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Outline

• Examples of forecasting problems

• A coarse classification: not one canonical forecasting problem!

• One deep-learning approach for operational forecasting DeepAR [FSG17]
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General Setup

xt

zt

predictions
sample paths

• Predict the future behavior of a time series given its past

. . . , zt0−3, zt0−2, zt0−1 =⇒ P(zt0 , zt0+1, . . . zT )

• Make optimal decisions

best action = argmin
a

EP[cost(a, zt0 , zt0+1, . . . zT )]
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Forecasting Problem I: Retail Demand

2016−01 2016−07 2017−01

Date

variable

actual

forecast

Weekly shipped units and forecast

• Problem: predict overall Amazon retail demand years into the future.

• Decision Problems: topology planning, market entry/segment analyses
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Forecasting Problem II: AWS Compute Capacity

• Problem: predict AWS compute capacity demand

• Decision Problem: how many servers to order when and where
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Forecasting Problem IV: Retail product forecasting

• Problem: predict the demand for a each product available at Amazon

• Decision Problems: how many units to order when, when to mark products down
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Taxonomy of Forecasting Problems: Dimensions

• number of time series/ratio of scientists per time series

• training of scientists: econometrics, statistics, machine learning, computer science

• forecast horizons: years to days

• time granularities: years, months, weeks, days

• aggregation granularity (for hierarchically organized time series)

• latency of forecast production/forecast computation frequency

• consumer of forecast/degree of automation/human interaction with forecast

• characteristics of time series

• forecasting methods: white vs black box (impose structure, parameter sharing, transparency)
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Taxonomy of Forecasting Problems: Forecasting Methods
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Taxonomy of Forecasting Problems: Strategic Forecasting

2016−01 2016−07 2017−01

Date

variable

actual

forecast

Weekly shipped units and forecast

• Example: Overall demand for retail products

on Amazon

• lots of econometricians for few time series

• forecast horizon: years, time granularity:

weekly at most

• runs irregularly or a few times per month

• high degree of interaction with forecast

• models which estimate uncertainty correctly,

allow to enforce structure, allow for careful

modeling of effects

• high counts, relatively smooth, trend breaks

possible, long history (in most cases)
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Taxonomy of Forecasting Problems: Tactical Forecasting

• Example: Ordering of compute racks for

AWS

• 100s-1000s of time series per scientist

• forecast horizon: months, granularity:

weekly at most

• runs irregularly or at most every week

• limitted degree of interaction with forecast,

but some constraints on stability of forecast

over time and automated output checking

• models estimate uncertainty correctly, some

transfer of information across time series

necessary

• high counts, relatively smooth, trend breaks

possible, short history & life cycles possible,

burstiness
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Taxonomy of Forecasting Problems: Operational Forecasting

• Example: Demand forecast for retail

products

• millions of time series per scientists

(machine learning & software development

engineers)

• forecast horizon: days, weeks, at most

months

• runs at least daily/on-demand

• hands-off approach

• models can be more black box as long as

they are robust

• low counts, bursty, short history and life

cycles, intermittent
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The Classical Approach

Image (c) User:Colin / Wikimedia Commons / CC BY-SA 3.0
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The Classical Approach(es): Box-Jenkins, State-space Models, . . .

PROS

• Well understood

• Decomposition → decoupling

• White box: explicitly model-based

• Embarrassingly parallel

CONS

• Model-based: all effects need to be explicitly

modeled

• Rarely support additional time-features

• Gaussian noise often assumed

• Cannot learn patterns across time series
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Local vs. Global Models
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Training with sliding windows

0

5

10

15
demand

Forecast time

0

10

20

30

0

200

400

600

• Trained by maximizing likelihood on past windows
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Forecasting with auto-regressive neural networks

Autoregressive Recurrent Networks

ht = ψw (ht−1, zt−1, xt)

zt ∼ P(zt |wT
projht)

• The recurrent network ψw (·) is typically a

stack of LSTM cells parametrized by w

• Any likelihood can be used, for instance, for a

Gaussian likelihood:

P(zt |ht) = N (wT
µht, softplus(wT

σht))

• Parameters wproj and w are shared for all

time-series and learned by backprogation

zt−2, xt−1

ht−1

P(zt−1|ht−1)

z̃t−1

zt−1, xt

ht

P(zt |ht)

z̃t

zt , xt+1

ht+1

P(zt+1|ht+1)

z̃t+1

16



Forecasting with auto-regressive neural networks

Autoregressive Recurrent Networks

ht = ψw (ht−1, zt−1, xt)

zt ∼ P(zt |wT
projht)

• The recurrent network ψw (·) is typically a

stack of LSTM cells parametrized by w

• Any likelihood can be used, for instance, for a

Gaussian likelihood:

P(zt |ht) = N (wT
µht, softplus(wT

σht))

• Parameters wproj and w are shared for all

time-series and learned by backprogation

zt−2, xt−1

ht−1

P(zt−1|ht−1)

z̃t−1

zt−1, xt

ht

P(zt |ht)

z̃t

zt , xt+1

ht+1

P(zt+1|ht+1)

z̃t+1

16



Forecasting with auto-regressive neural networks

Autoregressive Recurrent Networks

ht = ψw (ht−1, zt−1, xt)

zt ∼ P(zt |wT
projht)

• The recurrent network ψw (·) is typically a

stack of LSTM cells parametrized by w

• Any likelihood can be used, for instance, for a

Gaussian likelihood:

P(zt |ht) = N (wT
µht, softplus(wT

σht))

• Parameters wproj and w are shared for all

time-series and learned by backprogation

zt−2, xt−1

ht−1

P(zt−1|ht−1)

z̃t−1

zt−1, xt

ht

P(zt |ht)

z̃t

zt , xt+1

ht+1

P(zt+1|ht+1)

z̃t+1

16



Prediction
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• target zt is unobserved after the forecast time
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Prediction

zt−2, xt−1

ht−1
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z̃t−1
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z̃t

zt , xt+1
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target, features

network

likelihood

samples

z̃ ∼ P(·|y)

• zt target, xt features, ht LSTM state

• P(zt |yt) likelihood: Gaussian, negative binomial

• Prediction: use sample z̃ ∼ P(·|y) instead of true target for unknown (future) values
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Predicting with sample paths
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• Now we have a generative model!

• The joint distribution is represented with sample paths

• One can calculate confidence intervals, marginal distributions, ...
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Input scaling - what could go wrong

log ||z|| = log number of sales
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• Average number of sales follows a

power-law across items

• Learning patterns across time series is

difficult as amplitudes for zt are

drastically different

• Scale-free ⇒ no good bucket separation!

• Large amplitude items have larger signal

to noise ratio but are sample very

infrequently
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Handling different amplitudes

Reducing the scale amplitude variation

νt = E [|zt |] + 1

ht = ψw (ht−1, zt−1/νt , xt)

P(zt |ht) = N (wT
µ ht ∗ νt−1, softplus(wT

σ ht) ∗ νt−1)

• Inputs and outputs of the RNN are reparametrized as mean variations

Weighed sampling to sample equally across different amplitudes

• Denote zit the value of item i at time t

• Sample item i with probability: ∑
t

|zit |/
∑
t,j 6=i

|zjt |
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Some Empirical Results

• 5 Datasets including one with 500K weekly time series of sales of US products

• Baseline: Innovation State Space Model [SSF16], ETS [HKOS08], Croston [Cro72], Matfact

[YRD16], Recurrent neural network without scaling/sampling

• On average 15% improvement for P50QL/P90QL

• < 5 features; little hyper-parameter tuning

• Training/predicting/evaluating 500K time-series takes less than 4 hours on a single AWS p2.xlarge

instance (1 GPU & 4 CPU)
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Quantitative results

Datasets:

• parts, ec-sub, ec contains 1K, 40K and 530K demand time-series (integer values)

• traffic, and elec contains 1K and 400 hourly time-series of road and households usage (real values)

Baselines

• Snyder: negative-binomial autoregressive method [SOB12]

• Croston: intermittent demand forecasting method (R package) [Cro72]

• ETS: exponential time smoothing with automatic model selection (R package) [HKOS08]

• ISSM model with covariates features shown earlier [SSF16]

• Rnn-gaussian: autoregressive RNN model with Gaussian likelihood

• Rnn-negative-binomial: autoregressive RNN model with negative binomial likelihood

• Matfact: matrix factorization [YRD16]

• Ours: appropriate likelihood + scaling + weighted sampling [FSG17] (DeepAR)
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Quantitative results

dataset Snyder Croston ETS ISSM Rnn-gaussian Rnn-negative-binomial Ours

parts 0.0 -97.0 -23.0 -8.0 -19.0 1.0 6.0

ec-sub 0.0 -3.4 7.8 13.8 -4.3 -0.9 33.6

ec 0.0 -27.6 -5.7 4.8 3.8 11.4 19.0

Table 1: Percent improvement versus [Snyder 2012] (integer time-series)

elec traffic

ND RMSE ND RMSE

Matfact 0.0 0.0 0.0 0.0

ours 128.6 15.0 17.6 2.4

Table 2: Percent improvement versus Matfact [YRD16] (real-value time-series)
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Some Real-World Examples
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DeepAR in AWS Sagemaker
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DeepAR in AWS Sagemaker

• data: json or parquet

{"start": "2012-01-03", "target": [1.9, 4.9, 6.3, 7.3, 7.8, ...], "cat": 2}
{"start": "2012-04-05", "target": [2.3, 4.9, 6.2, 1.4, 4.3, ...], "cat": 0}
{"start": "2012-04-05", "target": [5.0, 22.5, 23.1, 15.4, 34.0, ...], "cat": 1}
...

• hyper parameters

{
"time_freq": "W",

"prediction_length": 52,

"context_length": 52,

"likelihood": "gaussian",

"epochs": 100

}
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DeepAR in AWS Sagemaker

Demo

• Try it yourself!

• Notebook at: https://github.com/awslabs/amazon-sagemaker-

examples/blob/master/introduction to amazon algorithms/deepar electricity/DeepAR-

Electricity.ipynb

• Documentation: https://docs.aws.amazon.com/sagemaker/latest/dg/deepar.html
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Conclusions

• Not one but many different forecasting problems

• Deep Learning methodology applied to forecasting yields flexible, accurate, and scalable
forecasting systems

• Providing sufficient data! (what is sufficient data?)

• Models can learn complex temporal patterns across time series

• “Model-free” black-box approaches trained end-to-end can replace complex model-based

forecasting systems

• Handling scaling is key in in reaching good accuracy (more generally keeping activations

normalized)
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Thank you!

PS: we are hiring :-)

Ping me if you are interested!


