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What is a net (network)?

« Anetl is a graph that is connected, simple, locally finite

 AnetT is called periodic if its automorphism group Aut(l')
contains Z" (n=21) as a subgroup (usually of finite index)

— n-periodic nets (graphs); we will focusonn=2, 3

« Aut(l) (all its ‘'symmetries’) is considered (as usual) as

a grofup of adjacency-preserving permutations on the vertex
setof '

* In most cases of interest Aut(l") is isomorphic to
a crystallographic group, and there exists an embedding

of I in R® where all automorphisms can be realized as
isometries — we mostly work with embeddings in R3

Cf. Delgado-Friedrichs & O’Keeffe, J. Solid State Chem., 2005, 178, 2480-2485 3



Interpenetration of 3-periodic nets




Common interpenetrating 3-periodic nets
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Blatov, Proserpio et al., CrysttngComm 2011, 13, 3947




Properties of symmetry-related
interpenetrating nets

« A symmetry group G acts transitively on a set of nets {I'},
i=1,..n;

* A group H maps an arbitrarily chosen net I'; onto itself;
theindex |G:H|=n

g
Finite example: ;
— _ = N )
Cube as two tetrahedra: m3m - 43m S
S 3
¢---.. ‘.‘ f’_’f.:‘;::::u-v-‘-‘- ............. ‘ .

It is therefore convenient to use a group—subgroup pair
G — H to characterize the symmetry of interpenetrating
nets.

Baburin, Acta Cryst. Sect. A 2016, 72, 366-375;
Koch et al., Acta Cryst. Sect. A 2006, 62, 152-167




Properties of symmetry-related
interpenetrating nets

Lemma. Let {['} be asetof nnets T, (i=1, 2...n) which form an orbit with respect
to a symmetry group G of the whole set. The elements of G which map a net I,
onto itself form a group H. Then stabilizers of vertices and edges of ['.in H are

isomorphic to those in the group G.

‘.-:.u-....::::::Hm_\-_‘.‘:;;:_"‘:""
. T Stabilizers are the same in a group and a subgroup:
: o...%.’. : ‘{: ;
A0 el A3 vertex: .3m (C,,), edge: 2.mm (C,,)
"..' . ‘ -:l::‘:::.:".-\\‘-'.'.'.’. :::: ’ :‘\ ;. — ,.i.\
P .
. ] of\eo/.
Theorem. The cosets of Hin G do not contain
mirror reflections (non-intersection requirement)

Remark. The cosets of Hin G do not contain any rotation or roto-inversion axes
which intersect vertices and/or edges of the nets.

Baburin, Acta Cryst. Sect. A 2016, 72, 366-375



Generation of interpenetrating nets:
the supergroup method

 Fix an embedding of a 3-periodic net I, in R3, let H be its
symmetry group

* Replicate I', by a supergroup G, of H with index n (g, e G,):
G -r,=(Hug,yHU---Ug H)-T,=T ,Ul,U---UT,

« Characterize interpenetrating nets which arise for different
supergroups G, (k = 1,..m) with respect to isofopy classes
and maximal (intrinsic) symmetry groups

How to determine supergroups? How to find H?

Baburin, Acta Cryst. Sect. A 2016, 72, 366-375




Group—subgroup vs. group—supergroup
relations

Let H< G, n =[G : H] is finite
How to find all supergroups of H isomorphic to G?

Take a list of subgroups of G with index n. Filter out subgroups
Isomorphic to H.

For each subgroup determine affine normalizers N(H).

Consider M = N(H) N N(G).

In each case the number of supergroups isomorphic to H is given
by the index [N(H) : M] — it can be infinite!

Generate the orbit of supergroups by applying the elements of N(H).

Aroyo et al. Phys. Rev. B., 1996, 54, pp. 12744-12752 9



Which groups H to take?

H is a symmetry group of a net embedding
H < Aut(net); Aut(net) = the automorphism group of a net

Aut(net) is usually isomorphic to a crystallographic group, and
can be found using the method of Olaf Delgado

H is a subgroup of Aut(net) with a finite index

Restrict the number of vertex orbits: consider minimal groups
with a specified number of vertex orbits

H's are subgroups of Aut(net) with the desired number of vertex
orbits

Vertex-transitive nets: minimal vertex-transitive groups
(vertex stabilizers are either trivial or have order 2 in R?) 10




Groups H's are fixed — what else?

Complication: the symmetry group H usually does not fix the
embedding of a net up to similarity (or even up to isotopy)

A net can undergo deformations allowed by H:
subgroup-allowed deformations

The shape of edges: straight lines or arbitrary curved
segments?

A solution for practice: keep the embedding in H as in the full
automorphism group

Edges are either straight-line segments or V-shaped,
as allowed by edge stabilizers

HEEE :




Towards an algorithm

Find H's up to conjugacy in Aut(net) — GAP (Cryst, Polycyclic)

For each group H list all supergroups G, (k = 1,..m) with index n (m can
be infinite for fixed n — so be careful) — éAP Cryst Carat)

Take advantage of the restrictions: additional mirrors or other rotation or
roto-inversion axes which intersect vertices or edges of the net(s) must
not belong to the supergroups G,

Transform the coordinates of vertices and edges from a basis of a group
to that of a supergroup (take care that stabilizers of vertices and
edges should be the same in both H and G,)

Classify into patterns (Hopf ring nets, TOPQOS)

12
Baburin, Acta Cryst. Sect. A 2016, 72, 366-375




Example: the (10,3)-d net (utp) and its
2-fold intergrowths: only three possibilities

4

Space group: Pnna [=Aut(utp)]

Vertex Stabilizer: trivial
Admissible supergroups of index 2:

Ccce, Pcca, Pban

cf. International Tables for Crystallography,
Volume A1

Minimal non-isomorphic klassengleiche supergroups

e Additional centring translations
|2 | B3 Crrens); [ 2] AmeaatobrCeenty, [2] Ccce (68); [2] FHmratrtds=
® Decreased unit cell

[Z]a’——éaqp-nem-é-?y,qp-mﬁa}; [2] b = %b Pcna (50, Pban); [2] ¢ = %c Pbaa (54, Pcca)




Example: the utp net and its intergrowths

a0\ S\

nfeij\an i, I
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Ccce — Pnna Pcca — Pncn (2b) 14



Example: the utp net and its intergrowths

+ — N

Cece different handedness Pcca

~10 (isostructural) examples in CSD 1 related structure in CSD



Example: the utp net and its intergrowths

Pnna Pban — Pnan (2c)

16

1 related structure in CSD



Classifying and characterizing
iInterpenetrating nets

Now we can generate embeddings of interpenetrating
nets

Every embedding is characterized by a group—subgroup
pair G — H (and it is known by construction)

How to recognize isotopy classes of interpenetrating
nets?

How to find a maximal isometry group for each isotopy
class?G-H—- G, ,,—H,__,

max
17




Catenation patterns (= isotopy classes)

« Two sets of interpenetrating nets are said to show the same
catenation (or interpenetration) pattern (= belong to the same
isotopy class) if they can be deformed into each other without
edge crossings (more precisely, In this case knot theorists
speak of ambient isotopy”

\ 17— [I=

* This may be difficult to check by ‘inspection’ —

look at local properties of catenation (“knotting”), i.e. how
cycles (= rings) of nets are catenated. If cycles are catenated
differently, then the patterns are distinct.

* Cromwell, Knots and Links, Cambridge University Press, 2004 18



Hopf ring net (HRN):

a tool to classify catenation patterns

 Vertices: barycenters of catenated rings

» Edges: stand for Hopf links between the rings

» Describes the catenation pattern if all links are of Hopf type:

if HRNs are not isomorphic, then the patterns are different

pcu-c

HRN star

...........

...................

o. ||
\

Fig. 2 from Alexandrov, Blatov, Proserpio, Acta Cryst. Sect. A 2012, 68, p. 485

19




Hopf ring net (HRN)

The valencies of vertices describe the “density of catenation”

Given isomorphism type of a network, does there exist an
upper bound for the valencies of vertices in the respective
HRN if the number of networks in the set is fixed? (In other
words: are there any combinatorial restrictions on the “density
of catenation™?)

The answer is no

20




Infinite series of non-isotopic patterns

pcu in monoclinic symmetry: P2/m, x=0, y=0, z=0; a= b = ¢; 8 = 90°

(vertex-transitive, edge 3-transitive)

 Basis transformation: —n0-1/010/100
B = acos(—n/sqrt(n? + 1))
» Deform the net by setting 8 = 90° again (a series of deformations)

» Apply supergroup operations (e.g. a 2-fold screw parallel to [100], i.e.,
original [-n O -1] direction)

n=0->P2,/n2m2,/n—P2/m (pcu-c pattern)
n=1->P2,/b2/im2/n—- P2/m (more ‘knotted’ pattern)
n=2->Pnmn-P2Im

n=3->Pbmn-P2Im, ..........



Infinite series: local catenation

Rl

pcu-c
4 rings catenate 8 rings catenate 12 rings catenate
the central the central the central

and so on...



More on Hopf ring nets (HRN)

If HRN net is connected and Aut(HRN) is isomorphic to

a crystallographic group, it is easy to show that the maximal
symmetry G, _, for a set I" of interpenetrating nets I'; (i = 1,..n)

is a subgroup of Aut(HRN): G, = Aut(HRN)

This holds for any patterns (i.e., transitive or not)

For transitive patterns: the index |G, : H,...| = n

max -* max

For transitive patterns: G, ., is determlned based on subgroup
relations between Aut(HIﬂN} and Aut(l"

Baburin, Acta Cryst. Sect. A 2016, 72, 366-375 23




On the maximal symmetry of a set of
interpenetrating nets G, ., — H,_,

In general: G, _, < Aut(HRN); H,_ .. < Aut(l')
Look for the intersection group(s) K = Aut(l";) N Aut(HRN)

If the index |Aut(HRN) : K| = n (the number of connected
components), then G, _, is found: G, ., = Aut(HRN); K=H,__,

If not, then suppose H,,.,, = Aut(l')). To find G,,,,, look for
supergroups of Aut(l';) with index n which have a subgroup

relation to Aut(HRN)

If supergroup search for Aut(l";) is not successful [or does not
make sense if Aut(HRN) < Aut(l' )], it has to be performed for
subgroups of Aut(l'))

Baburin, Acta Cryst. Sect. A 2016, 72, 366-375 24




Example: a pair of gismondine (gis) networks

P4,/nnm — I14,/amd 14./acd — 14,/a

Aut(gis) = 14,/amd; Aut(HRN) = Pn3m; Aut(HRN) N Aut(gis) = /4,/amd.
|Aut(HRN) : Aut(gis)| =6 — G, ., # Aut(HRN).

The only supergroup of Aut(gis) = /4,/amd with index 2 is P4,/nnm (that is
in turn a subgroup of Aut(HRN) = Pn3m with index 3).

25
Baburin, Acta Cryst. Sect. A 2016, 72, 366-375




2-fold vertex-transitive dia nets

Assumptions:

(i) vertex stabilizer has order = 2

(ii) vertices can be displaced from their ideal positions as allowed by stabilizers,

V-shaped edges and lattice mismatch are allowed

There are 8 patterns + 2 infinite series

Max. vertex
Max. symmetry stabilizer Transitivity HRN TD10 for HRN

= Pn3m—Fd3m T, 111 hxg 3359
14,22 — P4,242 C, 111 N/A N/A

142d - 12,212, C, 122 6,8-coor 3966

14,22 — P4,22 (@) 122 6,10-coor 6090

Ccca - C2/c* C, 122 6,10-coor 6660

w—  Pban — Pnan C, 122 6,10-coor 7755
C222 — 1212124 (@) 122 6,12-coor 5752

14122 — ]212121 C2 122 8,12-0001‘ 5679

Ccem — Penm Cs 133 6,6,10-coor 5183

Cema — C2/m* Cs 133 6,6,10-coor 5752

26

* - first members of infinite series




2-fold dia nets with transitivity 111

N | | A58

Vo d N
48 ’ & \
D "\ N Q) >
NS \‘ \\ QAR \\
R \\\// N
B/ A5

|

Pn3m — Fd3m (-43m) 14,22 — P4,2.2 (..2)

27



2-fold dia with transitivity 122

1-42d - 2,2,2.



Interpenetration of 2-periodic layers

29



What is special compared to 3-periodic nets?

« The reference embedding of a layer is more uncertain because we
need a corrugated, wavy layer — its symmetry is described by

a layer group (2-periodic isometry group in R3)

* All symmetry groups of corrugated vertex-transitive 2-periodic nets
where all edges incident with the vertices retain equal lengths were
listed in 1978 by Koch and Fischer (“sphere packings in layer
groups”)

« A practical way is to keep the vertices in their max. symmetry
positions in the plane, and consider V-shaped edges running out of
plane, as allowed by edge stabilizers

mean plane of a layer

30




What is special compared to 3-periodic nets?

Not all group-supergroup pairs yield entangled layers (one layer can
just lie on top of another)

This property is net-specific (unfortunately not group-specific!):
if G — H is a group-subgroup pair of the interpenetration pattern,
then the symmetry elements from the coset(s) of Hin G must
penetrate the ring to generate a symmetry-related ring that is

interlaced with it — this is especially relevant for ring-transitive
embeddings of layers

What are the symmetry conditions for (Hopf) links?

31




Symmetry conditions for (Hopf) links

Which symmetry operations can map
two interlocked rings onto each other?

« inversion does not generate any link (apart from trivial)

« a mirror does not generate a link (apart from trivial) or induces
crossings

« 2-fold axis generates a Hopf link if the axis intersects a ring (but none
of its edges)

« translations, screw rotations, glide reflections can generate Hopf
links if respective symmetry elements intersect a ring and their
translation component is comparable to the (maximal) lateral
dimension of a ring

« any rotation axis, -3 and -4 rotoinversion axes (-6 contains a mirror so
it is forbidden) can generate either Hopf or multiple links (Solomon or

more complicated)
32




Symmetry conditions for (Hopf) links

D -




Vertex- and edge-transitive honeycomb layers

« 2-fold interpenetrated honeycomb layers in 2D MOFs efc.:

following the minimal transitivity principle?,
what are the most symmetric patterns

I.e., those with one kind of node and

one kind of link (edge)?

* Never observed®... do they exist?

 If they do exist, why aren’t they observed?

* M. O’Keeffe et al.,, Chem. Rev., 2014, 114, 1343
** Blatov, Proserpio et al., CrysttngComm 2017, 19, 1993 34



Honeycomb layers:

both vertex- and edge-transitive groups

» Vertex stabilizer must have order 3 to exchange the edges

incident with a vertex (edges could be nonplanar arcs)

Four groups (up to conjugacy) remain

Layer group p6 p321 | p3lm | p3

Edge stabilizer 2. 2. ..M 1

Supergroups of index 2 620 622 31 B
without additional mirrors P P poim

35




2-fold interpenetrated hcb-layers

p622 — p6

Edges are nonplanar arcs
Multiple knot

36

Baburin (2017), available from chemrxiv.org




2-fold interpenetrated hcb-layers

p622 — p321

Multiple knot

37
Baburin (2017), available from chemrxiv.org




2-fold “interpenetrated” hcb-layers

Trivial knot

p-31m — p31m

individual layers are polar 38




Polycatenanes

532 432

Mirrors/inversions can only stabilize vertices (edges) in catenanes

Cf. Liu, O'Keeffe, Treacy, Yaghi, Chem. Soc. Rev. 2018 39



Conclusions

A universal recipe to derive interpenetrating nets is developed
based on group—supergroup relations for crystallographic groups

Towards rationalization of observed vs. possible patterns
Deformation equivalence classes of connected components?

Any relation to physical properties?

Thank you

40




