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Why interesting?

appear in lots of real problems → Ileana’s talk

rigidity characterization problem can be solved in any dimension.

rigidity global rigidity

bar-joint
unsolved

(d ≤ 2: Laman)
unsolved

(d ≤ 2: Jackson-Jordán05)

body-bar Tay84 Connelly-Jordán-Whiteley13

body-hinge Tay89, Tay91, Whiteley88 Jordán-Király-T16

3 / 29



Body-bar Frameworks

A d-dimensional body-bar framework is a pair (G , b):
▶ G = (V ,E ): underlying graph;
▶ b: a bar-configuration; E ∋ e 7→ a line segment in Rd .

d

a

c

b
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Rigidity, Infinitesimal Rigidity, Global Rigidity

An equivalent bar-joint framework to (G , b):

C(u)

C(v)

B(u)

B(v)

local rigidity (LR), infinitesimal rigidity (IR), global rigidity (GL) are
defined through an equivalent bar-joint framework.

All the basic results for bar-joint can be transferred
e.g., infinitesimal rigidity ⇒ rigidity

5 / 29



Maxwell and Tay

Maxwell’s condition

If a d-dimensional body-bar framework (G , b) is IR, then

|E (G )| ≥ D|V (G )| − D

with D =
(d+1

2

)
.

for d = 3, |E (G )| ≥ 6|V (G )| − 6

Maxwell’s condition (stronger version)

If a d-dimensional body-bar framework (G , b) is IR, then G contains a
spanning (D,D)-tight subgraph.

H is (k, k)-sparse
def⇔ ∀H ′ ⊆ H, |E (H ′)| ≤ k |V (H ′)| − k

H is (k, k)-tight
def⇔ (k , k)-sparse & |E (H)| = k|V (H)| − k

Theorem (Tay84)

A generic d-dimensional body-bar framework (G , b) is IR (or LR) ⇔
G has a spanning (D,D)-tight subgraph.
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(Better) Characterizations

Theorem (Tutte61, Nash-Williams61, 64)

TFAE for a graph H:

1 H contains a spanning (k , k)-tight subgraph;

2 H contains k edge-disjoint spanning trees;

3 eG (P) ≥ k |P| − k for any partition P of V , where eG (P) denotes the
number of edges connecting distinct components of P.
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Proof 1

Based on tree packing (Whiteley88):

pined
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Proof 2

Inductive construction (Tay84):

Theorem (Tay84)

G is (k, k)-tight if and only if G can be built up from a single vertex graph
by a sequence of the following operation:

pinch i (0 ≤ i ≤ k − 1) existing edges with a new vertex v , and add
k − i new edges connecting v with existing vertices.

Each operation preserves rigidity.
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Proof 3

Quick proof (T):

Prove: a (D,D)-sparse graph G with |E (G )| = D|V (G )| −D − k has
k dof.

Take any edge e = uv ;

By induction, (G − e, b) has k + 1 dof.

Try all possible bar realizations of e

If dof does not decrease, body u and body v behave like one body

⇒ (G/e, b) has k + 1 dof.

However, G/e contains a spanning (D,D)-sparse subgraph H with
|E (H)| = D|V (H)| −D − k , whose generic body-bar realization has k
dof by induction, a contradiction.
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Body-hinge Frameworks

A d-dimensional body-hinge framework is a pair (G , h):
▶ G = (V ,E ): underlying graph;
▶ h: hinge-configuration; E ∋ e 7→ a (d − 2)-dimensional segment in Rd

LR, IR, GR are defined by an equivalent bar-joint framework.

body-hinge framework in R2

11 / 29



Reduction to Body-bar (Whiteley88)

a hinge ≈ five bars passing through a line

body-hinge framework (G , h) ≈ body-bar framework ((D − 1)G , b)
▶ kG : the graph obtained by replacing each edge with k parallel edges

Maxwell’s condition

If a d-dimensional body-hinge framework (G , h) is IR,
then (D − 1)G contains D edge-disjoint spanning trees.
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Maxwell, Tay, and Whiteley

Theorem (Tay 89,91, Whiteley 88)

A generic d-dimensional body-hinge framework (G , b) is LR (IR) ⇔
(D − 1)G contains D edge-disjoint spanning trees.

Proof 1 can be applied
▶ an equivalent body-bar framework is non-generic

Body-bar-hinge frameworks (Jackson-Jordán09)

Q. Any quick proof (without tree packing)?
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Molecular Frameworks

square of G : G 2 = (V (G ),E (G )2)
▶ E (G )2 = {uv : dG (u, v) ≤ 2}

G G 2

molecular framework: a three-dimensional body-hinge framework in
which hinges incident to each body are concurrent.

▶ G 2 ⇔ a molecular framework (G , h)

molecular framework (G , h) is LR ⇒
5G contains six edge-disjoint spanning trees.
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Theorem (Katoh-T11)

generic molecular framework (G , h) is LR ⇔
5G contains six edge-disjoint spanning trees.

a refined version: a characterization of rigid component decom.
▶ fast algorithms for computing static properties of molecules

⋆ Ileana’s talk

▶ graphical analysis of molecular mechanics

a rank formula of G 2 in the 3-d rigidity matroid (Jackon-Jordán08)
▶ Open: a rank formula of a subgraph of G 2
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Plate-bar Frameworks

a d-dim. k-plate-bar framework
▶ vertex = k-plate (k-dim. body)
▶ edge = a bar linking k-plates

k = d : body-bar framework

k = 0: bar-joint framework

Theorem (Tay 89, 91)

A generic (d − 2)-plate-bar framework in Rd is LR ⇔
G contains a (D − 1,D)-tight spanning subgraph.

Corollary: a characterization of identified body-hinge framework.

Open: characterization of the rigidity of generic (d − 3)-plate-bar
framework for large d .
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Body-pin Frameworks

A d-dimensional body-pin framework is a pair (G , p):
▶ G : underlying graph;
▶ p : E (G ) → Rd : a pin-configuration.

a pin ≈ d bars

Maxwell’s condition

If a 3-dimensional body-pin framework (G , p) is rigid, then 3G contains six
edge-disjoint spanning trees.
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Beyond Maxwell

Conjecture

A generic three-dimensional body-pin framework is rigid iff∑
{X ,X ′}∈(P2 )

hG (X ,X ′) ≥ 6(|P| − 1)

for every partition P of V , where
(P
2

)
denotes the set of pairs of subsets in

P and

hG (X ,X ′) =


6 if dG (X ,X ′) ≥ 3

5 if dG (X ,X ′) = 2

3 if dG (X ,X ′) = 1

0 if dG (X ,X ′) = 0.

If hG were defined to be hG (X ,X ′) = 6 for dG (X ,X ′) = 2, it is
Maxwell.

18 / 29



Symmetric Body-bar-hinge Frameworks

Cs : a reflection group

A Cs -symmetric body-bar(-hinge) framework (G , b)

−

−

−

−

+ +

the underlying quatiant signed graph Gσ

L0: the set of loops ”fixed by the action”
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Theorem(Schulze-T14)

A ”generic” body-bar (G , b) with reflection symmetry is IR in R3 ⇔
Gσ − L0 contains edge-disjoint

three spanning trees, and

three non-bipartite pseudo-forests.

pseudo-tree: each connected component has exactly one cycle
bipartite: if every cycle has even number of minus edges

−

−

−

−

+ +

periodic (crystallographic) infinite body-bar frameworks
(Borcea-Streinu-T15, Ross14, Schulze-T14, T15)

▶ Proof 1 works only if the underlying symmetry is Z2 × · · · × Z2.
▶ Proof 3 works for any case

body-hinge frameworks with symmetry
▶ Proof 1 works if Z2 × · · · × Z2.
▶ open for other cases
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Bar-joint Frameworks with Boundaries

body-bar framework with boundaries: some of bodies are linked by
bars to the external (fixed) environment

= a body-bar framework with a designated body (corresponding to
the external environment)

v0

a

c b
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Characterization with non-generic boundaries

Theorem (Katoh and T13)

G : a graph with a designated vertex v0;
E0: the set of edges in G incident to v0;
b0(e): a line segment for e ∈ E0.
Then one can extend b0 to b s.t. (G , b) is IR ⇔

eG (P) ≥ D|P| −
∑
X∈P

dim span{b̃(e) : e ∈ E0(X )}

for every partition P of V (G ) \ {v0}, where
E0(X ) is the set of edges in E0 incident to X and
b̃(e) is the Plücker coordinate of the line segment b(e).

subspace-constrained
system

v0

a

c b
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Basic Tree Packing

G = (V ,E ): a graph with a designated vertex v0;

E0: the set of edges in G incident to v0;

xe : a vector in Rk for each e ∈ E0.

A packing of edge-disjoint trees T1, . . . ,Ts is basic if each v ∈ V \ {v0} receives
a base of Rk from v0 through T1, . . . ,Ts .

Theorem(Katoh-T13)
∃ a basic packing ⇔ eG (P) ≥ k|P| −

∑
X∈P dim sp{xe : e ∈ E0(X )} (∀P)

v0

x1

x2

x3

x1 + x2

x2

v0

x1
x2

x3

x1 + x2

x2

v0

x1
x2

x3

x1 + x2

x2
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Other Variants

generic infinite frameworks (Kiston-Power13)

different normed space (Kiston-Power13)

body-bar frameworks with direction-length constraints
(Jackson-Nguyen15)

▶ a characterization is still open

angle constrained (Haller et al.12)
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Global Rigidity

Theorem (Hendrickson92)

If a generic bar-joint framework is globally rigid in Rd , then the underlying
graph is a complete graph, or (d + 1)-connected and redundantly rigid.

sufficient in d ≤ 2 (Jackson-Jordán05)

may not in d ≥ 3 (Connelly)
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Connelly, Jordán, and Whiteley

Theorem (Connelly, Jordán, and Whiteley13)

A generic d-dimensional body-bar framework (G , b) is GR ⇔
∀e ∈ E (G ), G − e contains D edge-disjoint spanning trees.

Proof 1: Inductive construction (Frank and Szegö03)

Proof 2: The underlying graph of an equivalent bar-joint framework is
vertex-redundantly rigid.

▶ A generic bar-joint framework is GR if the underlying graph is
vertex-redundantly rigid. (T15)

Proof 3: the same approach as Proof 3 for IR
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Orientation Theorem

A characterization of ℓ-edge-redundantly rigid body-bar frameworks.

Theorem (Frank80)

TFAE for a graph.

After deleting any ℓ edges it contains k edge-disjoint spanning trees

it admits an r -rooted (k , ℓ)-edge-connected orientation for r ∈ V (G ).

A digraph D is r -rooted (k , ℓ)-edge-connected
def⇔ for any v ∈ V (G ),

there are k arc-disjoint paths from r to v ;

there are ℓ arc-disjoint paths from v to r .
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Body-hinge

Theorem (Jordán, Király, T16)

A generic d-dimensional body-hinge framework (G , b) is GR ⇔
∀e ∈ E (DG ), DG − e contains D edge-disjoint spanning trees.

Corollary

a family of graphs which satisfy Hendrickson’s condition but are not GR

Take a graph H that contains six edge-disjoint spanning trees but
H − e does not for some e ∈ E (H).
Construct an equivalent bar-joint framework by replacing each body
with a dense subgraph.
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Open: Global Rigidity of G 2
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