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e Examples of forecasting problems
e A coarse classification: not one canonical forecasting problem!

e One deep-learning approach for operational forecasting DeepAR [FSG17]
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e Predict the future behavior of a time series given its past

vy Ztg—3, Ztg—2, Ztg—1 —> P(Ztm Zty+1y e o - ZT)

e Make optimal decisions

best action = argmin Ep[cost(a, zy,, z¢y+1, - - - 27)]
a



Forecasting Problem |: Retail Demand
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e Problem: predict overall Amazon retail demand years into the future.

e Decision Problems: topology planning, market entry/segment analyses



Forecasting Problem Il: AWS Compute Capacity

e Problem: predict AWS compute capacity demand

e Decision Problem: how many servers to order when and where



Forecasting Problem IV: Retail product forecasting

PRl | L

e Problem: predict the demand for a each product available at Amazon

e Decision Problems: how many units to order when, when to mark products down



Taxonomy of Forecasting Problems: Dimensions

e number of time series/ratio of scientists per time series

e training of scientists: econometrics, statistics, machine learning, computer science
e forecast horizons: years to days

e time granularities: years, months, weeks, days

e aggregation granularity (for hierarchically organized time series)

e latency of forecast production/forecast computation frequency

e consumer of forecast/degree of automation/human interaction with forecast

e characteristics of time series

e forecasting methods: white vs black box (impose structure, parameter sharing, transparency)



Taxonomy of Forecasting Problems: Forecasting Methods

Prior (domain)
knowledge

Learning from
data
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Taxonomy of Forecasting Problems: Strategic Forecasting

Example: Overall demand for retail products
on Amazon

lots of econometricians for few time series

forecast horizon: years, time granularity:
weekly at most

runs irregularly or a few times per month
high degree of interaction with forecast

models which estimate uncertainty correctly,
allow to enforce structure, allow for careful
modeling of effects

high counts, relatively smooth, trend breaks
possible, long history (in most cases)



Taxonomy of Forecasting Problems: Tactical Forecasting

e Example: Ordering of compute racks for
AWS

e 100s-1000s of time series per scientist

e forecast horizon: months, granularity:

webservices

weekly at most

e runs irregularly or at most every week

Costs (5)

e limitted degree of interaction with forecast,

20

but some constraints on stability of forecast

50

over time and automated output checking

00

e models estimate uncertainty correctly, some

u|||.|||‘ ‘ ||I|||I|| .III|. il .II||||I||||:’"‘" Ml transfer of information across time series
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MMCosts  Forecast — 80% Confidence —— 95% Confidence i Time Range Break necessary

e high counts, relatively smooth, trend breaks
possible, short history & life cycles possible,
burstiness

10



Taxonomy of Forecasting Problems: Operational Forecasting

e Example: Demand forecast for retail

products

e millions of time series per scientists
(machine learning & software development
engineers)

sty e forecast horizon: days, weeks, at most
months

e runs at least daily/on-demand
e hands-off approach

e models can be more black box as long as

/MJ\\, they are robust

= e low counts, bursty, short history and life
cycles, intermittent
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he Classical Approac
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The Classical Approach

12



The Classical Approach(es): Box-Jenkins, State-space Models, ...

PROS CONS

Well understood e Model-based: all effects need to be explicitly

e Decomposition — decoupling modeled

e Rarely support additional time-features

White box: explicitly model-based

e Embarrassingly parallel e Gaussian noise often assumed

e Cannot learn patterns across time series
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Local vs. Global Models
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Training with sliding windows
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Training with sliding windows
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e Trained by maximizing likelihood on past windows
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Forecasting with auto-regressive neural networks

Autoregressive Recurrent Networks

Zr—1 Zt Zi1
h = Yw (ht—h Zt—1, Xt) I I T
T
z: ~ P(zt|wyoih
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e The recurrent network v, (+) is typically a ] ] 1

stack of LSTM cells parametrized by w Ri=n >‘ i ‘ >‘ hets
Zr—2, Xt—1 Zt—1, Xt Zty Xt+1
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Autoregressive Recurrent Networks
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e The recurrent network v, (+) is typically a ] ] 1
stack of LSTM cells parametrized by w Ri=n ‘ >‘ i ‘ >‘ hets ‘
e Any likelihood can be used, for instance, for a ] ] 1
Gaussian likelihood:
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Forecasting with auto-regressive neural networks

Autoregressive Recurrent Networks

Zr—1 Zt Zi1
h = Yw (ht—h Zt—1, Xt) I I T
T
z: ~ P(zt|wyoih
¢~ Plzfweh) [PGeilhes)| [ PGlh) | [ Plelhe) |
e The recurrent network v, (+) is typically a ] ] 1
stack of LSTM cells parametrized by w ‘ Ri=n ‘ >‘ i ‘ >‘ hets ‘
e Any likelihood can be used, for instance, for a ] ] 1
Gaussian likelihood:
Zr—2, Xt—1 Zt—1, Xt Zty Xt+1

P(z¢|hy) = N(wlht, softplus(w, h;))

e Parameters wproj and w are shared for all
time-series and learned by backprogation
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Forecast time

—— demand |
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e target z; is unobserved after the forecast time
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samples Z1 Z Zi1
Z~ P(-ly) I T T
likelihood | P(zi-1lhe—1) | | P(zlh) | | P(zialhera) |
network ‘ he_q ‘*4 h; ‘*4 hesy ‘
target, features Zr—2, Xt—1 Zt—1, Xt Zty Xt+1

e z target, x; features, hy LSTM state

o P(zy:) likelihood: Gaussian, negative binomial
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samples Zi 1 Z; Zi1
> . \ \
Z~ P(y) N .
\ \
N\ N\
AN AN
S \
likelihood ‘ P(zt—1lhe—1) | "\ P(zt|ht) «| P(zes1lhein) ‘
\ \
\ \
\ \
N N
N N
network ‘ he—1 ‘*4 h: ‘*4 hesy ‘
target, features Zr—2, Xt—1 Zt—1, Xt Zty Xt+1

e 7z target, x; features, hy LSTM state
o P(zy:) likelihood: Gaussian, negative binomial

e Prediction: use sample Z ~ P(-|y) instead of true target for unknown (future) values
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Predicting with sample paths
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e Now we have a generative model!
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Predicting with sample paths
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Predicting with sample paths
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e Now we have a generative model!

e The joint distribution is represented with sample paths
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Predicting with sample paths

Forecast time

—— demand
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e Now we have a generative model!

e The joint distribution is represented with sample paths

e One can calculate confidence intervals, marginal distributions, ...
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Input scaling - what could go wrong
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e Average number of sales follows a
power-law across items

log ||z|| = log number of sales
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Input scaling - what could go wrong

e Average number of sales follows a
power-law across items

e Learning patterns across time series is
difficult as amplitudes for z; are
drastically different

log number of items

e Scale-free = no good bucket separation!

e Large amplitude items have larger signal
to noise ratio but are sample very
log ||z|| = log number of sales infreq uent|y



Handling different amplitudes

Reducing the scale amplitude variation

ve = El|zf] + 1
hy = 9w (ht—hzt—l/l/t, Xt)
P(z|he) = N(w[ht *Up_1, softplus(wUTht) * Vp_1)

e Inputs and outputs of the RNN are reparametrized as mean variations
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Handling different amplitudes

Reducing the scale amplitude variation

ve = El|z|] +1
hy = Yw (ht—th—l/VnXt)
P(z|he) = N(w[ht *Up_1, softplus(wUTht) * Vp_1)

e Inputs and outputs of the RNN are reparametrized as mean variations

Weighed sampling to sample equally across different amplitudes

e Denote z; the value of item / at time t

e Sample item i with probability:

Z|th|/z |Zje |

t,jAi
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Some Empirical Results

e 5 Datasets including one with 500K weekly time series of sales of US products
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Some Empirical Results

e 5 Datasets including one with 500K weekly time series of sales of US products

Baseline: Innovation State Space Model [SSF16], ETS [HKOS08], Croston [Cro72], Matfact
[YRD16], Recurrent neural network without scaling/sampling

e On average 15% improvement for P50QL/P90QL

< 5 features; little hyper-parameter tuning

Training/predicting/evaluating 500K time-series takes less than 4 hours on a single AWS p2.xlarge
instance (1 GPU & 4 CPU)
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Quantitative results

Datasets:

e parts, ec-sub, ec contains 1K, 40K and 530K demand time-series (integer values)

e traffic, and elec contains 1K and 400 hourly time-series of road and households usage (real values)
Baselines

e Snyder: negative-binomial autoregressive method [SOB12]

e Croston: intermittent demand forecasting method (R package) [Cro72]

e ETS: exponential time smoothing with automatic model selection (R package) [HKOS08]
e ISSM model with covariates features shown earlier [SSF16]

e Rnn-gaussian: autoregressive RNN model with Gaussian likelihood

e Rnn-negative-binomial: autoregressive RNN model with negative binomial likelihood

e Matfact: matrix factorization [YRD16]

e Ours: appropriate likelihood + scaling + weighted sampling [FSG17] (DeepAR)

23



Quantitative results

dataset Snyder Croston ETS ISSM  Rnn-gaussian  Rnn-negative-binomial  Ours

parts 0.0 -97.0 -23.0 -8.0 -19.0 1.0 6.0
ec-sub 0.0 -3.4 7.8 13.8 -4.3 -0.9 336
ec 0.0 -27.6 -5.7 4.8 3.8 114 19.0

Table 1: Percent improvement versus [Snyder 2012] (integer time-series)

elec traffic
ND RMSE ND RMSE

Matfact
ours

0.0 0.0 0.0 0.0
128.6 15.0 17.6 2.4

Table 2: Percent improvement versus Matfact [YRD16] (real-value time-series)
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Amazon SageMaker

Developer Guide

Documentation - Tnis Guide
[Search

O What Is Amazon SageMaker?
How It Works

Getting Started

B Using Built-in Algorithms
Common Information

Linear Learner

Factorization Machines

XGBoost Algorithm

Image Classification Algorithm
Sequence to Sequence (seq2seq)
K-Means Algorithm

Principal Compenent Analysis
(PCA)

Latent Dirichlet Allocation (LDA)
Neural Topic Model (NTM)

[ DeepAR Forecasting
O Hyperparameters

O Inference Formats
BlazingText

Automatically Scaling Amazon
sageMaker Models

Bw

DeepAR in AWS Sagemaker

AWS Documentation » Amazon SageMaker » Developer Guide » Using Built-in Algorithms with Amazon SageMaker » DeepAR Forecasting

DeepAR Forecasting

Amazon SageMaker DeepAR is a supervised learning algorithm for forecasting scalar time series using recurrent neural networks (RNN). Classical
forecasting methods, such as Autoregressive Integrated Moving Average (ARIMA) or Exponential Smoothing (ETS), fit one model to each individual
time series, and then use that model to extrapolate the time series into the future. In many applications, however, you might have many similar
time series across a set of cross-sectional units (for example, demand for different products, load of servers, requests for web pages, and so on).
In this case, it can be beneficial to train a single model jointly over all of these time series. DeepAR takes this approach, training a model for
predicting a time series over a large set of (related) time series.

For the training phase, the dataset consists of one or preferably more than one time series, and an optional categorical grouping variable of
which the time series is a member. The model learns entirely from these values. The DeepAR algorithm currently accepts no other external
features. The model is then trained by randomly selecting time points from the provided time series and using them as training examples.

For inference, the trained model takes as input an individual time series which might or might not have been used during training, and generates
a forecast for the time series. This forecast takes into account what typically happened for similar time series in the training set.

Input/Output Interface

DeepAR supports two data channels. The train channel is used for training a model and is required. The test channel is optional. If the test
channel is present, the algorithm uses it to calculate accuracy metrics for the model after training. You can provide datasets as JSON or Parquet
files.

By default, the model determines the input format from the file extension (either . json or .parquet. If you provide input files with different
extensions, you can specify the file type by setting the contentType parameter of the Channel data type.

If you use a JSON file, it must be in the JSON Lines format, where each record contains the following fields:

s "start" whosevalue is a string of the format YYYY-MM-DD HH:MM:SS.

« "target", whose value is an array of floats (or integers) that represent the time series variable’s values.

* "cat" (optional), whose value is an integer that encodes the categorical grouping that record's time series is a member of. The categorical
feature allows the model to learn typical behavior for that group. This can increase accuracy.

26

The following is an example of JSON data:



DeepAR in AWS Sagemaker

e data: json or parquet

{"start": "2012-01-03", "target": [1.9, 4.9, 6.3, 7.3, 7.8, ...], "cat": 2}
{"start": "2012-04-05", "target": [2.3, 4.9, 6.2, 1.4, 4.3, ...], "cat": O}
{"start": "2012-04-05", "target": [5.0, 22.5, 23.1, 15.4, 34.0, ...], "cat": 1}

e hyper parameters

{

"time_freq": "W",

"prediction_length": 52,
"context_length": 52,
"likelihood": "gaussian",
"epochs": 100

27



DeepAR in AWS Sagemaker

Demo
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DeepAR in AWS Sagemaker

Demo
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e Try it yourself!

e Notebook at: https://github.com/awslabs/amazon-sagemaker-
examples/blob/master/introduction_to_amazon _algorithms/deepar _electricity /DeepAR-
Electricity.ipynb

e Documentation: https://docs.aws.amazon.com/sagemaker/latest/dg/deepar.html
28



Conclusions

e Not one but many different forecasting problems

e Deep Learning methodology applied to forecasting yields flexible, accurate, and scalable
forecasting systems

e Providing sufficient data! (what is sufficient data?)
e Models can learn complex temporal patterns across time series

e “Model-free” black-box approaches trained end-to-end can replace complex model-based
forecasting systems

e Handling scaling is key in in reaching good accuracy (more generally keeping activations
normalized)

29
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Thank you!

PS: we are hiring :-)
Ping me if you are interested!



