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Hierarchical forecasting

In practice we often need consistency in our forecasts across:

• product hierarchies;

• market segments;

• planning levels;

• etc.

• At each level, the time 
series carry different 
(apparent) information and 
need different modelling. 
Forecasts will not add up. 

• Expert adjustments of 
forecasts can happen 
independently, further 
misaligning forecasts.

• Hierarchical forecasting 
attempts to impose 
consistency again.
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The forecast consistency problem

Suppose we have to forecast two items A and B, which are variants of the same product. 

Reconciling this 
difference imposes the 
aggregation constraint, 
and will force changes 
to the forecasts of A 

and B. 
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Hierarchical and Grouped series

Note that in the previous examples we assumed that there was one way to get from the 

lowest level to the highest level, i.e. a single hierarchy.

This is not generally true, as there may be many ways to construct the hierarchies, for 

example:

• SKU  Product group  Total

• SKU  Store  Total

• SKU  Country  Total

• etc.

We can represent all possible pathways from the disaggregate data to the top level 

aggregate data using the so called grouped time series. 
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Hierarchical and Grouped series

An example from a policy problem, managing unemployment is as follows:

• Sixteen unemployment time series across the following dimensions:

• Age {15-24; 25 and above}

• Country {Denmark; Finland; Norway; Sweden}

• Gender {Female; Male}

• From these we can construct multiple hierarchies, resulting in 29 unique aggregate 
series (16 + 29 = 45 series in total). 

Top Level Level 1 Level 2 Level 3

Hierarchy 1 Total Country Gender Age

Hierarchy 2 Total Country Age Gender

Hierarchy 3 Total Gender Country Age

Hierarchy 4 Total Gender Age Country

Hierarchy 5 Total Age Country Gender

Hierarchy 6 Total Age Gender Country
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Hierarchical forecasting methods

In the literature there are a number of traditional hierarchical forecasting approaches 
(Fliedner, 2001; Ord et al., 2017):

• Top down: forecast the top level of the hierarchy and disaggregate.

• Pros: At an aggregate level things become easier to model (typically!)

• Cons: (i) dissagregation is not trivial; (ii) leads to biased forecasts for lower levels 
(Hyndman et al., 2011); (iii) trust a single model/method for the whole hierarchy; 
(iv) typically does not perform well. 

• Bottom up: forecast the most disaggregate level. 

• Pros: Full view of the details

• Issues: (i) model at a very difficult level (but also informative level?); (ii) actually it 
is just that: if we could model the bottom level optimally then there is no 
hierarchical problem, but this is very difficult to do (e.g. intermittent data, missing 
or masked expanatory variables, very noisy, etc.).

• Middle out: mix of both, compromise between complexity and information available.

• Top down and middle out cannot do grouped hierarchies.
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Optimal combinations

Hyndman et al. (2011) and Athanasopoulos et al. (2009) introduced a very neat notation 
for the hierarchical problem that permits more interesting solutions

The forecast consistency problem is the following:

ǁ𝑒𝑖𝑗𝑡 = ො𝑦𝑖𝑗𝑡 − ෤𝑦𝑖𝑗𝑡

If we minimize ǁ𝑒𝑖𝑗𝑡 we reach forecasts that are consistent across the whole hierarchy.

Reconciliation error, the 
difference between the 
initial forecasts ො𝑦𝑖𝑗𝑡 (for 

level i, jth series at time t) 
and the yet unknown 

reconciled forecasts ෤𝑦𝑖𝑗𝑡



8/25

Optimal combinations

Introduce the summing matrix 𝑺 to codify the hierarchy (single or grouped)

With 𝑺 any hierarchy can be encoded, but always the lower part is a diagonal (lowest 
disaggregate level) and top row is a row of ones (total sum, i.e. top level). 

The complete hierarchy can be now compressed in the 𝑺 matrix and the lowest level time 
series 𝒚𝐵𝑡 = 𝑦𝐵1𝑡, … , 𝑦𝐵𝑘𝑡 ’:

𝒚𝑡 = 𝑺𝒚𝐵𝑡
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Optimal combinations

We can devise a reconciliation model as:

෥𝒚𝑡 = 𝒄 + 𝒘ෝ𝒚𝑡 + ෤𝒆𝑡

෥𝒚𝑡 = 𝒄 + 𝒘𝑺ෝ𝒚𝐵𝑡 + ෤𝒆𝑡

For which we can observe a few things:

• The vector of constants 𝒄 has to be zeros, otherwise we would get nonzero ෥𝒚𝑡 even 
when there are no forecasts – alternatively, if you prefer, because we expect ෝ𝒚𝐵𝑡 to be a 
collection of unbiased forecasts. 

• Matrix 𝒘 produces a linear combination of the forecasts (ෝ𝒚𝑡), suggesting that the cross-
connections between all series are potential useful, as all forecasts are combined. 

• Minimising ෤𝒆𝑡 would give us the minimum change of ෝ𝒚𝑡 to ෥𝒚𝑡, but this is not an OLS 
problem, as ො𝑦𝑖𝑗𝑡 may have different processes, and surely different mean and variance 

between aggregation levels.

This just shows that it is 
really a bottom level 
forecasting problem 

masked as a hierarchical 
problem
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Optimal combinations

We can see this as a GLS problem (Hyndman et al., 2011):

෥𝒚𝑡 = 𝑺 𝑺′𝚺°𝑺
−𝟏
𝑺′𝚺° ො𝑦𝑡

where 𝚺° is generalised inverse of the variance-covariance matrix of the reconciliation 
errors.

Wickramasuriya et al. (2018) showed that 𝚺 is non-identifiable (the intuitive reason is that 
it is a chicken and the egg problem) and propose to instead use 𝑾𝒉, the variance-
covariance of the t+h forecast errors (they show that forecast errors is indeed a reasonable 
replacement):

𝑾ℎ = 𝐸[ො𝒆𝒕+𝒉 ො𝒆′𝒕+𝒉 ]

• But getting the t+h errors is not trivial, so many approximations have been proposed.
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Approximations of 𝑾ℎ

On the approximations of 𝑾ℎ:

• Most approximations attempt to make our life easy in two ways: (i) avoid doing the 
implied cross-validation exercise; (ii) avoid estimating the full variance-covariance 
matrix (and inversing it).

• OLS: 𝑾ℎ = 𝐈, (Athanasopoulos et al., 2009; Hyndman et al., 2011). This is just wrong, as 
it s has unrealistically restrictive assumptions (everything has equal variances).

• WLS: 𝑾ℎ = diag MSE , (Hyndman et al., 2006, Athanasopoulos et al., 2017). Trivial to 
calculate, assumes that in-sample t+1 errors are representative and no-cross effects 
between nodes of the hierarchy. Implicitly considers the quality of model fit. 

• Structural: 𝑾ℎ = diag 𝑺𝟏 , (Athanasopoulos et al., 2017). This considers only the 
structure of the hierarchy, assuming additivity of variance of the errors. Can be 
generalised to 𝑾ℎ = diag 𝑺𝟏 𝒑 with minimal performance differences. 

• Empirical: 𝑾ℎ = 𝑾1, (Wickramasuriya et al., 2018), which assumes that the empirical 
covariance of the t+1 forecast errors adequately describes the t+h forecast errors, i.e. 
everything increases proportionally. 

• MinT: 𝑾ℎ = 𝑠ℎ𝑟𝑖𝑛𝑘(𝑾1), (Wickramasuriya et al., 2018), which recognises that given 
limited sample and large hierarchies 𝑾1 is difficult to estimate. 
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Optimal combinations

• The optimal combinations framework encompasses Top-down, Bottom-up and Middle-
out, as these are specific solutions for 𝒘 (the linear combination weights).

• Using this we can show that:

• Top-down is always biased and will generally have poor performance.

• Bottom-up is unbiased and its performance is highly dependent on the variance of 
the forecast errors of the bottom level  often the bottom level is rather difficult 
to model. 

• Optimal combinations hedge modelling risk  each node forecast is a linear 
combination of all the forecasts, therefore mitigating the model misspecification 
risk.

• BUT (open research question) if the hierarchy is non-unique, and 𝑺 is crucial for 
the calculation of the combination weights, what does this imply for the quality of 
the hierarchical forecast? Hypothesis: although hierarchies are not unique, most 
are dominated specifications of some identifiable hierarchy  ask me next year. 

• Empirically, optimal combinations perform very well (Athanasopoulos et al., 2017; 
Wickramasuriya et al., 2018; ignore first papers, they used wrong 𝑾ℎ). 
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A different flavour of hierarchies: Temporal

• Using the optimal combination hierarchical approach, Athanasopoulos et al. (2017) 
proposed a generalisation of MAPA (Kourentzes et al., 2014) as a general framework of 
using multiple temporal aggregation to model time series.  

Total

UK Spain

Product A Product BProduct A Product B

Cross-sectional hierarchy Temporal hierarchy

Disaggregate internal 
information: e.g. 

promotions

Aggregate external 
information: e.g. 
macroeconomic
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Temporal Hierarchies

Decisions need to be aligned: 

• Operational short-term decisions

• Tactical medium-term decisions

• Strategic long-term decisions

Shorter term plans are bottom-up and based mainly on statistical forecasts & expert

adjustments.

Longer term plans are top-down and based mainly on managerial expertise factoring in

unstructured information and organisational environment.

Given different sources of information (and views) forecasts will differ  plans and

decisions not aligned.

Coherent forecasts across planning horizons can lead to less waste & costs, agility to

take advantage of opportunities.



15/25

Temporal Aggregation

Consider some historical monthly sales 

series:

Bi-monthly

Quarterly

Half-annually

Annually

For a long term forecast, we could either 

produce multi-step ahead forecasts, or 

aggregate the data and produce single-

step ahead forecasts for the long horizon 

directly:

• 12 monthly forecasts vs. 1 yearly!
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Temporal Aggregation

• Produce long term forecasts with multi-step predictions is risky: forecast errors 

accumulate!

• Temporal aggregation can help to reduce the length of the forecast.

• What does temporal aggregation do to our data?

• at an aggregate level trend/cycle is easy to distinguish.

• at a disaggregate level high frequency elements like seasonality and promotions 

typically dominate.

• Arguably both disaggregate and aggregate views are useful. We can look at both and 

connect them in a hierarchical way. 

• Temporal hierarchies (like MAPA) are very reliable in the face of modelling uncertainty:

• Good forecasting performance (Kourentzes et al., 2014, Athanasopoulos et al., 2017);

• Safer option (with relevant accuracy gains) than looking for an optimal aggregation 

level that econometricians have focused on for 30 years (Kourentzes et al., 2016). 
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Example: Predicting A&E admissions
Total Emergency Admissions via A&E

Red is the prediction of the base model – at each level separately
Blue is the temporal hierarchy forecasts

Observe how information is `borrowed’ between temporal levels. Base models for 
instance provide very poor weekly and annual forecasts
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Back to approximations of 𝑾ℎ

• All approximations (with the exception of the structural) are based on in-sample 
quadratic errors. This is dangerous  overfitting. 

• Low in-sample MSE means nothing about our out-of-sample modelling risk and forecast 
errors. 

• Strong evidence of low correlation of in- and out-of-sample forecast errors. Barrow and 
Kourentzes (2016) showed a 10%+ underestimation of uncertainty when in-sample 
errors are used. 
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My issue with uncertainty calculations

• Models are great, as they give you prediction intervals conditional on data and model 
parameters  but assume the model to be true! 

• We account for the inherent uncertainty in the data;

• We account for estimation uncertainty (lately);

• We do not account for the uncertainty of picking the wrong model though!

• t+1 in-sample errors would be representative of t+1 out-of-sample errors if the model 
was true. If not (so, in reality!) then minimising t+1 errors only results in an 
approximation of the behavior at t+1 and not at t+h, when h >> 1. 

• Minimising t+h likewise approximates the t+h behavior and not the t+1 (and is a 
new family of univariate shrinkage estimators!). Similarly in-sample do not 
correlate well with out-of-sample. 

• Back to hierarchies: approximations of 𝑾ℎsuffer from the same underestimation of 
uncertainty. 

• Unless we cross-validate the out-of-sample errors, but this seriously limits 
available sample. 
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Revising the approximation of 𝑾ℎ

• What we are missing?

• We want the weights of the linear combination 𝒘 to account for:

(i) Difficulty to forecast a specific node of the hierarchy;

(ii) The level of the node in the hierarchy (mean and variance);

(iii) The model uncertainty (over-fitting/under-fitting).

• In-sample errors do not penalise model complexity (or overfitting). 

• Some practical issues: how do you reconcile a LASSO forecast with a MSE-
optimal forecast? The MSE forecast will be wrongly overweighted! Sagaert et 
al. (2018) demonstrated the inventory gains for hierarchies with top level 
LASSO forecast with leading indicators and bottom level univariate 
exponential smoothing forecasts.
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Revising the approximation of 𝑾ℎ

• Balance model fitness and over-fitting, if only there was something that could do that…

… but there is! Information criteria, such as AIC.

Why we like AIC?

(i) It respects that we do not have infinite data to waste on cross-validation

(ii) It does not need hyperparameters (okay, go with BIC if you must, but 

remember that AIC is equivalent to t+1 out-of-sample cross-validated errors; 

Stone, 1977)

Why we do not like AIC?

(i) it does not tackle scale across time series well. So let us deal with that.

From the definition of AIC we can show that:

𝑒
𝐴𝐼𝐶

𝑛 = 𝐿
1

𝑒−2𝑘/𝑛
, so what we need for 𝑊ℎ is 𝑒𝐴𝐼𝐶/𝑛. (Yes, 30 minutes for 1 line!)
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Empirical evaluation

• Test the idea in two settings: (i) cross-sectional hierarchies; (ii) temporal hierarchies

• Benchmarks: 

• OLS approximation

• MSE approximation – often the best

• MinT (shrunk covariance; not possible for temporal) – most elegant

• Structural reconciliation (i.e. weight by the inverse of the number time series in 

that level) – this makes a lot of sense in temporal, but not cross-sectional

• New:

• Scaled AIC approximation

• Cross-validated MSE approximation (Jeon et al., 2018)

• Shrunk cross-validated covariance approximation
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Hierarchical forecasting

Dataset Base OLS MSE CV AIC Structural MinT MinT-CV
ETS

Unempl. 1.000 1.012 1.051 0.980 0.980 0.979 1.137 0.994

Tourism 1.000 1.015 1.078 0.985 0.986 0.983 2.491 0.977

A&E 1.000 1.112 1.062 0.993 0.991 0.998 18.016 1.002

Infant 1.000 1.015 1.116 0.955 0.961 0.961 1.612 0.939
Overall 1.000 1.038 1.076 0.978 0.979 0.980 3.012 0.978

• CV and AIC results are very close! But AIC is trivial to calculate.

Datasets (picked to give me a hard time – no M3 here):
• Unemployment: 45 time series, 312 observation, 120 test, horizon t+12;
• Tourism: 89 time series, 36 observations, 12 test, t+6;
• A&E: 413 time series, 27 observations, 10 test, t+4;
• Infant mortality: 27 time series, 71 observations, 30 test, t+5

Cross-sectional hierarchies – AvgRelMAE results

ARIMA
Unempl. 1.000 1.011 0.964 0.964 0.956 0.985 0.973 0.971
Tourism 1.000 1.035 0.979 0.984 0.974 0.978 0.972 0.981
A&E 1.000 1.074 0.992 0.995 0.991 0.995 1.001 0.991

Infant 1.000 0.989 0.987 0.987 0.985 0.981 1.022 1.013
Overall 1.000 1.027 0.980 0.982 0.976 0.985 0.992 0.989
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Hierarchical forecasting

Dataset Base OLS MSE Structural AIC
ETS
Unemployment 1.000 1.050 1.025 0.991 0.982
Tourism 1.000 0.996 0.998 0.989 0.995

A&E 1.000 0.983 1.006 0.972 0.989
Overall 1.000 1.009 1.010 0.984 0.989

• Structural is very hard to beat: it takes into account the special hierarchical structural, 
even though it is tremendously simplistic. It works very well in cross-sectional data as 
well.

• Otherwise, AIC is the way, as it is very sceptical to complex models. 

Temporal hierarchies – AvgRelMAE results

ARIMA
Unemployment 1.000 0.990 0.939 0.934 0.926

Tourism 1.000 0.983 0.984 0.981 1.002

A&E 1.000 0.997 0.962 0.949 0.995
Overall 1.000 0.990 0.961 0.954 0.974
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Concluding remarks
• Hierarchies are very common – even with a single time series (temporal hierarchies). 

• However, hierarchical forecasting requires the covariance of the reconciliation errors, 

which we can replace with the t+h forecast errors, which we can approximate with…

• Typical approximations ignore modelling uncertainty:

• We do a lot of that, each node in the hierarchy implies a model selection step!

• The bottom level is quite crucial, and it has large and unaccounted model uncertainty. 

• Cross-validated errors can overcome this, but not convenient to estimate and at times not 

possible (especially for temporal hierarchies).

• We can manipulate information criteria to do that for us:

• Very simple to calculate;

• Very fast to calculate: real cases can have massive hierarchies;

• Cross-temporal hierarchies (the fabled “one number forecast”) can make hierarchies 

stupendously large.

• 𝑾𝑨𝑰𝑪 performs very well  improves further performance of hierarchical

 Temporal hierarchies hard to beat plus decision making gains. 



Thank you for your attention!

Questions?

Nikolaos Kourentzes
email: nikolaos@kourentzes.com

twitter @nkourentz
Blog: http://nikolaos.kourentzes.com

Full or partial reproduction of the slides is not permitted without authors’ consent. 
Please contact nikolaos@kourentzes.com for more information.
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