Enumeration of nilpotent associative algebras of class 2 over arbitrary finite fields

Morten Wesche
Technische Universität Braunschweig

In 1960 Higman introduced the notion of PORC functions (polynomials on residue classes). He proved for example that the number of isomorphism types of algebras over a finite field with q elements can be given, considered as a function in q, by a PORC function.

We use this theory and show that the number $N_{d,r}(q)$ of isomorphism types of nilpotent associative algebras of dimension d, rank r and class 2 over a finite field with q elements, considered as a function in q, can be described by a PORC function in q. We describe an algorithm that, given a rank r, determines such polynomials for $N_{d,r}(q)$ for all dimensions d. Based on this, we determine $N_{d,r}(q)$ for $r \in \{1, \ldots, 5\}$ and arbitrary d.

The motivation for our work comes from a structure theorem for associative algebras by Wedderburn which states that an associative algebra can be given as a direct sum of a nilpotent and a semisimple associative algebra.

Our work can be extended to further algebraic objects. The number $L_{d,r}(q)$ of isomorphism types of class 2 Lie algebras of rank r and dimension d over a finite field with q elements considered as a function in q is PORC. Further, the number $f_{n,r}(p)$ of isomorphism types of class 2 p-groups of order p^n with r generators considered as a function in p is PORC.

B. Eick extended our algorithm such that it can be used to determine the latter PORC functions as well.