target

Deep Learning for Fmrecastir[u\g at Amazon:
Problems and Methqds /

David Salinas
Amazon Research, Berlin / /\

CAMF London, October 2018

\ /\ Ap,[[\\ Y [\ AA

Jan | Oct Jan Apr Jul 1
2014 2015

e Examples of forecasting problems
e A coarse classification: not one canonical forecasting problem!

e One deep-learning approach for operational forecasting DeepAR [FSG17]

General Setup

L

xt

predictions
. sample paths

\J

e Predict the future behavior of a time series given its past

vy Ztg—3, Ztg—2, Ztg—1 —> P(Ztm Zty+1y e o - ZT)

General Setup

L

xt

predictions
. sample paths

\J

e Predict the future behavior of a time series given its past

vy Ztg—3, Ztg—2, Ztg—1 —> P(Ztm Zty+1y e o - ZT)

e Make optimal decisions

best action = argmin Ep[cost(a, zy,, z¢y+1, - - - 27)]
a

Forecasting Problem |: Retail Demand

Weekly shipped units and forecast

variable
— actal

forecast

2016-01 2016-07 2017-01

Date

e Problem: predict overall Amazon retail demand years into the future.

e Decision Problems: topology planning, market entry/segment analyses

Forecasting Problem Il: AWS Compute Capacity

e Problem: predict AWS compute capacity demand

e Decision Problem: how many servers to order when and where

Forecasting Problem IV: Retail product forecasting

PRl | L

e Problem: predict the demand for a each product available at Amazon

e Decision Problems: how many units to order when, when to mark products down

Taxonomy of Forecasting Problems: Dimensions

e number of time series/ratio of scientists per time series

e training of scientists: econometrics, statistics, machine learning, computer science
e forecast horizons: years to days

e time granularities: years, months, weeks, days

e aggregation granularity (for hierarchically organized time series)

e latency of forecast production/forecast computation frequency

e consumer of forecast/degree of automation/human interaction with forecast

e characteristics of time series

e forecasting methods: white vs black box (impose structure, parameter sharing, transparency)

Taxonomy of Forecasting Problems: Forecasting Methods

Prior (domain)
knowledge

Learning from
data

Weekly shipped units and forecast

variable
— actual

forecast

v‘vwf

2016-01 2016-07 2017-01
Date

Taxonomy of Forecasting Problems: Strategic Forecasting

Example: Overall demand for retail products
on Amazon

lots of econometricians for few time series

forecast horizon: years, time granularity:
weekly at most

runs irregularly or a few times per month
high degree of interaction with forecast

models which estimate uncertainty correctly,
allow to enforce structure, allow for careful
modeling of effects

high counts, relatively smooth, trend breaks
possible, long history (in most cases)

Taxonomy of Forecasting Problems: Tactical Forecasting

e Example: Ordering of compute racks for
AWS

e 100s-1000s of time series per scientist

e forecast horizon: months, granularity:

webservices

weekly at most

e runs irregularly or at most every week

Costs (5)

e limitted degree of interaction with forecast,

20

but some constraints on stability of forecast

50

over time and automated output checking

00

e models estimate uncertainty correctly, some

u|||.|||‘ ‘ ||I|||I|| .III|. il .II||||I||||:’"‘" Ml transfer of information across time series

020117 Q1117 022117 CUDWIT OIIIT QX2 O42/1T OAN2NT O4722/17 0621706/ 2NT-DB22/1T™

MMCosts Forecast — 80% Confidence —— 95% Confidence i Time Range Break necessary

e high counts, relatively smooth, trend breaks
possible, short history & life cycles possible,
burstiness

10

Taxonomy of Forecasting Problems: Operational Forecasting

e Example: Demand forecast for retail

products

e millions of time series per scientists
(machine learning & software development
engineers)

sty e forecast horizon: days, weeks, at most
months

e runs at least daily/on-demand
e hands-off approach

e models can be more black box as long as

/MJ\\, they are robust

= e low counts, bursty, short history and life
cycles, intermittent

11

he Classical Approac

Image (c) User:Colin / Wikimedia Commons / CC BY-SA 3.0

12

The Classical Approach

Image (c) User:Colin / Wikimedia Commons / CC BY-SA 3.0

12

The Classical Approach

| -

Image (c) User:Colin / Wikimedia Commons / CC BY-SA 3.0

12

The Classical Approach

12

The Classical Approach(es): Box-Jenkins, State-space Models, ...

PROS CONS

Well understood e Model-based: all effects need to be explicitly

e Decomposition — decoupling modeled

e Rarely support additional time-features

White box: explicitly model-based

e Embarrassingly parallel e Gaussian noise often assumed

e Cannot learn patterns across time series

13

Local vs. Global Models

14

Training with sliding windows

Forecast time

—— demand

600-

400-

5 M
0

e Trained by maximizing likelihood on past windows

15

Training with sliding windows

Forecast time

—— demand

400
200 /\\
0 Acs A\

e Trained by maximizing likelihood on past windows

15

Training with sliding windows

Forecast time

—— deman

600-
400-
5 M
0

e Trained by maximizing likelihood on past windows

15

Training with sliding windows

Forecast time

—— demand

aaili
600-
400-
5 M
0

e Trained by maximizing likelihood on past windows

15

Training with sliding windows

Forecast time

—— demand

E00 N TN

e Trained by maximizing likelihood on past windows

15

Forecasting with auto-regressive neural networks

Autoregressive Recurrent Networks

Zr—1 Zt Zi1
h = Yw (ht—h Zt—1, Xt) I I T
T
z: ~ P(zt|wyoih
¢~ Plzfweh) [PGeilhes)| [PGlh) | [Plelhe) |

e The recurrent network v, (+) is typically a]] 1

stack of LSTM cells parametrized by w Ri=n >‘ i ‘ >‘ hets
Zr—2, Xt—1 Zt—1, Xt Zty Xt+1

16

Forecasting with auto-regressive neural networks

Autoregressive Recurrent Networks

Zr—1 Zt Zi1
h = Yw (ht—h Zt—1, Xt) I I T
T
z: ~ P(zt|wyoih
¢~ Plzfweh) [PGeilhes)| [PGlh) | [Plelhe) |
e The recurrent network v, (+) is typically a]] 1
stack of LSTM cells parametrized by w Ri=n ‘ >‘ i ‘ >‘ hets ‘
e Any likelihood can be used, for instance, for a]] 1
Gaussian likelihood:
Zr—2, Xt—1 Zt—1, Xt Zty Xt+1

P(z¢|hy) = N(wlht, softplus(w, h;))

16

Forecasting with auto-regressive neural networks

Autoregressive Recurrent Networks

Zr—1 Zt Zi1
h = Yw (ht—h Zt—1, Xt) I I T
T
z: ~ P(zt|wyoih
¢~ Plzfweh) [PGeilhes)| [PGlh) | [Plelhe) |
e The recurrent network v, (+) is typically a]] 1
stack of LSTM cells parametrized by w ‘ Ri=n ‘ >‘ i ‘ >‘ hets ‘
e Any likelihood can be used, for instance, for a]] 1
Gaussian likelihood:
Zr—2, Xt—1 Zt—1, Xt Zty Xt+1

P(z¢|hy) = N(wlht, softplus(w, h;))

e Parameters wproj and w are shared for all
time-series and learned by backprogation

16

Forecast time

—— demand |

I P G

e target z; is unobserved after the forecast time

17

samples Z1 Z Zi1
Z~ P(-ly) I T T
likelihood | P(zi-1lhe—1) | | P(zlh) | | P(zialhera) |
network ‘ he_q ‘*4 h; ‘*4 hesy ‘
target, features Zr—2, Xt—1 Zt—1, Xt Zty Xt+1

e z target, x; features, hy LSTM state

o P(zy:) likelihood: Gaussian, negative binomial

18

samples Zi 1 Z; Zi1
> . \ \
Z~ P(y) N .
\ \
N\ N\
AN AN
S \
likelihood ‘ P(zt—1lhe—1) | "\ P(zt|ht) «| P(zes1lhein) ‘
\ \
\ \
\ \
N N
N N
network ‘ he—1 ‘*4 h: ‘*4 hesy ‘
target, features Zr—2, Xt—1 Zt—1, Xt Zty Xt+1

e 7z target, x; features, hy LSTM state
o P(zy:) likelihood: Gaussian, negative binomial

e Prediction: use sample Z ~ P(-|y) instead of true target for unknown (future) values

18

Predicting with sample paths

Forecast time

—— demand |

’5 A

30 . \ (

e Now we have a generative model!

19

Predicting with sample paths

Forecast time
15
— demand
10
5
| NGO i S
0 V" 2 A
30
20
10
0
600-
| .
400-
N ,N\N/LJ‘VVV«AMﬂ\ .N\N/L/" :
H
g 2, B
o

e Now we have a generative model!

19

Predicting with sample paths

Forecas

—— demand

V.Y

200 H
,N\N/LJ‘VVV«AMﬂ\ .N\N/L/‘f Ao s
0 A A

e Now we have a generative model!

e The joint distribution is represented with sample paths

19

Predicting with sample paths

Forecast time

—— demand

5 @

V.Y

I PO G |

e Now we have a generative model!

e The joint distribution is represented with sample paths

e One can calculate confidence intervals, marginal distributions, ...

19

Input scaling - what could go wrong

@
13
2
b
]
2
3
]
2
=)
o

e Average number of sales follows a
power-law across items

log ||z|| = log number of sales

20

Input scaling - what could go wrong

e Average number of sales follows a
power-law across items

e Learning patterns across time series is
difficult as amplitudes for z; are
drastically different

log number of items

log ||z|| = log number of sales

Input scaling - what could go wrong

e Average number of sales follows a
power-law across items

e Learning patterns across time series is
difficult as amplitudes for z; are
drastically different

log number of items

e Scale-free = no good bucket separation!

log ||z|| = log number of sales

Input scaling - what could go wrong

e Average number of sales follows a
power-law across items

e Learning patterns across time series is
difficult as amplitudes for z; are
drastically different

log number of items

e Scale-free = no good bucket separation!

e Large amplitude items have larger signal
to noise ratio but are sample very
log ||z|| = log number of sales infreq uent|y

Handling different amplitudes

Reducing the scale amplitude variation

ve = El|zf] + 1
hy = 9w (ht—hzt—l/l/t, Xt)
P(z|he) = N(w[ht *Up_1, softplus(wUTht) * Vp_1)

e Inputs and outputs of the RNN are reparametrized as mean variations

21

Handling different amplitudes

Reducing the scale amplitude variation

ve = El|z|] +1
hy = Yw (ht—th—l/VnXt)
P(z|he) = N(w[ht *Up_1, softplus(wUTht) * Vp_1)

e Inputs and outputs of the RNN are reparametrized as mean variations

Weighed sampling to sample equally across different amplitudes

e Denote z; the value of item / at time t

e Sample item i with probability:

Z|th|/z |Zje |

t,jAi

21

Some Empirical Results

e 5 Datasets including one with 500K weekly time series of sales of US products

22

Some Empirical Results

e 5 Datasets including one with 500K weekly time series of sales of US products

e Baseline: Innovation State Space Model [SSF16], ETS [HKOSO08], Croston [Cro72], Matfact
[YRD16], Recurrent neural network without scaling/sampling

22

Some Empirical Results

e 5 Datasets including one with 500K weekly time series of sales of US products

e Baseline: Innovation State Space Model [SSF16], ETS [HKOSO08], Croston [Cro72], Matfact
[YRD16], Recurrent neural network without scaling/sampling

e On average 15% improvement for P50QL/P90QL

22

Some Empirical Results

e 5 Datasets including one with 500K weekly time series of sales of US products

Baseline: Innovation State Space Model [SSF16], ETS [HKOS08], Croston [Cro72], Matfact
[YRD16], Recurrent neural network without scaling/sampling

e On average 15% improvement for P50QL/P90QL

< 5 features; little hyper-parameter tuning

22

Some Empirical Results

e 5 Datasets including one with 500K weekly time series of sales of US products

Baseline: Innovation State Space Model [SSF16], ETS [HKOS08], Croston [Cro72], Matfact
[YRD16], Recurrent neural network without scaling/sampling

e On average 15% improvement for P50QL/P90QL

< 5 features; little hyper-parameter tuning

Training/predicting/evaluating 500K time-series takes less than 4 hours on a single AWS p2.xlarge
instance (1 GPU & 4 CPU)

22

Quantitative results

Datasets:

e parts, ec-sub, ec contains 1K, 40K and 530K demand time-series (integer values)

e traffic, and elec contains 1K and 400 hourly time-series of road and households usage (real values)
Baselines

e Snyder: negative-binomial autoregressive method [SOB12]

e Croston: intermittent demand forecasting method (R package) [Cro72]

e ETS: exponential time smoothing with automatic model selection (R package) [HKOS08]
e ISSM model with covariates features shown earlier [SSF16]

e Rnn-gaussian: autoregressive RNN model with Gaussian likelihood

e Rnn-negative-binomial: autoregressive RNN model with negative binomial likelihood

e Matfact: matrix factorization [YRD16]

e Ours: appropriate likelihood + scaling + weighted sampling [FSG17] (DeepAR)

23

Quantitative results

dataset Snyder Croston ETS ISSM Rnn-gaussian Rnn-negative-binomial Ours

parts 0.0 -97.0 -23.0 -8.0 -19.0 1.0 6.0
ec-sub 0.0 -3.4 7.8 13.8 -4.3 -0.9 336
ec 0.0 -27.6 -5.7 4.8 3.8 114 19.0

Table 1: Percent improvement versus [Snyder 2012] (integer time-series)

elec traffic
ND RMSE ND RMSE

Matfact
ours

0.0 0.0 0.0 0.0
128.6 15.0 17.6 2.4

Table 2: Percent improvement versus Matfact [YRD16] (real-value time-series)

24

Amazon SageMaker

Developer Guide

Documentation - Tnis Guide
[Search

O What Is Amazon SageMaker?
How It Works

Getting Started

B Using Built-in Algorithms
Common Information

Linear Learner

Factorization Machines

XGBoost Algorithm

Image Classification Algorithm
Sequence to Sequence (seq2seq)
K-Means Algorithm

Principal Compenent Analysis
(PCA)

Latent Dirichlet Allocation (LDA)
Neural Topic Model (NTM)

[DeepAR Forecasting
O Hyperparameters

O Inference Formats
BlazingText

Automatically Scaling Amazon
sageMaker Models

Bw

DeepAR in AWS Sagemaker

AWS Documentation » Amazon SageMaker » Developer Guide » Using Built-in Algorithms with Amazon SageMaker » DeepAR Forecasting

DeepAR Forecasting

Amazon SageMaker DeepAR is a supervised learning algorithm for forecasting scalar time series using recurrent neural networks (RNN). Classical
forecasting methods, such as Autoregressive Integrated Moving Average (ARIMA) or Exponential Smoothing (ETS), fit one model to each individual
time series, and then use that model to extrapolate the time series into the future. In many applications, however, you might have many similar
time series across a set of cross-sectional units (for example, demand for different products, load of servers, requests for web pages, and so on).
In this case, it can be beneficial to train a single model jointly over all of these time series. DeepAR takes this approach, training a model for
predicting a time series over a large set of (related) time series.

For the training phase, the dataset consists of one or preferably more than one time series, and an optional categorical grouping variable of
which the time series is a member. The model learns entirely from these values. The DeepAR algorithm currently accepts no other external
features. The model is then trained by randomly selecting time points from the provided time series and using them as training examples.

For inference, the trained model takes as input an individual time series which might or might not have been used during training, and generates
a forecast for the time series. This forecast takes into account what typically happened for similar time series in the training set.

Input/Output Interface

DeepAR supports two data channels. The train channel is used for training a model and is required. The test channel is optional. If the test
channel is present, the algorithm uses it to calculate accuracy metrics for the model after training. You can provide datasets as JSON or Parquet
files.

By default, the model determines the input format from the file extension (either . json or .parquet. If you provide input files with different
extensions, you can specify the file type by setting the contentType parameter of the Channel data type.

If you use a JSON file, it must be in the JSON Lines format, where each record contains the following fields:

s "start" whosevalue is a string of the format YYYY-MM-DD HH:MM:SS.

« "target", whose value is an array of floats (or integers) that represent the time series variable’s values.

* "cat" (optional), whose value is an integer that encodes the categorical grouping that record's time series is a member of. The categorical
feature allows the model to learn typical behavior for that group. This can increase accuracy.

26

The following is an example of JSON data:

DeepAR in AWS Sagemaker

e data: json or parquet

{"start": "2012-01-03", "target": [1.9, 4.9, 6.3, 7.3, 7.8, ...], "cat": 2}
{"start": "2012-04-05", "target": [2.3, 4.9, 6.2, 1.4, 4.3, ...], "cat": O}
{"start": "2012-04-05", "target": [5.0, 22.5, 23.1, 15.4, 34.0, ...], "cat": 1}

e hyper parameters

{

"time_freq": "W",

"prediction_length": 52,
"context_length": 52,
"likelihood": "gaussian",
"epochs": 100

27

DeepAR in AWS Sagemaker

Demo

— o
) -4
0% contence v
»
= \ e ’
A AL N O SNV AN W v
0l s \ = v
® £l = 5 5 i a
o
=
©{
0% contsence nerva
»
» Lo\ ,/,-"\\ st VAR LT _“/«V" e y
Y - . $ h o\ 2
® 7 = 5 s T @
o

28

DeepAR in AWS Sagemaker

Demo

E \ g e AN N
» \‘/,/\\,J\\\, LN ’_\//\ "M\-\,// a N _'/, N “‘J’/\WW

% El £ E) E] 3 &

sep
204

— et
@1 — pso
80% confidence interval

» AN /;J\\ T S T S AN L MV «
o= y . 4 e . ../ v b o

3 E] ® E]) T)

sep
it

e Try it yourself!

e Notebook at: https://github.com/awslabs/amazon-sagemaker-
examples/blob/master/introduction_to_amazon _algorithms/deepar _electricity /DeepAR-
Electricity.ipynb

e Documentation: https://docs.aws.amazon.com/sagemaker/latest/dg/deepar.html
28

Conclusions

e Not one but many different forecasting problems

e Deep Learning methodology applied to forecasting yields flexible, accurate, and scalable
forecasting systems

e Providing sufficient data! (what is sufficient data?)
e Models can learn complex temporal patterns across time series

e “Model-free” black-box approaches trained end-to-end can replace complex model-based
forecasting systems

e Handling scaling is key in in reaching good accuracy (more generally keeping activations
normalized)

29

References i

J.D. Croston.
Forecasting and stock control for intermittent demands.
Operational Research Quarterly, 23:289-304, 1972.

Valentin Flunkert™, David Salinas®, and Jan Gasthaus.
Deepar: Probabilistic forecasting with autoregressive recurrent networks.
CoRR, abs/1704.04110, 2017.

R. Hyndman, A. B. Koehler, J. K. Ord, and R .D. Snyder.
Forecasting with Exponential Smoothing: The State Space Approach.
Springer Series in Statistics. Springer, 2008.

Ralph D Snyder, J Keith Ord, and Adrian Beaumont.
Forecasting the intermittent demand for slow-moving inventories: A modelling approach.
International Journal of Forecasting, 28(2):485-496, 2012.

30

References ii

Matthias W Seeger, David Salinas, and Valentin Flunkert.
Bayesian intermittent demand forecasting for large inventories.
In Advances in Neural Information Processing Systems, pages 4646—4654, 2016.

Hsiang-Fu Yu, Nikhil Rao, and Inderjit S Dhillon.

Temporal regularized matrix factorization for high-dimensional time series prediction.

In D. D. Lee, M. Sugiyama, U. V. Luxburg, |. Guyon, and R. Garnett, editors, Advances in Neural
Information Processing Systems 29, pages 847—-855. Curran Associates, Inc., 2016.

31

Thank you!

PS: we are hiring :-)
Ping me if you are interested!

