Combinatorics of Body-bar-hinge Frameworks

Shin-ichi Tanigawa
based on a handbook chapter with Csaba Király

Tokyo
June 6, 2018

Body-bar-hinge Frameworks

body-bar framework in \mathbb{R}^{3}

body-bar framework in \mathbb{R}^{2}

body-hinge framework in \mathbb{R}^{3}

body-hinge framework in \mathbb{R}^{2}

Why interesting?

- appear in lots of real problems \rightarrow lleana's talk
- rigidity characterization problem can be solved in any dimension.

	rigidity	global rigidity
bar-joint	unsolved	
$(d \leq 2:$ Laman $)$	unsolved	
body-bar	Tay84	Connelly-Jordán-Whiteley13
body-hinge	Tay89, Tay91, Whiteley88	Jordán-Király-T16

Body-bar Frameworks

- A d-dimensional body-bar framework is a pair (G, b) :
- $G=(V, E)$: underlying graph;
- b: a bar-configuration; $E \ni e \mapsto$ a line segment in \mathbb{R}^{d}.

Rigidity, Infinitesimal Rigidity, Global Rigidity

- An equivalent bar-joint framework to (G, b) :

- local rigidity (LR), infinitesimal rigidity (IR), global rigidity (GL) are defined through an equivalent bar-joint framework.
- All the basic results for bar-joint can be transferred e.g., infinitesimal rigidity \Rightarrow rigidity

Maxwell and Tay

Maxwell's condition

If a d-dimensional body-bar framework (G, b) is $I \mathrm{R}$, then

$$
|E(G)| \geq D|V(G)|-D
$$

with $D=\binom{d+1}{2}$.
for $d=3,|E(G)| \geq 6|V(G)|-6$

Maxwell and Tay

Maxwell's condition
If a d-dimensional body-bar framework (G, b) is IR , then

$$
|E(G)| \geq D|V(G)|-D
$$

with $D=\binom{d+1}{2}$.

Maxwell's condition (stronger version)

If a d-dimensional body-bar framework (G, b) is IR, then G contains a spanning subgraph H satisfying

- $|E(H)|=D|V(H)|-D$
- $\forall H^{\prime} \subseteq H,\left|E\left(H^{\prime}\right)\right| \leq D\left|V\left(H^{\prime}\right)\right|-D$

Maxwell and Tay

Maxwell's condition

If a d-dimensional body-bar framework (G, b) is IR , then

$$
|E(G)| \geq D|V(G)|-D
$$

with $D=\binom{d+1}{2}$.

Maxwell's condition (stronger version)

If a d-dimensional body-bar framework (G, b) is IR, then G contains a spanning (D, D)-tight subgraph.

- H is (k, k)-sparse $\stackrel{\text { def }}{\Leftrightarrow} \forall H^{\prime} \subseteq H,\left|E\left(H^{\prime}\right)\right| \leq k\left|V\left(H^{\prime}\right)\right|-k$
- H is (k, k)-tight $\stackrel{\text { def }}{\Leftrightarrow}(k, k)$-sparse $\&|E(H)|=k|V(H)|-k$

Maxwell and Tay

Maxwell's condition

If a d-dimensional body-bar framework (G, b) is IR , then

$$
|E(G)| \geq D|V(G)|-D
$$

with $D=\binom{d+1}{2}$.

Maxwell's condition (stronger version)

If a d-dimensional body-bar framework (G, b) is IR, then G contains a spanning (D, D)-tight subgraph.

- H is (k, k)-sparse $\stackrel{\text { def }}{\Leftrightarrow} \forall H^{\prime} \subseteq H,\left|E\left(H^{\prime}\right)\right| \leq k\left|V\left(H^{\prime}\right)\right|-k$
- H is (k, k)-tight $\stackrel{\text { def }}{\Leftrightarrow}(k, k)$-sparse $\&|E(H)|=k|V(H)|-k$

Theorem (Tay84)

A generic d-dimensional body-bar framework (G, b) is IR (or LR) \Leftrightarrow
G has a spanning (D, D)-tight subgraph.

(Better) Characterizations

Theorem (Tutte61, Nash-Williams61, 64)

TFAE for a graph H :
(1) H contains a spanning (k, k)-tight subgraph;
(2) H contains k edge-disjoint spanning trees;
(3) $e_{G}(\mathcal{P}) \geq k|\mathcal{P}|-k$ for any partition \mathcal{P} of V, where $e_{G}(\mathcal{P})$ denotes the number of edges connecting distinct components of \mathcal{P}.

Proof 1

Based on tree packing (Whiteley88):

Proof 2

Inductive construction (Tay84):

Theorem (Tay84)

G is (k, k)-tight if and only if G can be built up from a single vertex graph by a sequence of the following operation:

- pinch $i(0 \leq i \leq k-1)$ existing edges with a new vertex v, and add $k-i$ new edges connecting v with existing vertices.

Each operation preserves rigidity.

Proof 3

Quick proof (T):

- Prove: a (D, D)-sparse graph G with $|E(G)|=D|V(G)|-D-k$ has k dof.
- Take any edge $e=u v$;
- By induction, $(G-e, b)$ has $k+1$ dof.
- Try all possible bar realizations of e
- If dof does not decrease, body u and body v behave like one body
- $\Rightarrow(G / e, b)$ has $k+1$ dof.
- However, G / e contains a spanning (D, D)-sparse subgraph H with $|E(H)|=D|V(H)|-D-k$, whose generic body-bar realization has k dof by induction, a contradiction.

Body-hinge Frameworks

- A d-dimensional body-hinge framework is a pair (G, h) :
- $G=(V, E)$: underlying graph;
- h : hinge-configuration; $E \ni e \mapsto a(d-2)$-dimensional segment in \mathbb{R}^{d}
- LR, IR, GR are defined by an equivalent bar-joint framework.

body-hinge framework in \mathbb{R}^{2}

Reduction to Body-bar (Whiteley88)

- a hinge \approx five bars passing through a line

- body-hinge framework $(G, h) \approx$ body-bar framework $((D-1) G, b)$
- $k G$: the graph obtained by replacing each edge with k parallel edges

Reduction to Body-bar (Whiteley88)

- a hinge \approx five bars passing through a line

- body-hinge framework $(G, h) \approx$ body-bar framework $((D-1) G, b)$
- $k G$: the graph obtained by replacing each edge with k parallel edges

Maxwell's condition

If a d-dimensional body-hinge framework (G, h) is IR , then $(D-1) G$ contains D edge-disjoint spanning trees.

Maxwell, Tay, and Whiteley

Theorem (Tay 89,91, Whiteley 88)
A generic d-dimensional body-hinge framework (G, b) is LR $(\mathrm{IR}) \Leftrightarrow$ $(D-1) G$ contains D edge-disjoint spanning trees.

- Proof 1 can be applied
- an equivalent body-bar framework is non-generic
- Body-bar-hinge frameworks (Jackson-Jordán09)
- Q. Any quick proof (without tree packing)?

Molecular Frameworks

- square of $G: G^{2}=\left(V(G), E(G)^{2}\right)$
- $E(G)^{2}=\left\{u v: d_{G}(u, v) \leq 2\right\}$

G

G^{2}

Molecular Frameworks

- square of $G: G^{2}=\left(V(G), E(G)^{2}\right)$
- $E(G)^{2}=\left\{u v: d_{G}(u, v) \leq 2\right\}$

G

G^{2}

- molecular framework: a three-dimensional body-hinge framework in which hinges incident to each body are concurrent.
- $G^{2} \Leftrightarrow$ a molecular framework (G, h)

Molecular Frameworks

- square of $G: G^{2}=\left(V(G), E(G)^{2}\right)$

$$
\text { - } E(G)^{2}=\left\{u v: d_{G}(u, v) \leq 2\right\}
$$

G

G^{2}

- molecular framework: a three-dimensional body-hinge framework in which hinges incident to each body are concurrent.
- $G^{2} \Leftrightarrow$ a molecular framework (G, h)
molecular framework (G, h) is $\mathrm{LR} \Rightarrow$
$5 G$ contains six edge-disjoint spanning trees.

Theorem (Katoh-T11)

generic molecular framework (G, h) is $\mathrm{LR} \Leftrightarrow$ $5 G$ contains six edge-disjoint spanning trees.

- a refined version: a characterization of rigid component decom.
- fast algorithms for computing static properties of molecules
* Ileana's talk
- graphical analysis of molecular mechanics
- a rank formula of G^{2} in the 3-d rigidity matroid (Jackon-Jordán08)
- Open: a rank formula of a subgraph of G^{2}

Plate-bar Frameworks

- a d-dim. k-plate-bar framework
- vertex $=k$-plate (k-dim. body)
- edge $=a$ bar linking k-plates
- $k=d$: body-bar framework
- $k=0$: bar-joint framework

Plate-bar Frameworks

- a d-dim. k-plate-bar framework
- vertex $=k$-plate (k-dim. body)
- edge $=a$ bar linking k-plates
- $k=d$: body-bar framework
- $k=0$: bar-joint framework

Theorem (Tay 89, 91)
A generic $(d-2)$-plate-bar framework in \mathbb{R}^{d} is $\mathrm{LR} \Leftrightarrow$ G contains a ($D-1, D$)-tight spanning subgraph.

- Corollary: a characterization of identified body-hinge framework.
- Open: characterization of the rigidity of generic $(d-3)$-plate-bar framework for large d.

Body-pin Frameworks

- A d-dimensional body-pin framework is a pair (G, p) :
- G : underlying graph;
- $p: E(G) \rightarrow \mathbb{R}^{d}:$ a pin-configuration.
- a pin $\approx d$ bars

Maxwell's condition

If a 3-dimensional body-pin framework (G, p) is rigid, then $3 G$ contains six edge-disjoint spanning trees.

Beyond Maxwell

Conjecture

A generic three-dimensional body-pin framework is rigid iff

$$
\sum_{\left\{X, X^{\prime}\right\} \in\binom{\mathcal{P}}{2}} h_{G}\left(X, X^{\prime}\right) \geq 6(|\mathcal{P}|-1)
$$

for every partition \mathcal{P} of V, where $\binom{\mathcal{P}}{2}$ denotes the set of pairs of subsets in \mathcal{P} and

$$
h_{G}\left(X, X^{\prime}\right)= \begin{cases}6 & \text { if } d_{G}\left(X, X^{\prime}\right) \geq 3 \\ 5 & \text { if } d_{G}\left(X, X^{\prime}\right)=2 \\ 3 & \text { if } d_{G}\left(X, X^{\prime}\right)=1 \\ 0 & \text { if } d_{G}\left(X, X^{\prime}\right)=0\end{cases}
$$

- If h_{G} were defined to be $h_{G}\left(X, X^{\prime}\right)=6$ for $d_{G}\left(X, X^{\prime}\right)=2$, it is Maxwell.

Symmetric Body-bar-hinge Frameworks

- \mathcal{C}_{s} : a reflection group
- A \mathcal{C}_{s}-symmetric body-bar(-hinge) framework (G, b)

Symmetric Body-bar-hinge Frameworks

- \mathcal{C}_{s} : a reflection group
- A \mathcal{C}_{S}-symmetric body-bar(-hinge) framework (G, b)

- the underlying quatiant signed graph G^{σ}
- L_{0} : the set of loops "fixed by the action"

Theorem(Schulze-T14)

A "generic" body-bar (G, b) with reflection symmetry is \mathbb{R} in $\mathbb{R}^{3} \Leftrightarrow$ $G^{\sigma}-L_{0}$ contains edge-disjoint

- three spanning trees, and
- three non-bipartite pseudo-forests.
- pseudo-tree: each connected component has exactly one cycle
- bipartite: if every cycle has even number of minus edges

Theorem(Schulze-T14)

A "generic" body-bar (G, b) with reflection symmetry is IR in $\mathbb{R}^{3} \Leftrightarrow$ $G^{\sigma}-L_{0}$ contains edge-disjoint

- three spanning trees, and
- three non-bipartite pseudo-forests.
- periodic (crystallographic) infinite body-bar frameworks (Borcea-Streinu-T15, Ross14, Schulze-T14, T15)
- Proof 1 works only if the underlying symmetry is $\mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}$.
- Proof 3 works for any case
- body-hinge frameworks with symmetry
- Proof 1 works if $\mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}$.
- open for other cases

Bar-joint Frameworks with Boundaries

- body-bar framework with boundaries: some of bodies are linked by bars to the external (fixed) environment
- = a body-bar framework with a designated body (corresponding to the external environment)

Characterization with non-generic boundaries

Theorem (Katoh and T13)

G : a graph with a designated vertex v_{0};
E_{0} : the set of edges in G incident to v_{0};
$b^{0}(e)$: a line segment for $e \in E_{0}$.
Then one can extend b^{0} to b s.t. (G, b) is $\mathrm{IR} \Leftrightarrow$

$$
e_{G}(\mathcal{P}) \geq D|\mathcal{P}|-\sum_{X \in \mathcal{P}} \operatorname{dim} \operatorname{span}\left\{\tilde{b}(e): e \in E_{0}(X)\right\}
$$

for every partition \mathcal{P} of $V(G) \backslash\left\{v_{0}\right\}$, where
$E_{0}(X)$ is the set of edges in E_{0} incident to X and $\tilde{b}(e)$ is the Plücker coordinate of the line segment $b(e)$.

- subspace-constrained system

Basic Tree Packing

- $G=(V, E)$: a graph with a designated vertex v_{0};
- E_{0} : the set of edges in G incident to v_{0};
- x_{e} : a vector in \mathbb{R}^{k} for each $e \in E_{0}$.

A packing of edge-disjoint trees T_{1}, \ldots, T_{s} is basic if each $v \in V \backslash\left\{v_{0}\right\}$ receives a base of \mathbb{R}^{k} from v_{0} through T_{1}, \ldots, T_{s}.

Theorem(Katoh-T13)

\exists a basic packing $\Leftrightarrow e_{G}(\mathcal{P}) \geq k|\mathcal{P}|-\sum_{X \in \mathcal{P}} \operatorname{dim} \operatorname{sp}\left\{x_{e}: e \in E_{0}(X)\right\}(\forall \mathcal{P})$

$23 / 29$

Other Variants

- generic infinite frameworks (Kiston-Power13)
- different normed space (Kiston-Power13)
- body-bar frameworks with direction-length constraints (Jackson-Nguyen15)
- a characterization is still open
- angle constrained (Haller et al.12)

Global Rigidity

Theorem (Hendrickson92)

If a generic bar-joint framework is globally rigid in \mathbb{R}^{d}, then the underlying graph is a complete graph, or $(d+1)$-connected and redundantly rigid.

- sufficient in $d \leq 2$ (Jackson-Jordán05)
- may not in $d \geq 3$ (Connelly)

Connelly, Jordán, and Whiteley

Theorem (Connelly, Jordán, and Whiteley13)
A generic d-dimensional body-bar framework (G, b) is $G R \Leftrightarrow$ $\forall e \in E(G), G-e$ contains D edge-disjoint spanning trees.

- Proof 1: Inductive construction (Frank and Szegö03)
- Proof 2: The underlying graph of an equivalent bar-joint framework is vertex-redundantly rigid.
- A generic bar-joint framework is GR if the underlying graph is vertex-redundantly rigid. (T15)
- Proof 3: the same approach as Proof 3 for IR

Orientation Theorem

A characterization of ℓ-edge-redundantly rigid body-bar frameworks.
Theorem (Frank80)
TFAE for a graph.

- After deleting any ℓ edges it contains k edge-disjoint spanning trees
- it admits an r-rooted (k, ℓ)-edge-connected orientation for $r \in V(G)$.

A digraph D is r-rooted (k, ℓ)-edge-connected $\stackrel{\text { def }}{\Leftrightarrow}$ for any $v \in V(G)$,

- there are k arc-disjoint paths from r to v;
- there are ℓ arc-disjoint paths from v to r.

Body-hinge

Theorem (Jordán, Király, T16)
A generic d-dimensional body-hinge framework (G, b) is $\mathrm{GR} \Leftrightarrow$ $\forall e \in E(D G), D G-e$ contains D edge-disjoint spanning trees.

Body-hinge

Theorem (Jordán, Király, T16)

A generic d-dimensional body-hinge framework (G, b) is $\mathrm{GR} \Leftrightarrow$ $\forall e \in E(D G), D G-e$ contains D edge-disjoint spanning trees.

Corollary

a family of graphs which satisfy Hendrickson's condition but are not GR

- Take a graph H that contains six edge-disjoint spanning trees but $H-e$ does not for some $e \in E(H)$.
- Construct an equivalent bar-joint framework by replacing each body with a dense subgraph.

Open: Global Rigidity of G^{2}

