
Oct Jan
2014

Apr Jul Oct Jan
2015

Apr Jul

target

80%

Deep Learning for Forecasting at Amazon:

Problems and Methods

David Salinas

Amazon Research, Berlin

CAMF London, October 2018

1

Outline

• Examples of forecasting problems

• A coarse classification: not one canonical forecasting problem!

• One deep-learning approach for operational forecasting DeepAR [FSG17]

2

General Setup

xt

zt

predictions
sample paths

• Predict the future behavior of a time series given its past

. . . , zt0−3, zt0−2, zt0−1 =⇒ P(zt0 , zt0+1, . . . zT)

• Make optimal decisions

best action = argmin
a

EP[cost(a, zt0 , zt0+1, . . . zT)]

3

General Setup

xt

zt

predictions
sample paths

• Predict the future behavior of a time series given its past

. . . , zt0−3, zt0−2, zt0−1 =⇒ P(zt0 , zt0+1, . . . zT)

• Make optimal decisions

best action = argmin
a

EP[cost(a, zt0 , zt0+1, . . . zT)]

3

Forecasting Problem I: Retail Demand

2016−01 2016−07 2017−01

Date

variable

actual

forecast

Weekly shipped units and forecast

• Problem: predict overall Amazon retail demand years into the future.

• Decision Problems: topology planning, market entry/segment analyses

4

Forecasting Problem II: AWS Compute Capacity

• Problem: predict AWS compute capacity demand

• Decision Problem: how many servers to order when and where

5

Forecasting Problem IV: Retail product forecasting

• Problem: predict the demand for a each product available at Amazon

• Decision Problems: how many units to order when, when to mark products down

6

Taxonomy of Forecasting Problems: Dimensions

• number of time series/ratio of scientists per time series

• training of scientists: econometrics, statistics, machine learning, computer science

• forecast horizons: years to days

• time granularities: years, months, weeks, days

• aggregation granularity (for hierarchically organized time series)

• latency of forecast production/forecast computation frequency

• consumer of forecast/degree of automation/human interaction with forecast

• characteristics of time series

• forecasting methods: white vs black box (impose structure, parameter sharing, transparency)

7

Taxonomy of Forecasting Problems: Forecasting Methods

8

Taxonomy of Forecasting Problems: Strategic Forecasting

2016−01 2016−07 2017−01

Date

variable

actual

forecast

Weekly shipped units and forecast

• Example: Overall demand for retail products

on Amazon

• lots of econometricians for few time series

• forecast horizon: years, time granularity:

weekly at most

• runs irregularly or a few times per month

• high degree of interaction with forecast

• models which estimate uncertainty correctly,

allow to enforce structure, allow for careful

modeling of effects

• high counts, relatively smooth, trend breaks

possible, long history (in most cases)

9

Taxonomy of Forecasting Problems: Tactical Forecasting

• Example: Ordering of compute racks for

AWS

• 100s-1000s of time series per scientist

• forecast horizon: months, granularity:

weekly at most

• runs irregularly or at most every week

• limitted degree of interaction with forecast,

but some constraints on stability of forecast

over time and automated output checking

• models estimate uncertainty correctly, some

transfer of information across time series

necessary

• high counts, relatively smooth, trend breaks

possible, short history & life cycles possible,

burstiness

10

Taxonomy of Forecasting Problems: Operational Forecasting

• Example: Demand forecast for retail

products

• millions of time series per scientists

(machine learning & software development

engineers)

• forecast horizon: days, weeks, at most

months

• runs at least daily/on-demand

• hands-off approach

• models can be more black box as long as

they are robust

• low counts, bursty, short history and life

cycles, intermittent

11

The Classical Approach

Image (c) User:Colin / Wikimedia Commons / CC BY-SA 3.0

12

The Classical Approach

Image (c) User:Colin / Wikimedia Commons / CC BY-SA 3.0

12

The Classical Approach

Image (c) User:Colin / Wikimedia Commons / CC BY-SA 3.0

12

The Classical Approach

Image (c) User:Colin / Wikimedia Commons / CC BY-SA 3.0

12

The Classical Approach(es): Box-Jenkins, State-space Models, . . .

PROS

• Well understood

• Decomposition → decoupling

• White box: explicitly model-based

• Embarrassingly parallel

CONS

• Model-based: all effects need to be explicitly

modeled

• Rarely support additional time-features

• Gaussian noise often assumed

• Cannot learn patterns across time series

13

Local vs. Global Models

14

Training with sliding windows

0

5

10

15
demand

Forecast time

0

10

20

30

0

200

400

600

• Trained by maximizing likelihood on past windows

15

Training with sliding windows

0

5

10

15
demand

Forecast time

0

10

20

30

0

200

400

600

• Trained by maximizing likelihood on past windows

15

Training with sliding windows

0

5

10

15
demand

Forecast time

0

10

20

30

0

200

400

600

• Trained by maximizing likelihood on past windows

15

Training with sliding windows

0

5

10

15
demand

Forecast time

0

10

20

30

0

200

400

600

• Trained by maximizing likelihood on past windows

15

Training with sliding windows

0

5

10

15
demand

Forecast time

0

10

20

30

0

200

400

600

• Trained by maximizing likelihood on past windows

15

Forecasting with auto-regressive neural networks

Autoregressive Recurrent Networks

ht = ψw (ht−1, zt−1, xt)

zt ∼ P(zt |wT
projht)

• The recurrent network ψw (·) is typically a

stack of LSTM cells parametrized by w

• Any likelihood can be used, for instance, for a

Gaussian likelihood:

P(zt |ht) = N (wT
µht, softplus(wT

σht))

• Parameters wproj and w are shared for all

time-series and learned by backprogation

zt−2, xt−1

ht−1

P(zt−1|ht−1)

z̃t−1

zt−1, xt

ht

P(zt |ht)

z̃t

zt , xt+1

ht+1

P(zt+1|ht+1)

z̃t+1

16

Forecasting with auto-regressive neural networks

Autoregressive Recurrent Networks

ht = ψw (ht−1, zt−1, xt)

zt ∼ P(zt |wT
projht)

• The recurrent network ψw (·) is typically a

stack of LSTM cells parametrized by w

• Any likelihood can be used, for instance, for a

Gaussian likelihood:

P(zt |ht) = N (wT
µht, softplus(wT

σht))

• Parameters wproj and w are shared for all

time-series and learned by backprogation

zt−2, xt−1

ht−1

P(zt−1|ht−1)

z̃t−1

zt−1, xt

ht

P(zt |ht)

z̃t

zt , xt+1

ht+1

P(zt+1|ht+1)

z̃t+1

16

Forecasting with auto-regressive neural networks

Autoregressive Recurrent Networks

ht = ψw (ht−1, zt−1, xt)

zt ∼ P(zt |wT
projht)

• The recurrent network ψw (·) is typically a

stack of LSTM cells parametrized by w

• Any likelihood can be used, for instance, for a

Gaussian likelihood:

P(zt |ht) = N (wT
µht, softplus(wT

σht))

• Parameters wproj and w are shared for all

time-series and learned by backprogation

zt−2, xt−1

ht−1

P(zt−1|ht−1)

z̃t−1

zt−1, xt

ht

P(zt |ht)

z̃t

zt , xt+1

ht+1

P(zt+1|ht+1)

z̃t+1

16

Prediction

0

5

10

15
demand

Forecast time

0

10

20

30

0

200

400

600

• target zt is unobserved after the forecast time

17

Prediction

zt−2, xt−1

ht−1

P(zt−1|ht−1)

z̃t−1

zt−1, xt

ht

P(zt |ht)

z̃t

zt , xt+1

ht+1

P(zt+1|ht+1)

z̃t+1

target, features

network

likelihood

samples

z̃ ∼ P(·|y)

• zt target, xt features, ht LSTM state

• P(zt |yt) likelihood: Gaussian, negative binomial

• Prediction: use sample z̃ ∼ P(·|y) instead of true target for unknown (future) values

18

Prediction

zt−2, xt−1

ht−1

P(zt−1|ht−1)

z̃t−1

zt−1, xt

ht

P(zt |ht)

z̃t

zt , xt+1

ht+1

P(zt+1|ht+1)

z̃t+1

target, features

network

likelihood

samples

z̃ ∼ P(·|y)

• zt target, xt features, ht LSTM state

• P(zt |yt) likelihood: Gaussian, negative binomial

• Prediction: use sample z̃ ∼ P(·|y) instead of true target for unknown (future) values

18

Predicting with sample paths

0

5

10

15
demand

Forecast time

0

10

20

30

0

200

400

600

• Now we have a generative model!

• The joint distribution is represented with sample paths

• One can calculate confidence intervals, marginal distributions, ...

19

Predicting with sample paths

0

5

10

15
demand

Forecast time

0

10

20

30

0

200

400

600

• Now we have a generative model!

• The joint distribution is represented with sample paths

• One can calculate confidence intervals, marginal distributions, ...

19

Predicting with sample paths

0

5

10

15
demand

Forecast time

0

10

20

30

0

200

400

600

• Now we have a generative model!

• The joint distribution is represented with sample paths

• One can calculate confidence intervals, marginal distributions, ...

19

Predicting with sample paths

0

5

10

15
demand

Forecast time

0

10

20

30

0

200

400

600

• Now we have a generative model!

• The joint distribution is represented with sample paths

• One can calculate confidence intervals, marginal distributions, ...

19

Input scaling - what could go wrong

log ||z|| = log number of sales

lo
g

nu
m

be
r o

f i
te

m
s

• Average number of sales follows a

power-law across items

• Learning patterns across time series is

difficult as amplitudes for zt are

drastically different

• Scale-free ⇒ no good bucket separation!

• Large amplitude items have larger signal

to noise ratio but are sample very

infrequently

20

Input scaling - what could go wrong

log ||z|| = log number of sales

lo
g

nu
m

be
r o

f i
te

m
s

• Average number of sales follows a

power-law across items

• Learning patterns across time series is

difficult as amplitudes for zt are

drastically different

• Scale-free ⇒ no good bucket separation!

• Large amplitude items have larger signal

to noise ratio but are sample very

infrequently

20

Input scaling - what could go wrong

log ||z|| = log number of sales

lo
g

nu
m

be
r o

f i
te

m
s

• Average number of sales follows a

power-law across items

• Learning patterns across time series is

difficult as amplitudes for zt are

drastically different

• Scale-free ⇒ no good bucket separation!

• Large amplitude items have larger signal

to noise ratio but are sample very

infrequently

20

Input scaling - what could go wrong

log ||z|| = log number of sales

lo
g

nu
m

be
r o

f i
te

m
s

• Average number of sales follows a

power-law across items

• Learning patterns across time series is

difficult as amplitudes for zt are

drastically different

• Scale-free ⇒ no good bucket separation!

• Large amplitude items have larger signal

to noise ratio but are sample very

infrequently

20

Handling different amplitudes

Reducing the scale amplitude variation

νt = E [|zt |] + 1

ht = ψw (ht−1, zt−1/νt , xt)

P(zt |ht) = N (wT
µ ht ∗ νt−1, softplus(wT

σ ht) ∗ νt−1)

• Inputs and outputs of the RNN are reparametrized as mean variations

Weighed sampling to sample equally across different amplitudes

• Denote zit the value of item i at time t

• Sample item i with probability: ∑
t

|zit |/
∑
t,j 6=i

|zjt |

21

Handling different amplitudes

Reducing the scale amplitude variation

νt = E [|zt |] + 1

ht = ψw (ht−1, zt−1/νt , xt)

P(zt |ht) = N (wT
µ ht ∗ νt−1, softplus(wT

σ ht) ∗ νt−1)

• Inputs and outputs of the RNN are reparametrized as mean variations

Weighed sampling to sample equally across different amplitudes

• Denote zit the value of item i at time t

• Sample item i with probability: ∑
t

|zit |/
∑
t,j 6=i

|zjt |

21

Some Empirical Results

• 5 Datasets including one with 500K weekly time series of sales of US products

• Baseline: Innovation State Space Model [SSF16], ETS [HKOS08], Croston [Cro72], Matfact

[YRD16], Recurrent neural network without scaling/sampling

• On average 15% improvement for P50QL/P90QL

• < 5 features; little hyper-parameter tuning

• Training/predicting/evaluating 500K time-series takes less than 4 hours on a single AWS p2.xlarge

instance (1 GPU & 4 CPU)

22

Some Empirical Results

• 5 Datasets including one with 500K weekly time series of sales of US products

• Baseline: Innovation State Space Model [SSF16], ETS [HKOS08], Croston [Cro72], Matfact

[YRD16], Recurrent neural network without scaling/sampling

• On average 15% improvement for P50QL/P90QL

• < 5 features; little hyper-parameter tuning

• Training/predicting/evaluating 500K time-series takes less than 4 hours on a single AWS p2.xlarge

instance (1 GPU & 4 CPU)

22

Some Empirical Results

• 5 Datasets including one with 500K weekly time series of sales of US products

• Baseline: Innovation State Space Model [SSF16], ETS [HKOS08], Croston [Cro72], Matfact

[YRD16], Recurrent neural network without scaling/sampling

• On average 15% improvement for P50QL/P90QL

• < 5 features; little hyper-parameter tuning

• Training/predicting/evaluating 500K time-series takes less than 4 hours on a single AWS p2.xlarge

instance (1 GPU & 4 CPU)

22

Some Empirical Results

• 5 Datasets including one with 500K weekly time series of sales of US products

• Baseline: Innovation State Space Model [SSF16], ETS [HKOS08], Croston [Cro72], Matfact

[YRD16], Recurrent neural network without scaling/sampling

• On average 15% improvement for P50QL/P90QL

• < 5 features; little hyper-parameter tuning

• Training/predicting/evaluating 500K time-series takes less than 4 hours on a single AWS p2.xlarge

instance (1 GPU & 4 CPU)

22

Some Empirical Results

• 5 Datasets including one with 500K weekly time series of sales of US products

• Baseline: Innovation State Space Model [SSF16], ETS [HKOS08], Croston [Cro72], Matfact

[YRD16], Recurrent neural network without scaling/sampling

• On average 15% improvement for P50QL/P90QL

• < 5 features; little hyper-parameter tuning

• Training/predicting/evaluating 500K time-series takes less than 4 hours on a single AWS p2.xlarge

instance (1 GPU & 4 CPU)

22

Quantitative results

Datasets:

• parts, ec-sub, ec contains 1K, 40K and 530K demand time-series (integer values)

• traffic, and elec contains 1K and 400 hourly time-series of road and households usage (real values)

Baselines

• Snyder: negative-binomial autoregressive method [SOB12]

• Croston: intermittent demand forecasting method (R package) [Cro72]

• ETS: exponential time smoothing with automatic model selection (R package) [HKOS08]

• ISSM model with covariates features shown earlier [SSF16]

• Rnn-gaussian: autoregressive RNN model with Gaussian likelihood

• Rnn-negative-binomial: autoregressive RNN model with negative binomial likelihood

• Matfact: matrix factorization [YRD16]

• Ours: appropriate likelihood + scaling + weighted sampling [FSG17] (DeepAR)

23

Quantitative results

dataset Snyder Croston ETS ISSM Rnn-gaussian Rnn-negative-binomial Ours

parts 0.0 -97.0 -23.0 -8.0 -19.0 1.0 6.0

ec-sub 0.0 -3.4 7.8 13.8 -4.3 -0.9 33.6

ec 0.0 -27.6 -5.7 4.8 3.8 11.4 19.0

Table 1: Percent improvement versus [Snyder 2012] (integer time-series)

elec traffic

ND RMSE ND RMSE

Matfact 0.0 0.0 0.0 0.0

ours 128.6 15.0 17.6 2.4

Table 2: Percent improvement versus Matfact [YRD16] (real-value time-series)

24

Some Real-World Examples

Oct Jan
2014

Apr Jul Oct Jan
2015

Apr Jul
0

50

100

150

200

250

300

350

400
None

target
80%

Oct Jan
2014

Apr Jul Oct Jan
2015

Apr Jul
0

20

40

60

80

100

120

140

160

180
None

target
80%

Oct Jan
2014

Apr Jul Oct Jan
2015

Apr Jul
0

50

100

150

200

250

300

350

400

450
None

target
80%

Oct Jan
2014

Apr Jul Oct Jan
2015

Apr Jul
0

2

4

6

8

10

12

14

16
None

target
80%

Oct Jan
2014

Apr Jul Oct Jan
2015

Apr Jul
0.0

0.5

1.0

1.5

2.0

2.5

3.0
None

target
80%

Jan
2014

Apr Jul Oct Jan
2015

Apr Jul
0.0

0.5

1.0

1.5

2.0

2.5

3.0
None

target
80%

Jul Oct Jan
2015

Apr Jul
0

1

2

3

4

5

6
None

target
80%

Jul Oct Jan
2015

Apr Jul
0.0

0.5

1.0

1.5

2.0

2.5

3.0
None

target
80%

Sep Oct Nov Dec Jan
2015

Feb Mar Apr May Jun Jul Aug
0

1

2

3

4

5

6

7

8

9
None

target
80%

25

DeepAR in AWS Sagemaker

26

DeepAR in AWS Sagemaker

• data: json or parquet

{"start": "2012-01-03", "target": [1.9, 4.9, 6.3, 7.3, 7.8, ...], "cat": 2}
{"start": "2012-04-05", "target": [2.3, 4.9, 6.2, 1.4, 4.3, ...], "cat": 0}
{"start": "2012-04-05", "target": [5.0, 22.5, 23.1, 15.4, 34.0, ...], "cat": 1}
...

• hyper parameters

{
"time_freq": "W",

"prediction_length": 52,

"context_length": 52,

"likelihood": "gaussian",

"epochs": 100

}

27

DeepAR in AWS Sagemaker

Demo

• Try it yourself!

• Notebook at: https://github.com/awslabs/amazon-sagemaker-

examples/blob/master/introduction to amazon algorithms/deepar electricity/DeepAR-

Electricity.ipynb

• Documentation: https://docs.aws.amazon.com/sagemaker/latest/dg/deepar.html
28

DeepAR in AWS Sagemaker

Demo

• Try it yourself!

• Notebook at: https://github.com/awslabs/amazon-sagemaker-

examples/blob/master/introduction to amazon algorithms/deepar electricity/DeepAR-

Electricity.ipynb

• Documentation: https://docs.aws.amazon.com/sagemaker/latest/dg/deepar.html
28

Conclusions

• Not one but many different forecasting problems

• Deep Learning methodology applied to forecasting yields flexible, accurate, and scalable
forecasting systems

• Providing sufficient data! (what is sufficient data?)

• Models can learn complex temporal patterns across time series

• “Model-free” black-box approaches trained end-to-end can replace complex model-based

forecasting systems

• Handling scaling is key in in reaching good accuracy (more generally keeping activations

normalized)

29

References i

J.D. Croston.

Forecasting and stock control for intermittent demands.

Operational Research Quarterly, 23:289–304, 1972.

Valentin Flunkert∗, David Salinas∗, and Jan Gasthaus.

Deepar: Probabilistic forecasting with autoregressive recurrent networks.

CoRR, abs/1704.04110, 2017.

R. Hyndman, A. B. Koehler, J. K. Ord, and R .D. Snyder.

Forecasting with Exponential Smoothing: The State Space Approach.

Springer Series in Statistics. Springer, 2008.

Ralph D Snyder, J Keith Ord, and Adrian Beaumont.

Forecasting the intermittent demand for slow-moving inventories: A modelling approach.

International Journal of Forecasting, 28(2):485–496, 2012.

30

References ii

Matthias W Seeger, David Salinas, and Valentin Flunkert.

Bayesian intermittent demand forecasting for large inventories.

In Advances in Neural Information Processing Systems, pages 4646–4654, 2016.

Hsiang-Fu Yu, Nikhil Rao, and Inderjit S Dhillon.

Temporal regularized matrix factorization for high-dimensional time series prediction.

In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural

Information Processing Systems 29, pages 847–855. Curran Associates, Inc., 2016.

31

Thank you!

PS: we are hiring :-)

Ping me if you are interested!

