performance in terms of absolute error in pieces and the standard deviation of the error over the forecast objects

- Calendar effects
 - WeekOfMonth
 - WeekOfQuarter
 - WeekOfYear
- Work days per week
- German public holidays
- Customer demand on preferred delivery date. Data is available from 2011 to 2018 (daily bookings weeks)
- Macroeconomic data: Business climate of the top 10 customer sectors and top 5 regions (both monthly data).

- Forecasting Customer Demand: Problem Setting & Test Set-up
- Forecast Models: Focus on Neural Networks
- Model comparison and benchmarking
- From forecasting to decision making (planning)



Based on data identify an input-output relation



Existence Theorem:

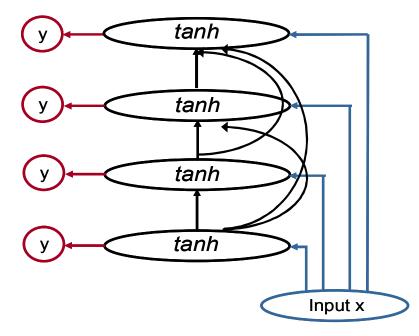
(Hornik, Stinchcombe, White 1989)

3-layer neural networks can approximate any continuous function on a compact domain.

Restricted © Siemens AG 2018

NN imply a Correspondence of Equations, Architectures, Local Algorithms.

The extended net acts as a hierarchical filter



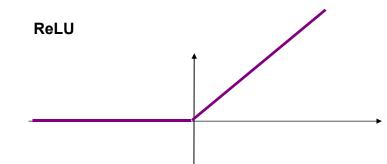
Forward path: feeding the inputs to all intermediate layers avoids a loss of the input information.

Backward path: learning is not only applied to the final target but to all intermediate layers.

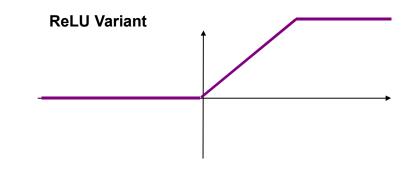
The learning is improved if we use backward false in the hidden backbone (hidden \rightarrow hidden connections learn, but transfer no error flow)

We can add information highways to spread information (faster) across the network

Siemens Rectified Linear Unit (ReLU, Alternative Basis Function)

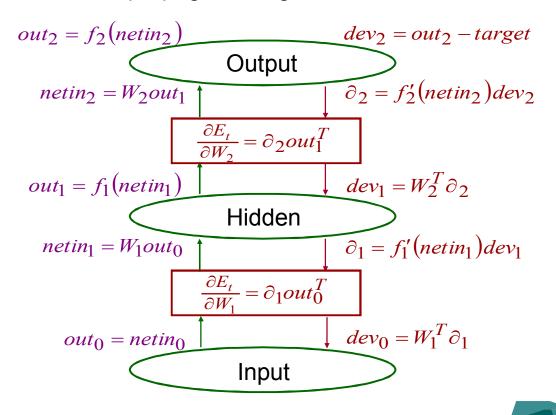


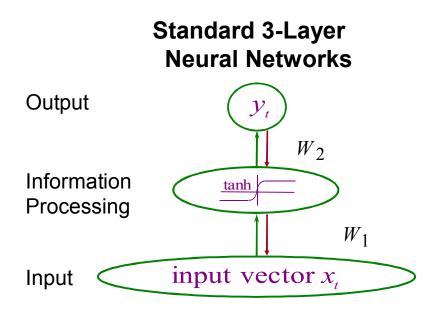
For x>0, the error flow is not squeezed For x<0, we have no error flow anymore. For x=0 the function is not differentiable.



Restricted © Siemens AG 2018

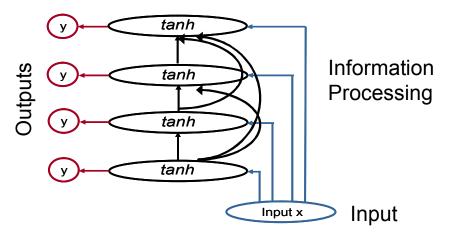
Squashing functions differ in their impact on the backpropagation algorithm.





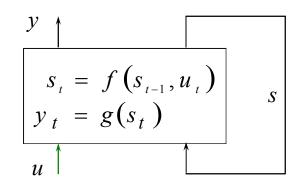
- Non-linear regression approach and universal function approximator
- All tasks are solved by a single information processing layer. Tends to overfit the data

Example of a Deep Neural Network



- Multi-level information processing: Enrichment of the information flow by multiple hidden-to-hidden and inputto-hidden connections
- Multiple outputs (same task) enrich the learning

Dynamical Systems and Recurrent Neural Networks (RNN)



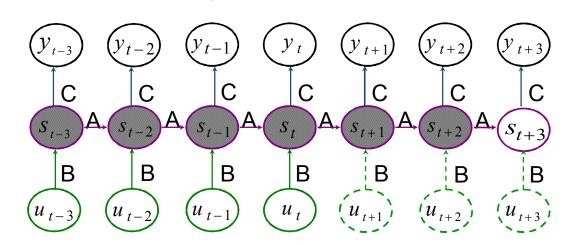
Data Visions

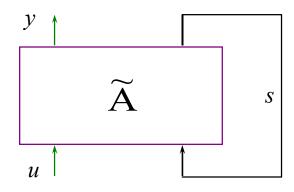
 $s_{t} = \tanh(As_{t-1} + Bu_{t}) \text{ state transition}$ $y_{t} = Cs_{t} \text{ output equation}$ $\sum_{t=1}^{T} (y_{t} - y_{t}^{d})^{2} \rightarrow \min_{A, B, C} \text{ identification}$

Finite unfolding in time transforms time into a spatial architecture. We assume, that x_t =const in the future.

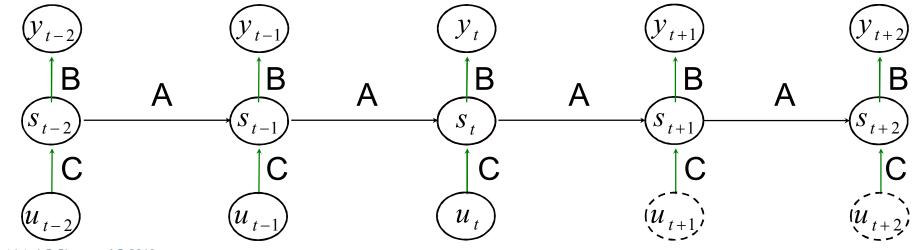
The analysis of open systems with RNNs allows a decomposition of the autonomous & external driven part.

Long-term predictability depends on a strong autonomous subsystem. Restricted © Siemens AG 2018





In echo state networks we have large state space with a fixed, sparse transition matrix A and matrix C for incorporating the inputs. We learn a linear filter B.



Causal & Retro-Causal Neural Networks (CRCNN)

- We explain observations by a symmetric superposition of causal & retro-causal subnets.
- Both subnets are universal learners, but the more appropriate branch learns faster and reduces the error flow of the opposite branch.
- In non-unique optimization, we have to have attention on the path to the optimum!!!

$$s_{t} = A \tanh(s_{t-1}) , s_{0}$$

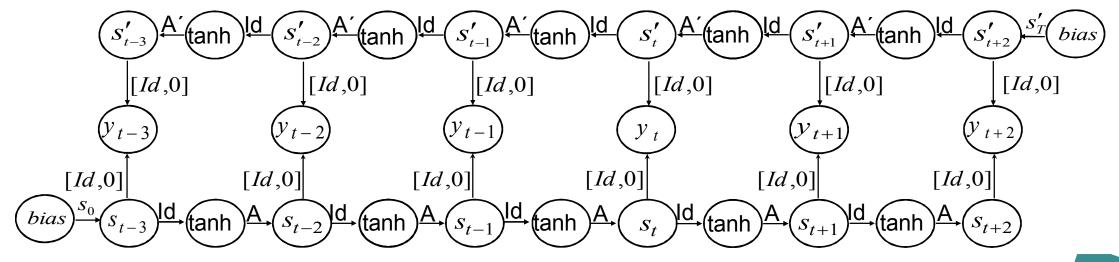
$$s'_{t} = A' \tanh(s'_{t+1}) , s'_{T}$$

$$y_{t} = [Id, 0]s_{t} + [Id, 0]s'_{t}$$

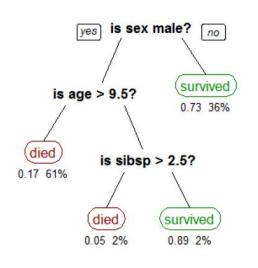
$$\sum_{t=1}^{T} (y_{t} - y_{t}^{d})^{2} \rightarrow \min_{A, s_{0}, A', s'_{T}}$$

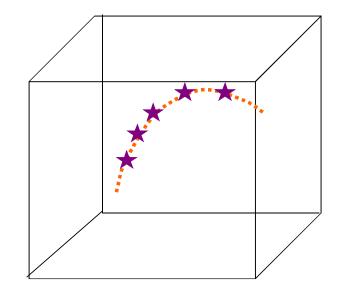
causal transition retro transition output equation

identification



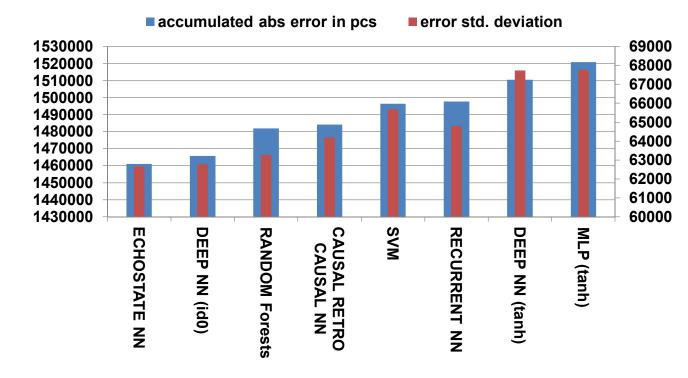
- Random Forests incorporating gradient boosting
- Support vector machines (SVM)





- Forecasting Customer Demand: Problem Setting & Test Set-up
- Forecast Models: Focus on Neural Networks
- Model comparison and benchmarking
- From forecasting to decision making (planning)

Model comparison and benchmarking

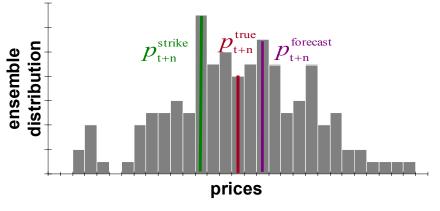


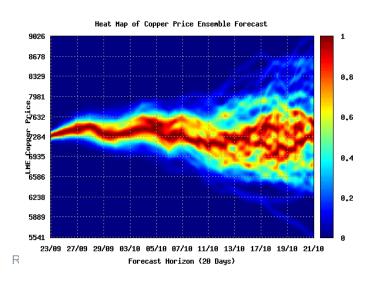
Model	accumulated abs error in pcs	
ECHOSTATE NN	1461094	62651
DEEP NN (id0)	1465803	62768
RANDOM Forests	1481960	63263
CAUSAL RETRO CAUSAL NN	1484119	64194
SVM	1496393	65694
RECURRENT NN	1497693	64807
DEEP NN (tanh)	1510528	67733
MLP (tanh)	1520819	67777

Accumulated absolute error in pieces over 52 weeks and all products (MLFBs) on test data.

- Forecasting Customer Demand: Problem Setting & Test Set-up
- Forecast Models: Focus on Neural Networks
- Model comparison and benchmarking
- From forecasting to decision making (planning)

On Risk and Forecasting Uncertainty





Paradigms for the Computation of Uncertainty / Risk:

- Volatility as a risk measure implies a naive, constant forecast (a high frequency wave has high volatility without uncertainty).
- Backward risk is the error between model and real-world. Here distributional features of the risk depends on the chosen model.
- Forward risk can be estimated by an ensemble forecast: many models fit the past perfectly and still give diversifying forecasts.
- Risk is often not double-sided within the uncertainty distribution, e.g. unexpected gain or unexpected loss!

Solution Success requires multidisciplinary teams more than ever

Our vision to differentiate

