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Introduction

There are many pairs of interchangeable and
complementary groups of products in retail:

* Cheese and wine,

* C(Cleanser and sponge,
* Paint and brush,

* etc.

Sales of one group might influence sales of the
other.



Motivation

A possible decision in this context — vector models.
For example, VAR model.

It is flexible enough to model the dependencies,
But it’s hard to estimate.

In case of a pair of products VAR(p) has at least 4p
parameters.

When the sample is small, it might be difficult to fit
VAR(p),

A more compact model is needed.



Literature review

* Literature on VAR in retail forecasting is very
sparse...

* Caines et al. (1980) estimate and analyse VAR
model for a supermarket.

* Leeflang & Selva (2012) discuss effects of
promotions in one categories on the revenues in
the other ones.




Literature review

Wilms et al. (2016) claim that “Retailers use VAR model as a
standard tool to estimate the effects of prices, promotions
and sales...”

They jointly estimate cross-category effects for several VAR.
But they focus on clustering and networks...

Gelper et al. (2016) discuss a methodology to estimate
parsimonious product category network, focusing on cross-
category effects.

So in general the idea is to estimate big VAR using some
tricks...

...And not much in forecasting direction.



Complex-valued approach

We can use complex variables in this context.

Variables x; and y, can be represented as a
complex variable x; + iy, when:

 They have the same units,

* They represent two parts of one process,

e Their sum is another characteristic.

Example: Sales of paint + Sales of brushes in pounds



Complex-valued approach

y A
Xz ~+ lyz
T ----- X1+ Y1
Xy Xq ,

X, + iy, = (aq +iby)(x1 + iyq)



Complex Autoregressive Model

* The general CAR(p) can be written as:

©oxp+iye =X (a4 +Hiby)(xeoj +iye—j) +eq tieg,

where x; + iy, is a complex variable of sales of two product
groups,

a; + ib; is a complex parameter of the model|,
e1 ¢ +ie,; isa complexerror term.

It can be assumed that e ; + ie; ~N(0,XZ), where X is a
covariance matrix.



CAR(1)

The properties of these models differ from those of vector models.
For example CAR(1):

Xep1 + Verq = (ag + b)) (x¢ + iyp)
can be represented as a power function of horizon:

Rean + iPean = (aq + ib) " (x; + iyy)

Power complex-value function:
e diverges in the form of a spiral if the magnitude of the complex variable

is higher than one,
e converges along the spiral to zero if the magnitude of the complex

variable is lower than one.



CAR(1) — graphical representation
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Complex Autoregressive Model

CAR can also be represented in the matrix form:

R .
GO=2a(y )G

J

So CAR(p) can be considered as a special case of
VAR(p), which has 2p parameters to estimate
instead of 4p.

We can estimate CAR via maximising likelihood.

We can select appropriate order p via information
criteria.

We can produce forecasts and prediction intervals.



Complex Autoregressive Model

Maximising likelihood of multivariate normal
distribution is equivalent to minimising | X|.

In our case this means that the cost functionis:

» CF = afo5 — of,,

* where af is the variance of the e; ;, 0% is the variance of the

e, + and gy , is the covariance between them.

Or it can also be estimated using likelihood,
assuming Complex Normal distribution:

fle) = Wk\/det(lI‘)det(P) eXp{%((Z“)T (z_”)T)(g g)l(jZ)}




Complex Autoregressive Model

Looks scary, but eventually has less parameters
than the similar VAR(p).

Allows using order selection.

Allows constructing prediction intervals.

Can be directly compared with VAR via information
criteria.



Complex Autoregressive Model

* So we have several options:
* Unrestricted VAR with 4p parameters to estimate;

 CAR(p) with 2p parameters, based on VAR and
Multivariate Normal Distribution;

* CAR(p) with 2p parameters with Complex Normal
Distribution.



EXAMPLES OF APPLICATION




Example of application

* Weekly data of sales of a retailer,
* Aggregated values for one shop,

* Two product categories:
e Sales of washing powder,

e Sales of conditioner.



Washing powder

Washing conditioner
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Washing powder

Washing conditioner

CAR(1) with CND
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Coefficients

| Powder(t) | __Conditioner(t]

VAR(1)
Powder (t) 0.613 -0.013
Conditioner(t) -0.139 0.676
VAR(1) Restricted
Powder (t) 0.638 -0.004
Conditioner(t) 0.004 0.638
CAR(1)
Powder (t) 0.734 -0.012

Conditioner(t) 0.012 0.734



Simulation

Investigate, in which circumstances CAR works.
DGPs:

1.

2.

3.
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VAR(1) with matrix of parameters A = (
(diagonal);

VAR(1) with unrestricted A = (

4

VAR(1) with CAR(1) parameters A = (

1000 time series;

104 and 12 observations with respective holdouts of 13
and 4.

MAE as error measure.



Simulation results, 12 obs
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Simulation results, 12 obs
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Simulation results, 104 obs
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Simulation results, 104 obs
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CONCLUSIONS




Conclusions

When there are pairs of product groups, CAR can be
used

* Forecast some elements of hierarchy?

CAR needs less parameters than VAR;

CAR can be used on small samples;

The existing Complex Normal distribution works
poorly;



Future research

Study properties of CAR(p);

Implement CAR with higher orders;
Confidence intervals for parameters of CAR;
Prediction intervals;

Impulse response function;

Compare CAR(p) with VAR(p) on real data:
* Point values;

e Distributions.

Develop a new distribution for CAR;
* Complex probability?
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Forecast results

Republicof Karelia Y. +iY; =(0,944-i0,079) +(0,601+i0,096)(y,,_, +1y;,), t=2,3,...
Komi Republic Yy, +1y, =(0,495+10,058) + (0,869 —-i0,007)(y,, , +1Y,,), t=2,3,...

Archangelsk region  y_+iy. =(1,119-i0,561) +(0,549+i0,329)(y,._, +iy, ,), t=2,3,...

Nenets autonomous

y, +1y, =(0,773-10,011) + (0,958 +10,009)(y,, , +1y, ,), 1=2,3,...
district

Vologda region y, +1y, =(0,180-10,017) +(1,075—-10,005)(y,,_, +1y,,), t=2,3,...
Kaliningrad region Yy, +1y, = (-0,265-10,115) + (1,238 +10,029)(y,, , +1Y, ,), t=2,3,...
Leningrad region y,. +iy, =(0,180-1i0,018) + (1,075—-1i0,005)(y,, , +iy, ), t=2,3,...
Murmansk region y,, +1iy, =(-0,667 +i1,305) + (1,233-i0,609)(y,,, +iy,,), t=2,3,...
Novgorod region Yy, +1y, =(0,408+10,179) + (0,836 —10,006)(y,, , +1y, ,), t=2,3,...
Pskov region Yy, +1y, =(0,919+10,005) + (0,612 +10,003)(y,, , +1Y; 1), t=2,3,...

Saint-Petersburg vy, +1y, =(1,182+i0,194) +(0,769—-10,028)(y,, , +1y,,), t=2,3,...



Forecast results of particular regions of Russia (2008 — 2013)

The average forecasterror of
the real part, % of the imaginary part, %
- Republicof Karelia 3,6 4,3
- Komi Republic 1,5 2,7
u Archangelsk region 4,7 12,5

_ Nenets autonomousdistrict 9,8 12,1

_ Vologdaregion 8,1 8,5
_ Kaliningrad region 6,5 5,6
Leningrad region 5,2 8,9
_ Murmansk region 2,4 5,8
_ Novgorod region 3,9 2,9

Pskov region 3,2 2,9
Saint-Petersburg 2,6 2,4
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