The beauty of fractals

Gwyneth Stallard

The Open University

Florence Nightingale Day December 2015

Why maths?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

My favourite maths results

• are surprising

Why maths?

My favourite maths results

- are surprising
- have elegant and simple proofs

Why maths?

My favourite maths results

- are surprising
- have elegant and simple proofs

No technical equipment required!

Why fractals?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Why fractals?

Research

Why fractals?

Research

Teaching

・ロン ・雪 と ・ ヨ と ・ ヨ と

æ

WILEY

・ロト ・聞ト ・ヨト ・ヨト

æ

(日)

æ

Zooming in

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Ś ng Engur

A fractal is a set which

has an intricate structure

A fractal is a set which

• has an intricate structure

イロト イポト イヨト イヨト

э

has a simple definition

A fractal is a set which

- has an intricate structure
- has a simple definition
- exhibits self-similarity (looks the same when you zoom in)

A fractal is a set which

- has an intricate structure
- has a simple definition
- exhibits self-similarity (looks the same when you zoom in)
- whose geometry cannot easily be described in classical terms

ヘロト ヘポト ヘヨト ヘヨト

A fractal is a set which

- has an intricate structure
- has a simple definition
- exhibits self-similarity (looks the same when you zoom in)
- whose geometry cannot easily be described in classical terms

Many natural objects are fractals

(日)

fractal cauliflower

A fractal is a set which

- has an intricate structure
- has a simple definition
- exhibits self-similarity
- whose geometry cannot easily be described in classical terms

・ コット (雪) (小田) (コット 日)

How long is the von Koch curve?

How long is the von Koch curve?

How long is the von Koch curve?

dimension = 2

dimension = 2

dimension = 1

dimension = 2

dimension = 1

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

dimension = 2

dimension = a, 1 < a < 2

dimension = 1

• dimension = 0

-- -- -- --

-- -- -- --

How many boxes of side d do we need to cover a set?

$$N = 3 = 3^{1}$$

If $d = \frac{1}{3}$ then

If $d = \frac{1}{3^2} = \frac{1}{9}$ then

If $d = \frac{1}{3}$ then

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

If $d = \frac{1}{3^2} = \frac{1}{9}$ then $N = 9 = (3^2)^1$

If $d = \frac{1}{3}$ then

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

If $d = \frac{1}{3}$ then

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

If $d = \frac{1}{3}$ then

(日) (日) (日) (日) (日) (日) (日)

If $d = \frac{1}{3}$ then

(日) (日) (日) (日) (日) (日) (日)

If $d = \frac{1}{3}$ then

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Definition

i is the square root of -1, i.e. $i^2 = -1$.

Definition

i is the square root of -1, i.e. $i^2 = -1$. *i* is an *imaginary* number.

Definition

i is the square root of -1, i.e. $i^2 = -1$. *i* is an *imaginary* number.

Definition

A *complex number* is the sum of a real number and an imaginary one.

・ コット (雪) (小田) (コット 日)

Definition

i is the square root of -1, i.e. $i^2 = -1$. *i* is an *imaginary* number.

Definition

A *complex number* is the sum of a real number and an imaginary one. It is denoted by z = x + iy.

イロト 不良 とくほ とくほう 二日

Definition

i is the square root of -1, i.e. $i^2 = -1$. *i* is an *imaginary* number.

Definition

A *complex number* is the sum of a real number and an imaginary one. It is denoted by z = x + iy.

Example $f(z) = z^2$

Example	
$f(z)=z^2$	
	_

 $2 \rightarrow 4 \rightarrow 16 \rightarrow \ldots \rightarrow 2^{2^n} \rightarrow \ldots \rightarrow \infty$

Example $f(z) = z^2$

 $2 \rightarrow 4 \rightarrow 16 \rightarrow \ldots \rightarrow 2^{2^n} \rightarrow \ldots \rightarrow \infty$

We write $f^{n}(2) = 2^{2^{n}}$.

Example $f(z) = z^2$ $2 \rightarrow 4 \rightarrow 16 \rightarrow \ldots \rightarrow 2^{2^n} \rightarrow \ldots \rightarrow \infty$ We write $f^n(2) = 2^{2^n}$.

$$\frac{1}{2} \rightarrow \frac{1}{4} \rightarrow \ldots \rightarrow \frac{1}{2^{2^n}} \rightarrow \ldots \rightarrow 0$$

 $f(z) = z^2$

$$f(z)=z^2$$

If z is outside circle then $f^n(z) \to \infty$ as $n \to \infty$.

$$f(z)=z^2$$

If z is outside circle then $f^n(z) \to \infty$ as $n \to \infty$.

If z is inside circle then $f^n(z) \to 0$ as $n \to \infty$.
Complex dynamics

Definition

The escaping set is

$$I(f) = \{z : f^n(z) \to \infty \text{ as } n \to \infty\}.$$

Complex dynamics

Definition

The escaping set is

$$I(f) = \{z : f^n(z) \to \infty \text{ as } n \to \infty\}.$$

Definition

The Julia set J(f) is the boundary of the escaping set.

Quadratic examples $f(z) = z^2 + 0.1$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Quadratic examples $f(z) = z^2 + 0.25$

Quadratic examples $f(z) = z^2 + 0.3$

Quadratic examples $f(z) = z^2 - 2.1$

・ロト・西ト・ヨト ・ヨー うへの

$$f(z) = \frac{1}{4}e^z$$

$$f(z) = \frac{1}{4}e^{z}$$

• *I*(*f*) is a Cantor bouquet of curves without some of the endpoints

ъ

 $f(z) = \frac{1}{4}e^{z}$

• *I*(*f*) is a Cantor bouquet of curves without some of the endpoints

< ロ > < 回 > < 回 > < 回 > < 回 >

э

• J(f) = I(f) plus all endpoints

 $f(z) = \frac{1}{4}e^{z}$

- *I*(*f*) is a Cantor bouquet of curves without some of the endpoints
- J(f) = I(f) plus all endpoints
- dim *J*(*f*) = dim *I*(*f*) = 2 (McMullen)

< ロ > < 回 > < 回 > < 回 > < 回 >

 $f(z) = \frac{1}{4}e^{z}$

- *I*(*f*) is a Cantor bouquet of curves without some of the endpoints
- J(f) = I(f) plus all endpoints
- dim J(f) = dim I(f) = 2 (McMullen)
- curves without endpoints have dimension 1;

・ロン ・雪 と ・ ヨ と ・ ヨ と

 $f(z) = \frac{1}{4}e^{z}$

- *I*(*f*) is a Cantor bouquet of curves without some of the endpoints
- J(f) = I(f) plus all endpoints
- dim *J*(*f*) = dim *I*(*f*) = 2 (McMullen)
- curves without endpoints have dimension 1; endpoints have dimension 2 (Karpińska's paradox)

・ロット (雪) (日) (日)

Can find functions f such that J(f) is a Cantor bouquet of curves and

Can find functions f such that J(f) is a Cantor bouquet of curves and

 dim *J*(*f*) = dim *I*(*f*) = *d*, for any *d* satisfying 1 < *d* ≤ 2

A new structure for the escaping set

$$f(z) = 0.5(\cos z^{1/4} + \cosh z^{1/4})$$

Happy Christmas!

