Effect Demand Uncertainty					
Lleine Demond Llee	ملح محمد بالمالية	+	for		
Using Demand Uncertainty as a determinant for					
the Bullwhip Effect					
	ISIR 2018				

Patrick Saoud & Nikolaos Kourentzes & John E. Boylan

Lancaster University - Center for Marketing Analytics and Forecasting

August 25, 2018

< ロ > < 同 > < 回 > < 回 >

Simulation

Table of Contents

Bullwhip Effect

Demand Uncertainty

Simulation

Results

Bullwhip Effect

The Bullwhip effect is defined as the amplification of demand variance as one moves upstream in the supply chain.

Bullwhip Effect

The Bullwhip effect is defined as the amplification of demand variance as one moves upstream in the supply chain.

Retrieved from Trapero et al. (2012)

< □ > < 同 >

Consequences of the Bullwhip Effect

The Bullwhip effect results in:

- Mis-alignment of Production Schedules.
- Increased Inventory.
- Increase in Stock-outs and customer dissatisfaction.
- Improper use of capacity.
- Increase in Transportation Costs.
- To name a few...

∃→ < ∃→</p>

Origins of the Bullwhip Effect (Lee et al., 1997)

Some university

Origins of the Bullwhip Effect (Lee et al., 1997)

Simulation

Bullwhip Measurement

▶ ■ ��へ(Some university

・ロト ・回ト ・ヨト ・ヨト

Bullwhip Measurement

In order to measure the Bullwhip Effect, the following ratio of variabilities is used (Chen et al., 2000):

$$BWR = \frac{Var(Orders)}{Var(Demand)} \tag{1}$$

Bullwhip Measurement

In order to measure the Bullwhip Effect, the following ratio of variabilities is used (Chen et al., 2000):

$$BWR = \frac{Var(Orders)}{Var(Demand)} \tag{1}$$

Its interpretation is:

- $\mathsf{BWR} = 1 \implies \mathsf{No} \mathsf{Bullwhip}.$
- BWR > 1 \implies Bullwhip exists.
- $\mathsf{BWR} < 1 \implies \mathsf{Anti-Bullwhip}$.

This falls in line with the definition of measuring the propagation of variability upstream.

・ロト ・回ト ・ヨト ・ヨト

Issues with the current measurement

▶ E ���(

Issues with the current measurement

- Empirical Studies report the Bullwhip as an over-estimated issue due to this measurement (see for e.g Cachon et al., 2007)
- Does not reflect cost impacts.
- Concealed by both Temporal and Product Aggregation (Chen and Lee, 2012).
- Variance is only meaningful on stationary time series. It fails on series with trend, seasonality etc...

Trending Demand

Nonstationary Demand: I(1)

Seasonal Demand

Seasonal Demand Example: Air Passengers Data

Promotional Demand

Retrieved from Trapero et al. (2014)

Image: A math a math

Other metrics

Other metrics have been proposed in the literature, such as:

- Inventory Variance Ratio (Disney and Towill, 2003).
- Time Varying Bullwhip Effect Metric (Trapero and Pedregal, 2016).
- An excellent summary can be found in Cannella et al. (2013).

Other metrics

Other metrics have been proposed in the literature, such as:

- Inventory Variance Ratio (Disney and Towill, 2003).
- Time Varying Bullwhip Effect Metric (Trapero and Pedregal, 2016).
- An excellent summary can be found in Cannella et al. (2013).
- This is where our research comes in!

Definition

Forecast uncertainty refers to the unpredictability that arises in forecasting future demand.

Some university

イロト イポト イヨト イヨト

Definition

Forecast uncertainty refers to the unpredictability that arises in forecasting future demand.

• It is captured by forecasting error metrics.

Uncertainty

Definition

Forecast uncertainty refers to the unpredictability that arises in forecasting future demand.

- It is captured by forecasting error metrics.
- Forecasting is one of the four origins of the Bullwhip Effect.

Uncertainty

Definition

Forecast uncertainty refers to the unpredictability that arises in forecasting future demand.

- It is captured by forecasting error metrics.
- Forecasting is one of the four origins of the Bullwhip Effect.
- Uncertainty is not Variability!

Simulation

Uncertainty vs Variability

● E つへ(Some university

・ロト ・回ト ・ヨト ・ヨト

• Demand Uncertainty: The random variation in the forecasting model, assuming the **TRUE DEMAND** is known!

Some university

(日) (同) (三) (三)

- Demand Uncertainty: The random variation in the forecasting model, assuming the **TRUE DEMAND** is known!
- Forecasting Uncertainty: How much is not captured by the forecasting method. It includes demand uncertainty and the effect of model mis-specification.

- Demand Uncertainty: The random variation in the forecasting model, assuming the **TRUE DEMAND** is known!
- Forecasting Uncertainty: How much is not captured by the forecasting method. It includes demand uncertainty and the effect of model mis-specification.
- Demand variability: the fluctuations of demand around its mean.

- Demand Uncertainty: The random variation in the forecasting model, assuming the **TRUE DEMAND** is known!
- Forecasting Uncertainty: How much is not captured by the forecasting method. It includes demand uncertainty and the effect of model mis-specification.
- Demand variability: the fluctuations of demand around its mean.
- Demand variability is forecasting uncertainty, if we use the average as a forecasting model.
- These terms are often confused in the literature.
- Forecast Uncertainty is a cost driver, not demand variability.

< ロ > < 回 > < 回 > < 回 > < 回 >

Uncertainty vs Variability Example

Some university

Simulation

Uncertainty vs Variability Example

Sine Demand

Some university

Error Metrics

≣। ► ≣ •⁄) ९ (Some university

・ロト ・回ト ・ヨト ・ヨト

- The error metric we will look at is the Root Mean Squared Error (RMSE).
- It is the **conditional** standard deviation of the forecast errors, provided they are homoscedastic.

- The error metric we will look at is the Root Mean Squared Error (RMSE).
- It is the **conditional** standard deviation of the forecast errors, provided they are homoscedastic.
- In the literature, the term variance (standard deviation) is used to denote the unconditional variance (standard deviation), which is asymptotic.

• • • • •

∃→ < ∃→</p>

- The error metric we will look at is the Root Mean Squared Error (RMSE).
- It is the **conditional** standard deviation of the forecast errors, provided they are homoscedastic.
- In the literature, the term variance (standard deviation) is used to denote the unconditional variance (standard deviation), which is asymptotic.
- From the Bias-Variance Decomposition, the MSE (RMSE) encapsulates the variance (standard deviation): MSE = Bias² + Variance + <u>Irreducible Component</u> Demand Uncertainty

Forecast Uncertainty

• • • • • • • • • • • • • •

RMSE link to cost

▶ ■ ��へ Some university

・ロト ・回ト ・ヨト ・ヨト

Simulation

RMSE link to cost

Why RMSE?

▶ ヨ のQ

・ロン ・回 と ・ヨン ・ヨン

	Demand Uncertainty		
Why RMSE?			

 RMSE is fed into the calculation of Safety Stocks. For example, in an OUT policy, safety stocks are calculated as:

$$SS = \widehat{F}_{t+L} + \Psi_{\alpha}^{-1} \underbrace{\sqrt{\sigma_{t+L|t}^2}}_{\text{RMSE}}$$
(2)

	Demand Uncertainty		References
Why RMSE?			

• RMSE is fed into the calculation of Safety Stocks. For example, in an OUT policy, safety stocks are calculated as:

$$SS = \widehat{F}_{t+L} + \Psi_{\alpha}^{-1} \underbrace{\sqrt{\sigma_{t+L|t}^2}}_{\text{RMSE}}$$
(2)

• It is an actionable metric, i.e. actions can be taken in obtaining better forecasts, which is reflected in the metric.

	Demand Uncertainty		References
Why RMSF?			

• RMSE is fed into the calculation of Safety Stocks. For example, in an OUT policy, safety stocks are calculated as:

$$SS = \widehat{F}_{t+L} + \Psi_{\alpha}^{-1} \underbrace{\sqrt{\sigma_{t+L|t}^2}}_{\text{RMSE}}$$
(2)

- It is an actionable metric, i.e. actions can be taken in obtaining better forecasts, which is reflected in the metric.
- Captures the propagation of demand uncertainty.

 RMSE is fed into the calculation of Safety Stocks. For example, in an OUT policy, safety stocks are calculated as:

$$SS = \widehat{F}_{t+L} + \Psi_{\alpha}^{-1} \underbrace{\sqrt{\sigma_{t+L|t}^2}}_{\text{RMSE}}$$
(2)

- It is an actionable metric, i.e. actions can be taken in obtaining better forecasts, which is reflected in the metric.
- Captures the propagation of demand uncertainty.
- Accounts for the Lead Time over which decisions are made.

• RMSE is fed into the calculation of Safety Stocks. For example, in an OUT policy, safety stocks are calculated as:

$$SS = \widehat{F}_{t+L} + \Psi_{\alpha}^{-1} \underbrace{\sqrt{\sigma_{t+L|t}^2}}_{\text{RMSE}}$$
(2)

- It is an actionable metric, i.e. actions can be taken in obtaining better forecasts, which is reflected in the metric.
- Captures the propagation of demand uncertainty.
- Accounts for the Lead Time over which decisions are made.
- Handles Nonstationarity, seasonality and promotions.

• RMSE is fed into the calculation of Safety Stocks. For example, in an OUT policy, safety stocks are calculated as:

$$SS = \widehat{F}_{t+L} + \Psi_{\alpha}^{-1} \underbrace{\sqrt{\sigma_{t+L|t}^2}}_{\text{RMSE}}$$
(2)

- It is an actionable metric, i.e. actions can be taken in obtaining better forecasts, which is reflected in the metric.
- Captures the propagation of demand uncertainty.
- Accounts for the Lead Time over which decisions are made.
- Handles Nonstationarity, seasonality and promotions.
- Captures modelling uncertainty and mispecification. Improvements in the process will be reflected in the metric.

Proposed Measure

・ ■ のへ(Some university

・ロト ・回ト ・ヨト ・ヨト

Proposed Measure

RMSE ratio

We propose to measure the Bullwhip as the ratio of Root Mean Squared Error (RMSE) over Lead Time of Manufacturer to Retailer.

Some university

イロト イポト イヨト イヨト

Proposed Measure

RMSE ratio

We propose to measure the Bullwhip as the ratio of Root Mean Squared Error (RMSE) over Lead Time of Manufacturer to Retailer.

The current metric we propose is:

$$RMSE_{Ratio} = \frac{RMSE_M}{RMSE_R} \tag{3}$$

RMSE Equations

In order to get the ratios:

- 1. Calculate the point forecasts and the point errors for both.
- 2. Calculate the Aggregate Forecasts and Errors over Lead-Time for both.
- 3. Calculate the RMSE of the Aggregate Errors for both.
- 4. Take the ratio of RMSE of Manufacturer to Retailer.

RMSE Equations

$$RMSE_M = \sqrt{\frac{1}{(n_M - L_M + 1)}} \sum_{t=1}^{n_M - L_M + 1} \left(\sum_{i=1}^{L_M} d_t - \sum_{i=1}^{L_M} f_{t|t-L_M}\right)^2 \tag{4}$$

$$RMSE_{R} = \sqrt{\frac{1}{(n_{R} - L_{R} + 1)}} \sum_{t=1}^{n_{R} - L_{R} + 1} \left(\sum_{i=1}^{L_{R}} d_{t} - \sum_{i=1}^{L_{R}} f_{t|t-L_{R}}\right)^{2}$$
(5)

Some university

Simulation

Information Sharing

▶ ■ ��へ Some university

・ロン ・回と ・ヨン ・ヨン

Information Sharing

- Proposed remedy to the Bullwhip Effect (Lee et al., 1997).
- The manufacturer has access to the Point of Sales data, and bases his forecasts on demand rather than incoming orders.
- In the context of demand uncertainty, this implies a reduction in MSE and RMSE.
- Its benefits are contested: theoretically, the value of Information Sharing depends on the process and parameters((Babai et al., 2013, 2016; Teunter et al., 2018; Ali et al., 2012), while empirically it has appeared to benefit the manufacturer (Trapero et al., 2012).

Information Sharing

- From a forecasting perspective, it can result in a lower MSE.
- $MSE_{IS} < MSE_{NIS} \implies RMSER_{IS} < RMSER_{NIS}$.
- Under this logic, we expect that Information Sharing should reduce manufacturer costs and thus be beneficial.
- In this presentation, it is used as a forecasting scenario in the simulation.
- We will later (but not today) compare the Total Costs, Bullwhip Ratio and RMSE Ratios of sharing versus not sharing information.

Demand Uncertainty	Simulation	

Design

Some university

	Demand Uncertainty	Simulation	
Design			

- Dyadic Supply Chain (1 Manufacturer and 1 Retailer).
- 3 Data Generating Processes from the ARIMA family:

	Demand Uncertainty	Simulation	
Design			

- Dyadic Supply Chain (1 Manufacturer and 1 Retailer).
- 3 Data Generating Processes from the ARIMA family:
 - 1. ARIMA(1,0,0)
 - 2. ARIMA(0,1,1)
 - 3. ARIMA(0,1,1)(0,1,1)
- Forecasting Methodology:

	Demand Uncertainty	Simulation	
Design			

- Dyadic Supply Chain (1 Manufacturer and 1 Retailer).
- 3 Data Generating Processes from the ARIMA family:
 - 1. ARIMA(1,0,0)
 - 2. ARIMA(0,1,1)
 - 3. ARIMA(0,1,1)(0,1,1)
- Forecasting Methodology: Rolling Origin forecasts with automatic ARIMA fitting based on minimisation of the AIC.
- Inventory Policy:

	Demand Uncertainty	Simulation	
Design			

- Dyadic Supply Chain (1 Manufacturer and 1 Retailer).
- 3 Data Generating Processes from the ARIMA family:
 - 1. ARIMA(1,0,0)
 - 2. ARIMA(0,1,1)
 - 3. ARIMA(0,1,1)(0,1,1)
- Forecasting Methodology: Rolling Origin forecasts with automatic ARIMA fitting based on minimisation of the AIC.
- Inventory Policy: Periodic (R,S) inventory policy with R = 1 and unmet sales are backordered.
- Point of Sales vs No Information Sharing.

- Simulation Design
 - For both, 3 deterministic values $\{1,3,5\}$ of Lead Time + Review Period.
 - 3 α -service levels for both: $\{90\%, 95\%, 99\%\}$
 - 3 Order batching scenarios: No order batching, multiples of 10 and of 20.
 - 3 Values for the model error noise: $\{15, 25, 50\}$.
 - 500 Replications.
 - The Bullwhip Ratio and RMSE Ratio are calculated at the Manufacturer's level.
 - 400 Observations (data split explained in the next slide)

<ロ> <四> <四> <日> <日> <日</p>

Demand Uncertainty	Simulation	

Costs

Some university

	Demand Uncertainty	Simulation	
Costs			
COSIS			

- 1. Two costs are considered: Backordering and Holding.
- 2. Thez are calculated at the Manufacturer's level.
- 3. Total Cost = b \times Backorders + h \times Excess Inventory .
- 4. Despite the system working on an α Service Level, costs are approximated by a β Service Level.
- 5. The relationship between the two costs is:

$$b = \left(\frac{\beta}{1-\beta}\right)h\tag{6}$$

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

프 > > ㅋ ㅋ >

・ロン ・回と ・ヨン ・ヨン

Assessing the two measures

Results

(日) (同) (三) (三)

Assessing the two measures

- The objective of this paper is to address the cost impact.
- We will assess which of the two papers is more related to manufacturer costs.
- Fit 3 Linear Regression Models:
 - 1. Total Cost = f(Bullwhip Ratio)
 - 2. Total Cost = f(RMSE Ratio)
 - 3. Total Cost = f(Bullwhip Ratio, RMSE Ratio)
- The assessment will be based on the Akaike Information Criteria (AIC).

- To separate the effect of Information Sharing from Non Information Sharing, we add a dummy, *d*, to each variable which codes whether it happens or not.
- RMSER = Root Mean Squared Error Ratio.
- BWR: Bullwhip Ratio.
- TC: Total Costs.

AIC Results

	RMSER	BWR	RMSER,BWR
ARIMA(1,0,0)	1st	3rd	2nd
ARIMA(0,1,1)	1st	3rd	2nd
ARIMA(0,1,1)(0,1,1)	1st	3rd	2nd

▶ E のQ(

・ロト ・回ト ・ヨト ・ヨト

1	 	

	RMSER	BWR	RMSER,BWR
ARIMA(1,0,0)	1st	3rd	2nd
ARIMA(0,1,1)	1st	3rd	2nd
ARIMA(0,1,1)(0,1,1)	1st	3rd	2nd

The model with only RMSE ratio returns the lowest AIC across all processes!

・ロト ・回ト ・ヨト ・ヨト

R² Results

RMSEBWRARIMA(1,0,0)96.29%83.06%ARIMA(0,1,1)88.65%66.44%ARIMA(0,1,1)(0,1,1)64.43%49.52%

Some university

R^2 Results

	RMSE	BWR
ARIMA(1,0,0)	96.29%	83.06%
ARIMA(0,1,1)	88.65%	66.44%
ARIMA(0,1,1)(0,1,1)	64.43%	49.52%

- More variations in total costs is explained by using the RMSE ratio instead of the Bullwhip ratio.
- As the series is further away from stationarity, the value of the adjusted R² decreases for both ratios.

- The current Bullwhip Ratio possesses flaws.
- Uncertainty, captured by forecasting errors, is the cost driver.
- We propose to measure the propagation of uncertainty across the supply chain.
- our metric is more related to Total Costs than the Bullwhip Effect

Results

・ロト ・回ト ・ヨト ・ヨト

Conclusion

Any Questions?

Results

Conclusion

Any Questions?

A special thank you to Juan Ramon Trapero!

Some university

- Ali, M. M., Boylan, J. E., Syntetos, A. A., 2012. Forecast errors and inventory performance under forecast information sharing. International Journal of Forecasting 28 (4), 830 – 841, special Section: Election Forecasting in Neglected Democracies. URL http://www.sciencedirect.com/science/article/ pii/S016920701100015X
- Babai, M., Ali, M., Boylan, J., Syntetos, A., 2013. Forecasting and inventory performance in a two-stage supply chain with arima(0,1,1) demand: Theory and empirical analysis.
 International Journal of Production Economics 143 (2), 463 471, focusing on Inventories: Research and Applications.
 URL http://www.sciencedirect.com/science/article/pii/S0925527311003902
- Babai, M., Boylan, J., Syntetos, A., Ali, M., 2016. Reduction of the value of information sharing as demand becomes strongly auto-correlated. International Journal of Production Economics 181, 130 135, sl: ISIR 2014.

URL http://www.sciencedirect.com/science/article/ pii/S0925527315001462

- Cachon, G. P., Randall, T., Schmidt, G. M., Fall 2007. In search of the bullwhip effect. Manufacturing & Service Operations Management 9 (4), 457–479.
- Cannella, S., Barbosa-Póvoa, a. P., Framinan, J. M., Relvas, S., 2013. Metrics for bullwhip effect analysis. Journal of the Operational Research Society 64 (1), 1–16.
- Chen, F., Drezner, Z., Ryan, J. K., Simchi-Levi, D., 2000. Quantifying the bullwhip effect in a simple supply chain: The impact of forecasting, lead times, and information. Management science 46 (3), 436–443.
- Chen, L., Lee, H. L., July-August 2012. Bullwhip effect measurement and its implications. Operations Research 60 (4), 771–784.
- Disney, S. M., Towill, D. R., 2003. On the bullwhip and inventory variance produced by an ordering policy. Omega 31, 157–167. ≥

- Lee, H. L., Padmanabhan, V., Whang, S., 1997. Information distortion in a supply chain: the bullwhip effect. Management science 50 (12_supplement), 1875–1886.
- Teunter, R. H., Babai, M. Z., Bokhorst, J. A., Syntetos, A. A., 2018. Revisiting the value of information sharing in two-stage supply chains. European Journal of Operational Research 270 (3), 1044 – 1052.
 - URL http://www.sciencedirect.com/science/article/ pii/S0377221718303606
- Trapero, J. R., Kourentzes, N., Fildes, R., 2012. Impact of information exchange on supplier forecasting performance. Omega 40, 738–747.
- Trapero, J. R., Kourentzes, N., Fildes, R., 2014. On the Identification of Sales Forecasting Models in the Presence of Promotions. Journal of the Operational Research Society, 1–9.
 Trapero, J. R., Pedregal, D. J., 2016. A novel time-varying bullwhip effect metric: An application to promotional sales.

International Journal of Production Economics 182, 465 - 471. URL http://www.sciencedirect.com/science/article/ pii/S0925527316302808

Some university