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Parametric distributions often recommended for inventory models

 Normal, Gamma

 Bernoulli (and Compound Bernoulli)

 Poisson (and Compound Poisson, including Negative Binomial)

Empirical evidence

 Good support for Bernoulli / Poisson models of demand incidence
for intermittent demand items.

 Quite good support for Negative Binomial Distribution

 BUT: many demands not well modelled by any parametric
distribution.

Introduction: Parametric Approaches 



Introduction: Non-Parametric Approaches

Example (History = 10 periods)

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Suppose LT = 3  and  Block-Size (m) = 3  [Natural application in inventory context]

1. Non-Overlapping Blocks

Block 1 = {P2, P3, P4},  Block 2 = {P5, P6, P7},  Block 3 = {P8, P9, P10}

2. Overlapping Blocks

Block 1 = {P1, P2, P3},  Block 2 = {P2, P3, P4} , ... , Block 8 = {P8, P9, P10}

3. Resampling (Bootstrapping)

Randomly drawn from all combinations (with replacement)
eg:  Block 1 = {P7, P2, P9},  Block 2 = {P2, P3, P3}, ....



Introduction: Bootstrapping Software

 Smart Software incorporates Markov Chain switching (between
‘demand ‘ and ‘non-demand’ states), and “jittering”.

 These extensions not addressed in this research so far.



Motivation of this Research  

Resampling approaches for intermittent demand have some 
empirical evidence in their support (Willemain, 2004).

Theoretical properties not investigated in an inventory context in 
which cumulative distributions need to be estimated.  

This study aims to investigate the bias and variance: :

• With replacement

• Without replacement 

and to suggest ways of de-biasing With Replacement. 



Properties of Non-Overlapping Blocks

Estimation Problem

 Suppose History Length = n and we are given an (integer-valued) quantity y
and the population cumulative distribution function is         for total demand 
over m periods 

 We produce an estimate, , based on k=Int(n/m) Non-Overlapping Blocks

 Statistical properties are well established for stationary i.i.d. demand:

Unbiased Estimate

Variance of the Estimate
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 Variance depends only on number of blocks (k) and CSL (Pm(y))



Properties of Overlapping Blocks 
(Boylan and Babai, IJPE, 2016)

Number of Blocks

Unbiased Estimate .

•

Variance of the Estimate

 This increases from to
(eg from 12 to 34 for History Length=n=36 and Block Size=m=3 ).
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 s : number of overlapping observations between two blocks

 p : probability mass function (pmf) of the demand in one period

 Performance also depends on block size (m) and the pmf (p)
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Variance Reduction using OB instead of NOB

 Poisson distributed demand with l  [0,10]; n  [3,20]and m = 2

 In almost all cases, the OB approach leads to a variance reduction.

 For very low values of l (i.e. slow moving demand), the benefit from

using OB instead of NOB is very low when n is low.

 There are very few values where NOB outperforms OB; these cases

occur when both l and n are very low.



Resampling with Replacement: Bias Properties

Biased Estimate

Special Case (m=2)

Special Case (m=3)

 Different factor ( ) than in the Overlapping Blocks approach.

 New factor takes into account repeated selection of same time index.
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Resampling with Replacement: Variance Properties

Special Case (m=2)

 First term – selection of same indices in same sequence

 Second term – some indices different

 Third term – same indices in different sequence
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 Special case for m=3 has been derived – very messy!



Resampling with Replacement: 
compared with OB for y=1 (Poisson demand)

 Variance always reduced by using Resampling with Replacement

 Strong reduction across most parameters

. .

n (History length)

Lambda 

(mean)

Reduction 

Factor



Resampling with Replacement: 
compared with OB for y=2 (Poisson demand)

 Variance always reduced by using Resampling with Replacement

 Stronger reductions for y=2 compared with y=1

 Stronger effect of the length of demand histories

Lambda 

(mean)

Reduction 

Factor

n (History length)



Comparison of Resampling 
With and Without Replacement (y=1)

 With Replacement always gives lower variance for y=1

 This can be reversed for higher values of y and high intermittence

 For shorter histories, difference may become significant for less
intermittent demand .

Poisson Demand 



Bias Issue 

 With Replacement generally gives lower variance of CDF estimates
than Without Replacement, except for very high Service Levels.

BUT

 With Replacement gives biased CDF estimates.

SO

 Can we quantify the bias?

 Can we identify when it occurs?

 Can we remove it?



Maximum and Minimum Bias (m=2)

 Allowing for any demand distribution, we can treat p(0), p(1), p(2), …
as decision variables, Then, it is non-linear optimisation problem to
determine the maximum and minimum bias.

 Simple result for m=2, and any value of y, namely:

 Max Bias = 1/4n

 Min Bias = -1/4n

Bias 

Percentage

n (History length)



Conditions for Greatest Positive Bias (m=2)

Can be derived from the KKT conditions for optimality.

For i=Int(y/2),…y:

with any probabilities for i=y+1,… (satisfying a pmf). 

Example 

For y=1, maximum bias is for p(0)= 1/2, p(1) =0, and any other 
remaining probabilities summing to 1/2.  
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Sensitivity of Bias to Distribution (m=2, y=1; n=10)

Bias

p(0)

p(1)

 Maximum bias at p(0)=0.5 and p(1)=0, as anticipated.
This situation may arise with ‘clumped demand’.

 Can still have significant bias when p(1)>0                                                       
[p(1)=0 not so common in practice]

0.0 0.5

1.0
0.0

1.0

-2%

+2%



Again, can be derived from the KKT conditions for optimality.

For i=0,…,Int(y/2):

For i=Int(y/2)+1,…,y:

Example 

For y=1, minimum bias is for p(0)= 1/2, p(1) =1/2. 
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Conditions for Greatest Negative Bias (m=2)
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Maximum and Minimum Bias (m=3)

 Bias can be higher than for m=2.

 No longer symmetry in maximum and minimum bias

 Results no longer general for any value of y

 KKT conditions become intractable, except for simplest case (y=1)

Bias 

Percentage

n (History length)



Sensitivity of Bias to Distribution (m=3, y=1; n=10)

 Maximum Bias occurs at
p(0)=0.79 and p(1)=0.

 Minimum Bias occurs at
p(0)=0.79 and p(1)=0.21.

 Graphs show bias highly
sensitive to specification
of p(0) and p(1).
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Sensitivity of Bias to Distribution (m=3, y=2; n=10)

p(0)=0.2 p(0)=0.5 p(0)=0.8

p(1) p(1) p(1)

p(2) p(2) p(2)

 Admissible regions for p(1) and p(2) shrink as the degree of
intermittence, p(0), increases.

 Lower maximum biases for p(0)=0.2 (mildly intermittent) but
significant biases for p(0)=0.5 and p(0)=0.8.
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Maximum and Minimum Bias (m=4)

 Bias even higher than for m=3.

 No longer symmetry in maximum and minimum bias

 KKT conditions remain intractable.

 Have shown, mathematically, asymptotic bias is zero, for any m.

Bias 

Percentage

n (History length)

-8%

-6%

-4%

-2%

0%

2%

4%

6%

8%

10%

12%

14%

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

B
ia

s

Bias for m = 4 (y=1,2)

max

min



Bias Correction

Special Case (m=2)

[ is estimated using the empirical CDF (unbiased for m=1) ]

This removes the bias from the original CDF estimate.

Higher Values of m

Formulae become (much) more complex

Alternative is to construct CDF estimate from all combinations of values
for each of the steps-ahead which satisfy the CDF constraint, continuing
to assume distribution is iid.
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Conclusions

• Bias and variance properties of Resampling (with and without 
Replacement) have been derived for CDF estimates. 

• Resampling with Replacement is generally biased in its 
estimate of the CDF.

• Bias stronger for shorter demand histories (length n).

• For m=2, Max Bias = 1/4n, Min Bias = -1/4n. 

• For m =3 and m=4, bias can be even more significant. 

• Bias correction formula available for m=2

• For higher values of m, can construct the CDF from the 
probabilities of all viable combinations. 



Thank you for your attention!

Q&A?

John Boylan

Lancaster University
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