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Outline

• Symmetry properties of interpenetrating nets

• Generation of interpenetrating nets using 
group–supergroup relations: fundamentals

• Working examples to derive new interpenetration patterns

• Maximal isometry groups of interpenetrating networks

• Interpenetrated 2-periodic nets (layers), polycatenanes etc.
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What is a net (network)?

• A net Γ is a graph that is connected, simple, locally finite 

• A net Γ is called periodic if its automorphism group Aut(Γ) 
contains Zn (n≥1) as a subgroup (usually of finite index)
→ n-periodic nets (graphs); we will focus on n = 2, 3

• Aut(Γ) (all its ‘symmetries’) is considered (as usual) as 
a group of adjacency-preserving permutations on the vertex 
set of Γ

• In most cases of interest Aut(Γ) is isomorphic to 
a crystallographic group, and there exists an embedding
of Γ in R3 where all automorphisms can be realized as 
isometries → we mostly work with embeddings in R3

Cf. Delgado-Friedrichs & O’Keeffe, J. Solid State Chem., 2005, 178, 2480-2485
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Interpenetration of 3-periodic nets
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Common interpenetrating 3-periodic nets

dia-c pcu-c srs-c

Occurrence of nets in 3D interpenetrated coordination polymers

Blatov, Proserpio et al., CrystEngComm 2011, 13, 3947
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Properties of symmetry-related 
interpenetrating nets

• A symmetry group G acts transitively on a set of nets {Γi}, 
i = 1,..n;

• A group H maps an arbitrarily chosen net Γi onto itself; 
the index |G : H | = n

Baburin, Acta Cryst. Sect. A 2016, 72, 366-375; 

Koch et al., Acta Cryst. Sect. A 2006, 62, 152-167

• It is therefore convenient to use a group–subgroup pair
G – H to characterize the symmetry of interpenetrating 
nets.

Finite example:

Cube as two tetrahedra:
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Properties of symmetry-related 
interpenetrating nets

Lemma. Let {Γi} be a set of n nets Γi (i = 1, 2. . .n) which form an orbit with respect 
to a symmetry group G of the whole set. The elements of G which map a net Γi
onto itself form a group H. Then stabilizers of vertices and edges of Γi in H are 
isomorphic to those in the group G.

Baburin, Acta Cryst. Sect. A 2016, 72, 366-375

Theorem. The cosets of H in G do not contain 
mirror reflections (non-intersection requirement)
Remark. The cosets of H in G do not contain any rotation or roto-inversion axes 
which intersect vertices and/or edges of the nets.

vertex: .3m (C3v), edge: 2.mm (C2v)

Stabilizers are the same in a group and a subgroup:
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Generation of interpenetrating nets:
the supergroup method

• Fix an embedding of a 3-periodic net Γ1 in R3, let H be its 
symmetry group

• Replicate Γ1 by a supergroup Gk of H with index n (gn ∈ Gk):
Gk · Γ1 = (H U g2·H U ··· U gn·H) · Γ1 = Γ1 U Γ2 U ··· U Γn

• Characterize interpenetrating nets which arise for different 
supergroups Gk (k = 1,..m) with respect to isotopy classes
and maximal (intrinsic) symmetry groups

Baburin, Acta Cryst. Sect. A 2016, 72, 366-375

How to determine supergroups? How to find H? 
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Group–subgroup vs. group–supergroup
relations

• Let H < G, n = [G : H] is finite
• How to find all supergroups of H isomorphic to G?

• Take a list of subgroups of G with index n. Filter out subgroups 
isomorphic to H.

• For each subgroup determine affine normalizers N(H). 
Consider M = N(H) ∩ N(G).

• In each case the number of supergroups isomorphic to H is given 
by the index [N(H) : M] – it can be infinite!

• Generate the orbit of supergroups by applying the elements of N(H).

Aroyo et al. Phys. Rev. B., 1996, 54, pp. 12744-12752
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Which groups H to take?

• H is a symmetry group of a net embedding
• H ≤ Aut(net); Aut(net) = the automorphism group of a net

• Aut(net) is usually isomorphic to a crystallographic group, and 
can be found using the method of Olaf Delgado

• H is a subgroup of Aut(net) with a finite index
• Restrict the number of vertex orbits: consider minimal groups

with a specified number of vertex orbits

• H’s are subgroups of Aut(net) with the desired number of vertex 
orbits

• Vertex-transitive nets: minimal vertex-transitive groups
(vertex stabilizers are either trivial or have order 2 in R3)
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Groups H’s are fixed – what else?
• Complication: the symmetry group H usually does not fix the 

embedding of a net up to similarity (or even up to isotopy)
• A net can undergo deformations allowed by H: 

subgroup-allowed deformations

• The shape of edges: straight lines or arbitrary curved
segments?

• A solution for practice: keep the embedding in H as in the full 
automorphism group

• Edges are either straight-line segments or V-shaped, 
as allowed by edge stabilizers
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Towards an algorithm

• Find H’s up to conjugacy in Aut(net) – GAP (Cryst, Polycyclic)

• For each group H list all supergroups Gk (k = 1,..m) with index n (m can 
be infinite for fixed n – so be careful) – GAP (Cryst, Carat)

• Take advantage of the restrictions: additional mirrors or other rotation or 
roto-inversion axes which intersect vertices or edges of the net(s) must 
not belong to the supergroups Gk

• Transform the coordinates of vertices and edges from a basis of a group 
to that of a supergroup (take care that stabilizers of vertices and 
edges should be the same in both H and Gk)

• Classify into patterns (Hopf ring nets, TOPOS)

Baburin, Acta Cryst. Sect. A 2016, 72, 366-375
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Example: the (10,3)-d net (utp) and its 
2-fold intergrowths: only three possibilities

Space group: Pnna [=Aut(utp)]

Vertex Stabilizer: trivial

Admissible supergroups of index 2:

Ccce, Pcca, Pban

cf. International Tables for Crystallography, 
Volume A1
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Example: the utp net and its intergrowths

Ccce – Pnna Pcca – Pncn (2b)

+ – + –
+ – – +

+ + – –
+ +  – –
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Example: the utp net and its intergrowths

Ccce Pcca
+ – – –

different handedness

~10 (isostructural) examples in CSD 1 related structure in CSD
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Example: the utp net and its intergrowths

Pban – Pnan (2c)Pnna

1 related structure in CSD
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Classifying and characterizing 
interpenetrating nets

• Now we can generate embeddings of interpenetrating 
nets

• Every embedding is characterized by a group–subgroup 
pair G – H (and it is known by construction)

• How to recognize isotopy classes of interpenetrating 
nets?

• How to find a maximal isometry group for each isotopy
class? G – H → Gmax – Hmax
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Catenation patterns (= isotopy classes)

• Two sets of interpenetrating nets are said to show the same 
catenation (or interpenetration) pattern (= belong to the same 
isotopy class) if they can be deformed into each other without 
edge crossings (more precisely, in this case knot theorists 
speak of ambient isotopy*)

* Cromwell, Knots and Links, Cambridge University Press, 2004

• This may be difficult to check by ‘inspection’ →
look at local properties of catenation (“knotting”), i.e. how 
cycles (= rings) of nets are catenated. If cycles are catenated
differently, then the patterns are distinct.
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Hopf ring net (HRN): 
a tool to classify catenation patterns

Fig. 2 from Alexandrov, Blatov, Proserpio, Acta Cryst. Sect. A 2012, 68, p. 485

• Vertices: barycenters of catenated rings

• Edges: stand for Hopf links between the rings

• Describes the catenation pattern if all links are of Hopf type: 

if HRNs are not isomorphic, then the patterns are different
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Hopf ring net (HRN)

• The valencies of vertices describe the “density of catenation”

• Given isomorphism type of a network, does there exist an 
upper bound for the valencies of vertices in the respective 
HRN if the number of networks in the set is fixed? (In other 
words: are there any combinatorial restrictions on the “density 
of catenation”?)

• The answer is no



Infinite series of non-isotopic patterns
pcu in monoclinic symmetry: P2/m, x=0, y=0, z=0; a = b = c; β = 90°

(vertex-transitive, edge 3-transitive)

• Basis transformation: –n 0 –1 / 0 1 0 / 1 0 0

β = acos(–n/sqrt(n2 + 1))

• Deform the net by setting β = 90° again (a series of deformations)

• Apply supergroup operations (e.g. a 2-fold screw parallel to [100], i.e.,   
original [-n 0 -1] direction) 

n = 0 -> P 21/n 2/m 21/n – P2/m (pcu-c pattern)

n = 1 -> P 21/b 2/m 2/n – P2/m (more ‘knotted’ pattern)

n = 2 -> Pnmn – P2/m

n = 3 -> Pbmn – P2/m, ……….
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Infinite series: local catenation

pcu-c

4 rings catenate
the central

8 rings catenate
the central

12 rings catenate
the central

and so on…
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More on Hopf ring nets (HRN)

Baburin, Acta Cryst. Sect. A 2016, 72, 366-375

• If HRN net is connected and Aut(HRN) is isomorphic to 
a crystallographic group, it is easy to show that the maximal 
symmetry Gmax for a set Γ of interpenetrating nets Γi (i = 1,..n) 
is a subgroup of Aut(HRN): Gmax ≤ Aut(HRN)

This holds for any patterns (i.e., transitive or not)

• For transitive patterns: the index |Gmax : Hmax| = n

• For transitive patterns: Gmax is determined based on subgroup 
relations between Aut(HRN) and Aut(Γi)
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• In general: Gmax ≤ Aut(HRN); Hmax ≤ Aut(Γi)

• Look for the intersection group(s) K = Aut(Γi) ∩ Aut(HRN)

• If the index |Aut(HRN) : K| = n (the number of connected 
components), then Gmax is found: Gmax = Aut(HRN); K = Hmax

• If not, then suppose Hmax = Aut(Γi). To find Gmax, look for 
supergroups of Aut(Γi) with index n which have a subgroup 
relation to Aut(HRN)

• If supergroup search for Aut(Γi) is not successful [or does not 
make sense if Aut(HRN) ≤ Aut(Γi)], it has to be performed for 
subgroups of Aut(Γi)

On the maximal symmetry of a set of 
interpenetrating nets Gmax – Hmax

Baburin, Acta Cryst. Sect. A 2016, 72, 366-375
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Example: a pair of gismondine (gis) networks

Aut(gis) = I41/amd; Aut(HRN) = Pn3m; Aut(HRN) ∩ Aut(gis) = I41/amd.

|Aut(HRN) : Aut(gis)| = 6 → Gmax ≠ Aut(HRN). 

The only supergroup of Aut(gis) = I41/amd with index 2 is P42/nnm (that is 
in turn a subgroup of Aut(HRN) = Pn3m with index 3).

Baburin, Acta Cryst. Sect. A 2016, 72, 366-375

P42/nnm – I41/amd I41/acd – I41/a
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2-fold vertex-transitive dia nets

There are 8 patterns + 2 infinite series

* - first members of infinite series

Assumptions: 

(i) vertex stabilizer has order ≥ 2

(ii) vertices can be displaced from their ideal positions as allowed by stabilizers, 
V-shaped edges and lattice mismatch are allowed
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2-fold dia nets with transitivity 111

I4122 – P41212  (..2)Pn3m – Fd3m (-43m)
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2-fold dia with transitivity 122

I-42d – I212121

as in the cubic 
pattern

8 rings

6 rings
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Interpenetration of 2-periodic layers
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What is special compared to 3-periodic nets?

• The reference embedding of a layer is more uncertain because we 
need a corrugated, wavy layer – its symmetry is described by 
a layer group (2-periodic isometry group in R3)

• All symmetry groups of corrugated vertex-transitive 2-periodic nets 
where all edges incident with the vertices retain equal lengths were 
listed in 1978 by Koch and Fischer (“sphere packings in layer 
groups”)

• A practical way is to keep the vertices in their max. symmetry 
positions in the plane, and consider V-shaped edges running out of 
plane, as allowed by edge stabilizers

mean plane of a layer
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What is special compared to 3-periodic nets?

• Not all group-supergroup pairs yield entangled layers (one layer can 
just lie on top of another)

• This property is net-specific (unfortunately not group-specific!): 
if G – H is a group-subgroup pair of the interpenetration pattern, 
then the symmetry elements from the coset(s) of H in G must 
penetrate the ring to generate a symmetry-related ring that is 
interlaced with it – this is especially relevant for ring-transitive 
embeddings of layers

• What are the symmetry conditions for (Hopf) links?
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Symmetry conditions for (Hopf) links

Which symmetry operations can map 
two interlocked rings onto each other?

• inversion does not generate any link (apart from trivial)
• a mirror does not generate a link (apart from trivial) or induces 

crossings

• 2-fold axis generates a Hopf link if the axis intersects a ring (but none 
of its edges)

• translations, screw rotations, glide reflections can generate Hopf 
links if respective symmetry elements intersect a ring and their
translation component is comparable to the (maximal) lateral 
dimension of a ring

• any rotation axis, -3 and -4 rotoinversion axes (-6 contains a mirror so 
it is forbidden) can generate either Hopf or multiple links (Solomon or 
more complicated)
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Symmetry conditions for (Hopf) links

2-fold axis

glide plane

x xx
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Vertex- and edge-transitive honeycomb layers

• 2-fold interpenetrated honeycomb layers in 2D MOFs etc.:

following the minimal transitivity principle*,
what are the most symmetric patterns
i.e., those with one kind of node and 
one kind of link (edge)?

• Never observed**… do they exist?

• If they do exist, why aren’t they observed?

* M. O’Keeffe et al., Chem. Rev., 2014, 114, 1343
** Blatov, Proserpio et al., CrystEngComm 2017, 19, 1993
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Honeycomb layers: 
both vertex- and edge-transitive groups

• Vertex stabilizer must have order 3 to exchange the edges 
incident with a vertex (edges could be nonplanar arcs)

• Four groups (up to conjugacy) remain
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2-fold interpenetrated hcb-layers

Baburin (2017), available from chemrxiv.org

p622 – p6

Multiple knot

Edges are nonplanar arcs
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2-fold interpenetrated hcb-layers

p622 – p321

Multiple knot

Baburin (2017), available from chemrxiv.org
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2-fold “interpenetrated” hcb-layers

Trivial knot

p-31m – p31m

individual layers are polar
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Polycatenanes

532 432

Cf. Liu, O’Keeffe, Treacy, Yaghi, Chem. Soc. Rev. 2018

Mirrors/inversions can only stabilize vertices (edges) in catenanes
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Conclusions

• A universal recipe to derive interpenetrating nets is developed 
based on group–supergroup relations for crystallographic groups

• Towards rationalization of observed vs. possible patterns

• Deformation equivalence classes of connected components?

• Any relation to physical properties?

Thank you


