Combinatorics of Body-bar-hinge Frameworks

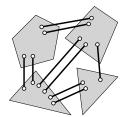
Shin-ichi Tanigawa based on a handbook chapter with Csaba Király

Tokyo

June 6, 2018

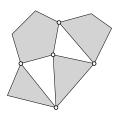
Body-bar-hinge Frameworks

body-bar framework in $\ensuremath{\mathbb{R}}^3$



body-bar framework in \mathbb{R}^2

body-hinge framework in \mathbb{R}^3



body-hinge framework in \mathbb{R}^2

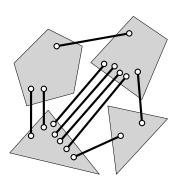
Why interesting?

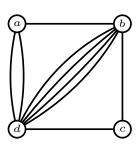
- ullet appear in lots of real problems o Ileana's talk
- rigidity characterization problem can be solved in any dimension.

	rigidity	global rigidity
bar-joint	unsolved	unsolved
	$(d \leq 2$: Laman)	$(d \leq 2$: Jackson-Jordán $05)$
body-bar	Tay84	Connelly-Jordán-Whiteley13
body-hinge	Tay89, Tay91, Whiteley88	Jordán-Király-T16

Body-bar Frameworks

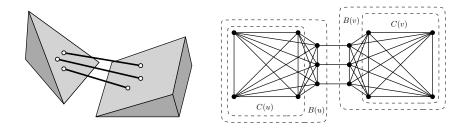
- A *d*-dimensional body-bar framework is a pair (G, b):
 - G = (V, E): underlying graph;
 - ▶ b: a bar-configuration; $E \ni e \mapsto$ a line segment in \mathbb{R}^d .





Rigidity, Infinitesimal Rigidity, Global Rigidity

• An equivalent bar-joint framework to (G, b):



- local rigidity (LR), infinitesimal rigidity (IR), global rigidity (GL) are defined through an equivalent bar-joint framework.
- All the basic results for bar-joint can be transferred e.g., infinitesimal rigidity ⇒ rigidity

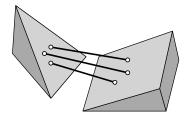
Maxwell's condition

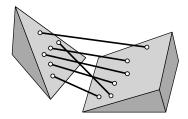
If a d-dimensional body-bar framework (G, b) is IR, then

$$|E(G)| \geq D|V(G)| - D$$

with
$$D = \binom{d+1}{2}$$
.

for
$$d = 3$$
, $|E(G)| \ge 6|V(G)| - 6$





Maxwell's condition

If a d-dimensional body-bar framework (G, b) is IR, then

$$|E(G)| \geq D|V(G)| - D$$

with $D = \binom{d+1}{2}$.

Maxwell's condition (stronger version)

If a d-dimensional body-bar framework (G, b) is IR, then G contains a spanning subgraph H satisfying

- |E(H)| = D|V(H)| D
- $\forall H' \subseteq H, |E(H')| \leq D|V(H')| D$

Maxwell's condition

If a d-dimensional body-bar framework (G, b) is IR, then

$$|E(G)| \geq D|V(G)| - D$$

with $D = \binom{d+1}{2}$.

Maxwell's condition (stronger version)

If a d-dimensional body-bar framework (G, b) is IR, then G contains a spanning (D, D)-tight subgraph.

- H is (k, k)-sparse $\stackrel{\text{def}}{\Leftrightarrow} \forall H' \subseteq H, |E(H')| \le k|V(H')| k$
- H is (k, k)-tight $\stackrel{\text{def}}{\Leftrightarrow} (k, k)$ -sparse & |E(H)| = k|V(H)| k

Maxwell's condition

If a d-dimensional body-bar framework (G, b) is IR, then

$$|E(G)| \geq D|V(G)| - D$$

with $D = \binom{d+1}{2}$.

Maxwell's condition (stronger version)

If a d-dimensional body-bar framework (G,b) is IR, then G contains a spanning (D,D)-tight subgraph.

- H is (k, k)-sparse $\stackrel{\text{def}}{\Leftrightarrow} \forall H' \subseteq H, |E(H')| \le k|V(H')| k$
- H is (k, k)-tight $\stackrel{\text{def}}{\Leftrightarrow} (k, k)$ -sparse & |E(H)| = k|V(H)| k

Theorem (Tay84)

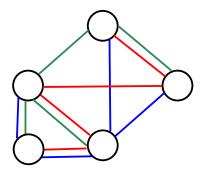
A generic *d*-dimensional body-bar framework (G, b) is IR (or LR) \Leftrightarrow G has a spanning (D, D)-tight subgraph.

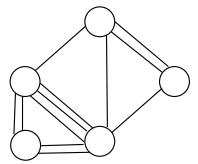
(Better) Characterizations

Theorem (Tutte61, Nash-Williams61, 64)

TFAE for a graph H:

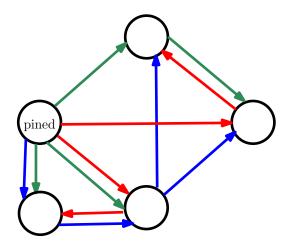
- **1** H contains a spanning (k, k)-tight subgraph;
- ② H contains k edge-disjoint spanning trees;
- **③** $e_G(\mathcal{P}) \ge k|\mathcal{P}| k$ for any partition \mathcal{P} of V, where $e_G(\mathcal{P})$ denotes the number of edges connecting distinct components of \mathcal{P} .





Proof 1

Based on tree packing (Whiteley88):



Proof 2

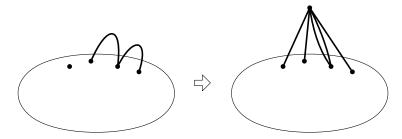
Inductive construction (Tay84):

Theorem (Tay84)

G is (k, k)-tight if and only if G can be built up from a single vertex graph by a sequence of the following operation:

• pinch i ($0 \le i \le k-1$) existing edges with a new vertex v, and add k-i new edges connecting v with existing vertices.

Each operation preserves rigidity.



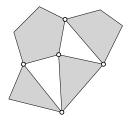
Proof 3

Quick proof (T):

- Prove: a (D, D)-sparse graph G with |E(G)| = D|V(G)| D k has k dof.
- Take any edge e = uv;
- By induction, (G e, b) has k + 1 dof.
- Try all possible bar realizations of e
- If dof does not decrease, body u and body v behave like one body
- \Rightarrow (G/e, b) has k + 1 dof.
- However, G/e contains a spanning (D, D)-sparse subgraph H with |E(H)| = D|V(H)| D k, whose generic body-bar realization has k dof by induction, a contradiction.

Body-hinge Frameworks

- A d-dimensional body-hinge framework is a pair (G, h):
 - ightharpoonup G = (V, E): underlying graph;
 - ▶ h: hinge-configuration; $E \ni e \mapsto a \ (d-2)$ -dimensional segment in \mathbb{R}^d
- LR, IR, GR are defined by an equivalent bar-joint framework.

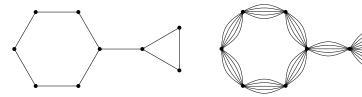


body-hinge framework in \mathbb{R}^2

Reduction to Body-bar (Whiteley88)

ullet a hinge pprox five bars passing through a line

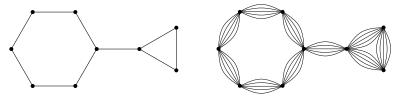
- ullet body-hinge framework $(G,h) pprox ext{body-bar framework} ((D-1)G,b)$
 - ▶ kG: the graph obtained by replacing each edge with k parallel edges



Reduction to Body-bar (Whiteley88)

ullet a hinge pprox five bars passing through a line

- ullet body-hinge framework $(G,h)pprox {
 m body-bar}$ framework ((D-1)G,b)
 - \blacktriangleright kG: the graph obtained by replacing each edge with k parallel edges



Maxwell's condition

If a *d*-dimensional body-hinge framework (G, h) is IR, then (D-1)G contains D edge-disjoint spanning trees.

Maxwell, Tay, and Whiteley

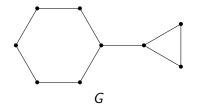
Theorem (Tay 89,91, Whiteley 88)

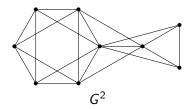
A generic d-dimensional body-hinge framework (G, b) is LR (IR) \Leftrightarrow (D-1)G contains D edge-disjoint spanning trees.

- Proof 1 can be applied
 - ▶ an equivalent body-bar framework is non-generic
- Body-bar-hinge frameworks (Jackson-Jordán09)
- Q. Any quick proof (without tree packing)?

Molecular Frameworks

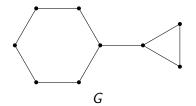
- square of $G: G^2 = (V(G), E(G)^2)$
 - ► $E(G)^2 = \{uv : d_G(u, v) \le 2\}$

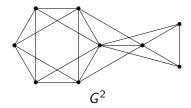




Molecular Frameworks

- square of G: $G^2 = (V(G), E(G)^2)$
 - ► $E(G)^2 = \{uv : d_G(u, v) \le 2\}$

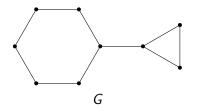


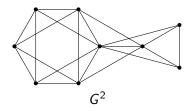


- molecular framework: a three-dimensional body-hinge framework in which hinges incident to each body are concurrent.
 - ▶ $G^2 \Leftrightarrow$ a molecular framework (G, h)

Molecular Frameworks

- square of G: $G^2 = (V(G), E(G)^2)$
 - ► $E(G)^2 = \{uv : d_G(u, v) \le 2\}$





- molecular framework: a three-dimensional body-hinge framework in which hinges incident to each body are concurrent.
 - $G^2 \Leftrightarrow$ a molecular framework (G, h)

molecular framework (G, h) is LR \Rightarrow 5G contains six edge-disjoint spanning trees.

Theorem (Katoh-T11)

generic molecular framework (G, h) is LR \Leftrightarrow 5G contains six edge-disjoint spanning trees.

- a refined version: a characterization of rigid component decom.
 - ▶ fast algorithms for computing static properties of molecules
 - ★ Ileana's talk
 - graphical analysis of molecular mechanics
- a rank formula of G^2 in the 3-d rigidity matroid (Jackon-Jordán08)
 - ▶ Open: a rank formula of a subgraph of G^2

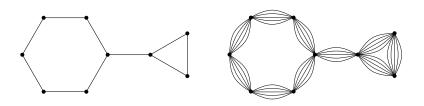


Plate-bar Frameworks

- a *d*-dim. *k*-plate-bar framework
 - vertex = k-plate (k-dim. body)
 - ▶ edge = a bar linking *k*-plates
- k = d: body-bar framework
- k = 0: bar-joint framework

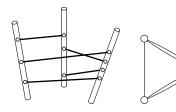
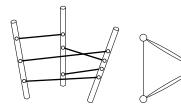


Plate-bar Frameworks

- a *d*-dim. *k*-plate-bar framework
 - vertex = k-plate (k-dim. body)
 - ► edge = a bar linking *k*-plates
- k = d: body-bar framework
- k = 0: bar-joint framework



Theorem (Tay 89, 91)

A generic (d-2)-plate-bar framework in \mathbb{R}^d is LR \Leftrightarrow G contains a (D-1,D)-tight spanning subgraph.

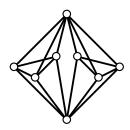
- Corollary: a characterization of identified body-hinge framework.
- Open: characterization of the rigidity of generic (d-3)-plate-bar framework for large d.

Body-pin Frameworks

- A *d*-dimensional body-pin framework is a pair (G, p):
 - ► *G*: underlying graph;
 - $p: E(G) \to \mathbb{R}^d$: a pin-configuration.
- a pin $\approx d$ bars

Maxwell's condition

If a 3-dimensional body-pin framework (G, p) is rigid, then 3G contains six edge-disjoint spanning trees.



Beyond Maxwell

Conjecture

A generic three-dimensional body-pin framework is rigid iff

$$\sum_{\{X,X'\}\in \binom{\mathcal{P}}{2}} h_{\mathcal{G}}(X,X') \geq 6(|\mathcal{P}|-1)$$

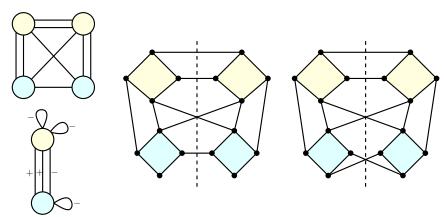
for every partition $\mathcal P$ of V, where $\binom{\mathcal P}{2}$ denotes the set of pairs of subsets in $\mathcal P$ and

$$h_G(X, X') = \begin{cases} 6 & \text{if } d_G(X, X') \ge 3\\ 5 & \text{if } d_G(X, X') = 2\\ 3 & \text{if } d_G(X, X') = 1\\ 0 & \text{if } d_G(X, X') = 0. \end{cases}$$

• If h_G were defined to be $h_G(X, X') = 6$ for $d_G(X, X') = 2$, it is Maxwell.

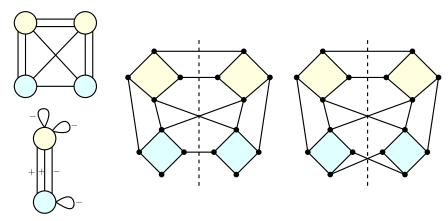
Symmetric Body-bar-hinge Frameworks

- ullet \mathcal{C}_s : a reflection group
- A C_s -symmetric body-bar(-hinge) framework (G, b)



Symmetric Body-bar-hinge Frameworks

- \bullet C_s : a reflection group
- A C_s -symmetric body-bar(-hinge) framework (G, b)

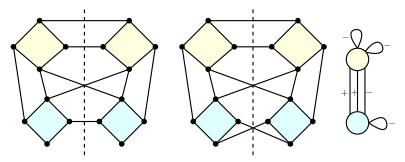


- ullet the underlying quatiant signed graph G^{σ}
- L₀: the set of loops "fixed by the action"

Theorem(Schulze-T14)

A "generic" body-bar (G, b) with reflection symmetry is IR in $\mathbb{R}^3 \Leftrightarrow G^{\sigma} - L_0$ contains edge-disjoint

- three spanning trees, and
- three non-bipartite pseudo-forests.
- pseudo-tree: each connected component has exactly one cycle
- bipartite: if every cycle has even number of minus edges



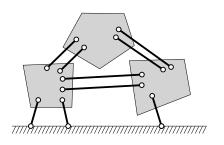
Theorem(Schulze-T14)

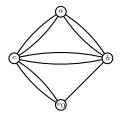
A "generic" body-bar (G,b) with reflection symmetry is IR in $\mathbb{R}^3\Leftrightarrow G^\sigma-L_0$ contains edge-disjoint

- three spanning trees, and
- three non-bipartite pseudo-forests.
- periodic (crystallographic) infinite body-bar frameworks (Borcea-Streinu-T15, Ross14, Schulze-T14, T15)
 - ▶ Proof 1 works only if the underlying symmetry is $\mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2$.
 - Proof 3 works for any case
- body-hinge frameworks with symmetry
 - ▶ Proof 1 works if $\mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2$.
 - open for other cases

Bar-joint Frameworks with Boundaries

- body-bar framework with boundaries: some of bodies are linked by bars to the external (fixed) environment
- = a body-bar framework with a designated body (corresponding to the external environment)





Characterization with non-generic boundaries

Theorem (Katoh and T13)

G: a graph with a designated vertex v_0 ;

 E_0 : the set of edges in G incident to v_0 ;

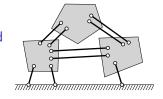
 $b^0(e)$: a line segment for $e \in E_0$.

Then one can extend b^0 to b s.t. (G, b) is IR \Leftrightarrow

$$e_G(\mathcal{P}) \geq D|\mathcal{P}| - \sum_{X \in \mathcal{P}} \dim \, \operatorname{span} \{ \tilde{b}(e) : e \in E_0(X) \}$$

for every partition \mathcal{P} of $V(G) \setminus \{v_0\}$, where $E_0(X)$ is the set of edges in E_0 incident to X and $\tilde{b}(e)$ is the Plücker coordinate of the line segment b(e).

subspace-constrained system



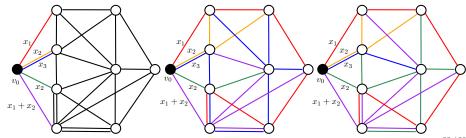
Basic Tree Packing

- G = (V, E): a graph with a designated vertex v_0 ;
- E_0 : the set of edges in G incident to v_0 ;
- x_e : a vector in \mathbb{R}^k for each $e \in E_0$.

A packing of edge-disjoint trees T_1, \ldots, T_s is basic if each $v \in V \setminus \{v_0\}$ receives a base of \mathbb{R}^k from v_0 through T_1, \ldots, T_s .

Theorem(Katoh-T13)

 \exists a basic packing $\Leftrightarrow e_G(\mathcal{P}) \ge k|\mathcal{P}| - \sum_{X \in \mathcal{P}} \dim \operatorname{sp}\{x_e : e \in E_0(X)\}\ (\forall \mathcal{P})$



Other Variants

- generic infinite frameworks (Kiston-Power13)
- different normed space (Kiston-Power13)
- body-bar frameworks with direction-length constraints (Jackson-Nguyen15)
 - a characterization is still open
- angle constrained (Haller et al.12)

Global Rigidity

Theorem (Hendrickson92)

If a generic bar-joint framework is globally rigid in \mathbb{R}^d , then the underlying graph is a complete graph, or (d+1)-connected and redundantly rigid.

- sufficient in $d \le 2$ (Jackson-Jordán05)
- may not in $d \ge 3$ (Connelly)

Connelly, Jordán, and Whiteley

Theorem (Connelly, Jordán, and Whiteley13)

A generic *d*-dimensional body-bar framework (G, b) is GR \Leftrightarrow $\forall e \in E(G)$, G - e contains D edge-disjoint spanning trees.

- Proof 1: Inductive construction (Frank and Szegö03)
- Proof 2: The underlying graph of an equivalent bar-joint framework is vertex-redundantly rigid.
 - ▶ A generic bar-joint framework is GR if the underlying graph is vertex-redundantly rigid. (T15)
- Proof 3: the same approach as Proof 3 for IR

Orientation Theorem

A characterization of ℓ -edge-redundantly rigid body-bar frameworks.

Theorem (Frank80)

TFAE for a graph.

- After deleting any ℓ edges it contains k edge-disjoint spanning trees
- it admits an r-rooted (k, ℓ) -edge-connected orientation for $r \in V(G)$.

A digraph D is r-rooted (k, ℓ) -edge-connected $\overset{\text{def}}{\Leftrightarrow}$ for any $v \in V(G)$,

- there are k arc-disjoint paths from r to v;
- there are ℓ arc-disjoint paths from v to r.

Body-hinge

Theorem (Jordán, Király, T16)

A generic d-dimensional body-hinge framework (G, b) is $GR \Leftrightarrow \forall e \in E(DG)$, DG - e contains D edge-disjoint spanning trees.

Body-hinge

Theorem (Jordán, Király, T16)

A generic *d*-dimensional body-hinge framework (G, b) is $GR \Leftrightarrow \forall e \in E(DG)$, DG - e contains D edge-disjoint spanning trees.

Corollary

a family of graphs which satisfy Hendrickson's condition but are not GR

- Take a graph H that contains six edge-disjoint spanning trees but H-e does not for some $e \in E(H)$.
- Construct an equivalent bar-joint framework by replacing each body with a dense subgraph.

Open: Global Rigidity of G^2

