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What is a fractal?

Many natural objects are
fractals

A fractal is a set which
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@ has a simple definition
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A fractal is a set which

@ has an intricate structure
@ has a simple definition
@ exhibits self-similarity

@ whose geometry cannot easily be described in classical
terms
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Complex dynamics

The escaping set is

I(fy={z: f"(z) - coas n — c}.

The Julia set J(f) is the boundary of the escaping set.
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Quadratic examples
f(z)=2*-2A1
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f(z) = 1€*

@ /(f) is a Cantor bouquet of
curves without some of the
endpoints

@ J(f) = I(f) plus all
endpoints

@ dim J(f) =dim I(f) =2
(McMullen)

@ curves without endpoints
have dimension 1;
endpoints have dimension
2 (Karpinska’s paradox)
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Possible values of dimensions

Can find functions f such that J(f) is a Cantor bouquet of
curves and

@ dim J(f) = dim I(f) = d, for
any d satisfying 1 < d <2
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A new structure for the escaping set
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