What can pre-release search traffic profiles tell us?

Oliver Schaer Nikolaos Kourentzes Robert Fildes

40th ISMS Marketing Science Conference 15th of June 2018

Marketing Analytics and Forecasting

Clustering for new product forecasting

Applications

- Model parameter clustering (Goodwin et al. 2013, Bayus, 1993)
- Time series shape clustering (Basallo-Triana et al. 2017)
- Product features clustering (Hu et al. 2018, Baardman et al. 2017)
- Functional clustering (Sood et al. 2009)

For pre-launch forecasting additional information needed, i.e. expert judgment

- Judgmental bias (Belvedere & Goodwin, 2017; Tyebjee, 1987)
- Consumer preferences change during pre-launch phase (Meeran et al. 2017)

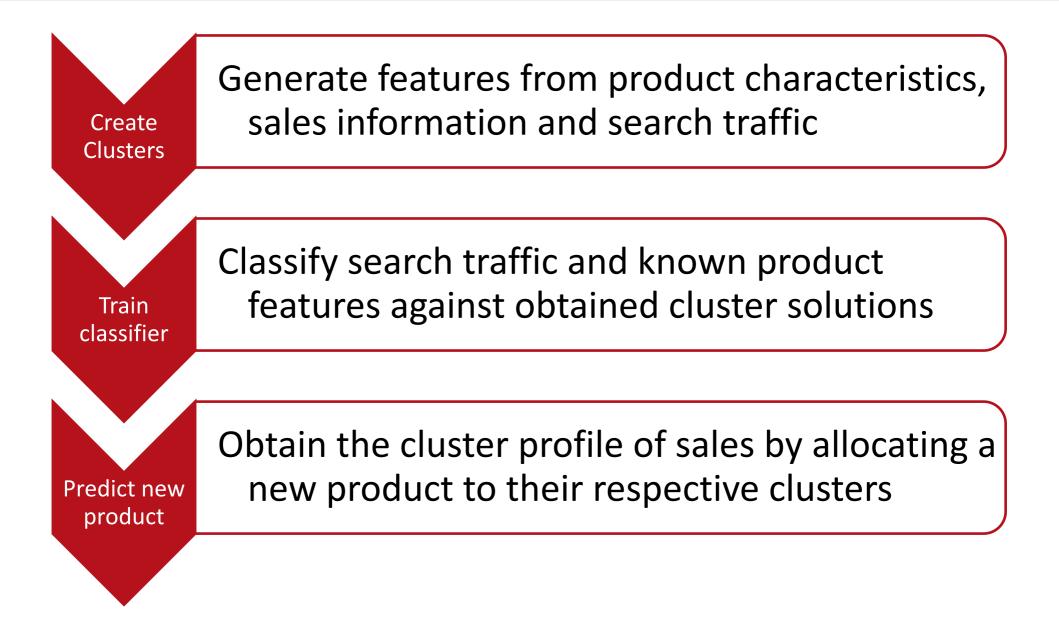
Forecasting with pre-launch buzz

- The literature reports positive findings when using online buzz for pre-launch forecasting (e.g. Kim and Hanssens 2017; Xiong & Bharadwaj 2014; Kulkarni et al. 2012)
 - Predominately regression type models

Why clustering?

- Restricting into clusters increases homogeneity
- More robust to rely on cluster profile means rather individual forecasts?
- Regression based models are not readily applicable to obtain competitor product forecasts

Suggested approach



Empirical evaluation

Dataset

- Global physical video game sales of 240 popular video games from VGChartz
- IGN Score and MetaCritic information
- Weekly Google Trends data with game title as keyword

Split data into training and test set (70% / 30%)

Objective is to assess the performance of cluster profiles for predicting the opening week and total life-cycle sales.

Obtaining cluster profiles

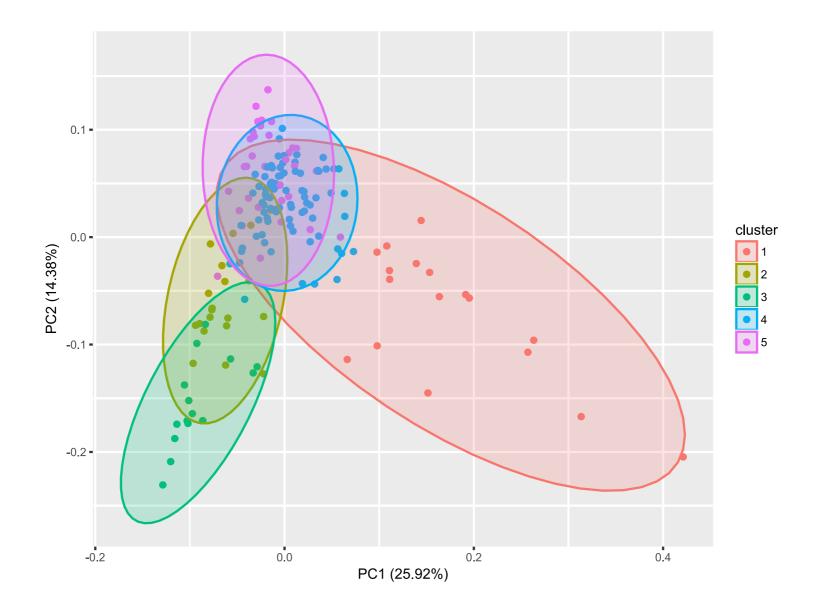
Features

- Product characteristics (publisher, genre, no. release, month)
- Sales information (actuals and time for life-cycle stages, Gompertz model parameters)
- Pre-release search (sum of search as soon signal is available, trend line, bass model parameters)

Estimation

- Mixed-data converted into binaries using Euclidean distances (and weighted product features)
- Various clustering algorithms including k-means, k-medoids, hierarchies and hyperplane cutting

k-means cluster solution



Some insights on cluster profiles (k-means)

	Cluster 1 $(n = 30)$	Cluster 2 $(n = 32)$		Cluster 4 $(n = 3)$	Cluster 5 $(n = 91)$
log(First week sales) log(Total Sales)	$\begin{array}{c} 11.370 \\ 13.674 \end{array}$	$12.016 \\ 14.087$	$\frac{15.358}{16.453}$	$16.326 \\ 17.036$	$12.787 \\ 14.568$

Some insights on cluster profiles

	Cluster 1 $(n = 30)$	Cluster 2 $(n = 32)$	Cluster 3 $(n = 12)$	Cluster 4 $(n = 3)$	Cluster 5 $(n = 91)$
log(First week sales) log(Total Sales)	$\frac{11.370}{13.674}$	$12.016 \\ 14.087$	$15.358 \\ 16.453$	$16.326 \\ 17.036$	$12.787 \\ 14.568$
Weeks until sales 25% Weeks until sales 95%	$4.000 \\ 44.500$	$3.000 \\ 34.500$	$1.000 \\ 19.000$	$1.000 \\ 14.000$	$2.000 \\ 24.000$

Some insights on cluster profiles

	Cluster 1 $(n = 30)$	Cluster 2 $(n = 32)$	Cluster 3 $(n = 12)$	Cluster 4 $(n = 3)$	Cluster 5 $(n = 91)$
log(First week sales) log(Total Sales)	$\frac{11.370}{13.674}$	$12.016 \\ 14.087$	$15.358 \\ 16.453$	$16.326 \\ 17.036$	$12.787 \\ 14.568$
Weeks until sales 25% Weeks until sales 95%	$4.000 \\ 44.500$	$3.000 \\ 34.500$	$1.000 \\ 19.000$	$1.000 \\ 14.000$	$2.000 \\ 24.000$
log(Total GT) First signal GT trend slope	$\begin{array}{c} 4.709 \\ 24.000 \\ 2.421 \end{array}$	$6.167 \\ 38.500 \\ 5.864$	$\begin{array}{c} 9.101 \\ 40.000 \\ 118.284 \end{array}$	$9.495 \\ 40.000 \\ 200.755$	$6.661 \\ 40.000 \\ 10.779$

Some insights on cluster profiles

	Cluster 1 $(n = 30)$	Cluster 2 $(n = 32)$	Cluster 3 $(n = 12)$	Cluster 4 $(n = 3)$	Cluster 5 $(n = 91)$
log(First week sales) log(Total Sales)	$\frac{11.370}{13.674}$	$12.016 \\ 14.087$	$15.358 \\ 16.453$	$16.326 \\ 17.036$	$12.787 \\ 14.568$
Weeks until sales 25% Weeks until sales 95%	$4.000 \\ 44.500$	$3.000 \\ 34.500$	$1.000 \\ 19.000$	$1.000 \\ 14.000$	$2.000 \\ 24.000$
log(Total GT) First signal GT trend slope	$\begin{array}{c} 4.709 \\ 24.000 \\ 2.421 \end{array}$	$6.167 \\ 38.500 \\ 5.864$	$9.101 \\ 40.000 \\ 118.284$	$9.495 \\ 40.000 \\ 200.755$	$6.661 \\ 40.000 \\ 10.779$
IGN Score	7.975	7.917	8.779	8.000	8.250

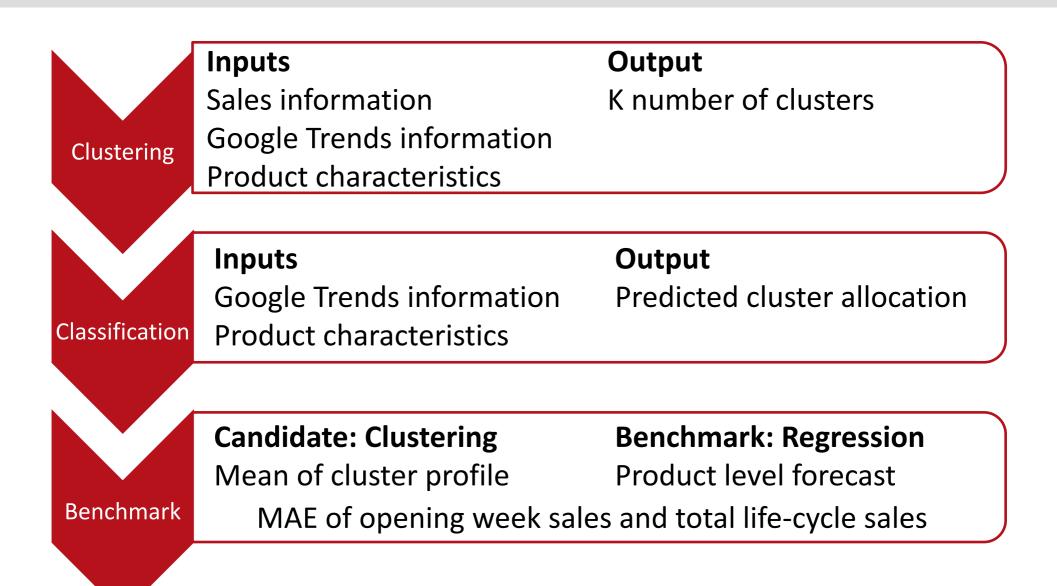
Classification task

Random Forest to learn search traffic and product features against the obtained cluster solutions

Forecast exercise

- Benchmark against regression based Random Forest (same inputs on opening week and total life-cycle sales)
- Compare the MAE against the mean cluster profile

Forecasting process



Overall forecasting performance

Relative Mean Absolute Error of clustering over regression

	k-means	k-medoids	Hierarchical	Hyperplanes
First week sales Total life-cycle sales	1.141 0.768	$\begin{array}{r} 1.178 \\ 0.890 \end{array}$	0.896 1.750	$ 1.709 \\ 1.210 $

Number of clusters, k = 5

All cluster inputs without diffusion model parameters

Conclusion

Modelling implications

- Extending the new product clustering literature by considering pre-launch search profiles.
- Outperforms more common regression based approach

Managerial implications

- More intuitive view on the drivers of the cluster profiles
- With known clusters any new product can be assessed, also those of our competitors

Next steps

Optimise the clustering via cross-validation for

- selecting the best clustering algorithm;
- find optimal number of clusters;
- obtain distance metric settings.
 → to improve the opening week performance

Forecasting competitor success only training clusters with company internal sales information

Assess different lead times of Google Trends

Thank you!

o.schaer@lancaster.ac.uk © @oliverschaer www.lancaster.ac.uk/lums/cmaf

Marketing Analytics and Forecasting

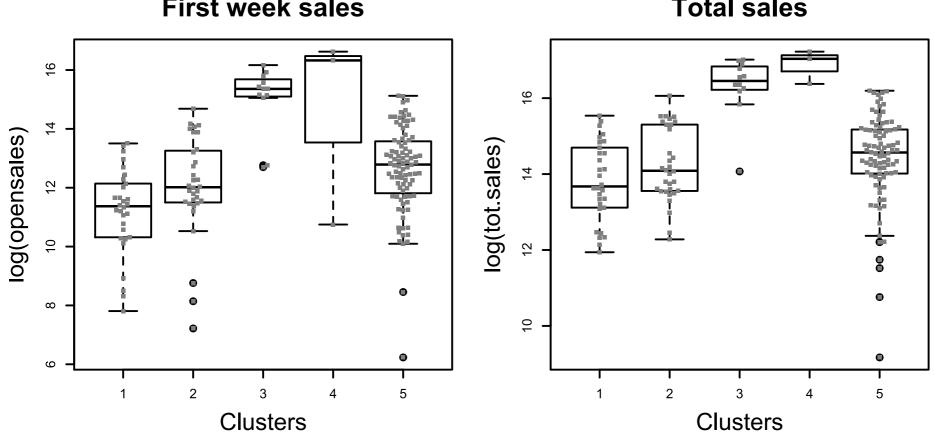
References

- Baardman, L., Levin, I., Perakis, G. & Singhvi, D. 2017. Leveraging Comparables for New Product New Product Forecasting. Available at SSRN: https://ssrn.com/abstract=3086237
- Basallo-Triana, M.J., Rodriguez-Sarasty, J.A. & Benitez-Restrepo, H.D. 2017. Analogue-based demand forecasting of short life-cycle products. A regression approach and a comprehensive assessment. International Journal of Production Research, 55(8), 2336-2350.
- Bayus, B.L. 1993. High-Definition Television. Assessing Demand Forecast for Next Generation Consumer Durable. Management Science, 39(11), 1319-1333.
- Belvedere, V., Goodwin, P., 2017. The inuence of product involvement and emotion on shortterm product demand forecasting. International Journal of Forecasting 33 (3), 652-661.
- Goodwin, P., Dyussekeneva, K., Meeran, S., 2013. The use of analogies in forecasting the annual sales of new electronics products. IMA Journal of Management Mathematics 24 (4), 407-423.
- Goodwin, P., Meeran, S., Dyussekeneva, K., 2014. The challenges of pre-launch forecasting of adoption time series for new durable products. International Journal of Forecasting 30 (4), 1082-1097.

References

- Hu, K., Acimovic, J., Erize, F., Thomas D.J. & Van Mieghem, J.A. 2018. Finalist—2017 M&SOM Practice-Based Research Competition—Forecasting New Product Life Cycle Curves: Practical Approach and Empirical Analysis. Manufacturing & Service Operations Management (in press).
- Kim, H., Hanssens, D. M., 2017. Advertising and word-of-mouth effects on pre-launch consumer interest and initial sales of experience products. Journal of Interactive Marketing 37, 57-74.
- Kulkarni, G., Kannan, P., Moe, W., 2012. Using online search data to forecast new product sales. Decision Support Systems 52 (3), 604-611.
- Sood, A., James, G.M. & Tellis, G.J. Functional Regression: A New Model for Predicting Market Penetration of New Products. Marketing Science, 28(1), 36-51.
- Tyebjee, T. T., 1987. Behavioral biases in new product forecasting. International Journal of Forecasting 3 (3), 393-404.
- Xiong, G. and Bharadwaj, S., 2014. Prerelease Buzz Evolution Patterns and New Product Performance. Marketing Science, 33 (3), 401-421.

Appendix: cluster profile of sales



First week sales

Total sales