Application of a Bayesian approach to treatment selection in a rare disease sub-population

Andrew Hall

Leeds Institute of Clinical Trial Research

Overview

- Disease background and study objectives
- Initial frequentist and a Bayesian approach
- Introduce the mathematics of the model and ideas around model calibration
- Questions and discussion

High-Risk Multiple Myeloma

- Multiple myeloma is a cancer arising from plasma cells, a type of white blood cell which is made in the bone marrow
- Median age of diagnosis is 69, 37% < 65 with OS ~ 10 years
- A group of patients have poor prognosis with OS < 3years
- High risk disease defined by genetic lesions and gene expression profiles associated with poor outcome

A Rare Population

- Myeloma represents 1.5% of all malignant diseases, and representing 4500 new cases each year in the UK
- High- risk multiple myeloma (HRMM) occurs in approximately 20-30% of MM patients
- <6/100,000 per year, representing a rare cancer or sub-population

Treating High-Risk disease

- Best practice currently unknown in UK, current therapy is ineffective
- Two approaches considered for induction therapy

High Intensity

Low Intensity

 Design a trial to assess whether we can improve outcomes for HR patients by selecting the optimum treatment strategy to take forward for further research

Initial Approach to Trial Design

- A randomised controlled phase II trial selection trial was proposed (3 arms)
- Progression free survival primary endpoint
 Problems
- Would result in sample sizes of up to 450 patients i.e. screening 2500 newly diagnosed patients
- Not comparing like for like –deliverability of treatment is important

Bayesian Approach

- Reverse philosophy How many patients can we recruit and whether this amount of data has sufficient value to justify the trial design
- Recruit 120 patients
- Thall and Sung (1998) Designs for single-arm clinical trials with multiple binary outcomes
- Chosen because allows multiple interims for futility

A Control Arm?

- A 'standard' control arm for newly diagnosed MM patients is difficult to define, particularly while the Mye XI/XI+ trials are ongoing and results awaited.
- The data from Mye XI/XI+, would effectively provide almost concurrent control data
- Efficiencies in the overall sample size
- Only possible as CTRU conducting Mye XI/XI+

Multiple endpoints

Final analysis

Progression free survival at 18 months
 Interim analyses – conducted after every 10 patients reach ASCT + 100 days

- Progression free survival, ASCT + 100 days
- Treatment deliverability
- Minimum residual disease

Patient Pathways

Patient Pathways

Group		Scenario		n	
A1	Deliverable (ASCT)	Progression-free at	Progression-free at 18 months	MRD +ve	14
A2	= YES	100 days post-ASCT	post-randomisation	MRD –ve	29
A3				MRD unknown	30
A4			Progressed or died by 18 months post-randomisation	MRD +ve	15
A5				MRD –ve	18
A6				MRD unknown	19
A7		Progressed/died by 100 days post-ASCT			10
A8	Deliverable (ASCT)	Progression-free at	Progression-free at 18 months	MRD +ve	15
A9	= NO	100 days post-ASCT	post-randomisation	MRD –ve	0
A10	Deliverable (ASCT) = NO			MRD unknown	0
A11			Progressed or died by 18 months post-randomisation	MRD +ve	13
A12				MRD –ve	0
A13				MRD unknown	0
A14		Progressed/died by 100 days post-ASCT			50

The Model

- A_1, \dots, A_{14} possible pathways with probabilities $\theta_1, \dots, \theta_{14}$ and outcomes
- Historic control data $\theta_S \sim Dir(a_S)$
- Prior for Experimental $\theta_E \sim Dir(a_E)$
- $X_n = (X_{n,1}, ..., X_{n,14})$ follows multinomial distribution in n (patients at analysis) and θ_E
- $\theta_E | X_n \sim Dir(a_{1E} + X_{n,1}, \dots, a_{14E} + X_{n,14})$

Compound events

- Objective is to monitor clinically important events
- $C = A_{j1} \cup \cdots \cup A_{jr}$ e.g. deliverability $(A_1 \cup \cdots \cup A_7)$
- Can be shown that Pr(C) [τ] follows a beta distribution

• $\tau_S \sim \text{Beta}(a_1 + \dots + a_7, a_7 + \dots + a_{14})$ Monitoring Criterion is posterior probability $\Pr[\tau_S + \delta < \tau_E | X_n]$

Stopping criteria - MUK9

Interim analyses

- P(Non-deliverability > control rate + 20%) >0.9
- P(Proportion progressed/died at 100 days post-ASCT > control rate) >0.9
- P(MRD –ve rate at 100 days post-ASCT > control rate + 10%) <0.05

Final analyses

 P(Proportion alive and progression-free at 18 months post-registration > control rate) < 0.85

Simulations

- Simulations used to determine the operating characteristics of the design
- Assess the trials viability and tune the stopping boundaries
- Simulate at fixed value $\mu_S = \mu_E$ (null) and alternative to be some μ_E
- Assess the early stopping probability (π)
- Under null 1π considered type I error
- Under alternative π is type II error

Myeloma UK Clinical Trial Network

-		
Dundee		
Ninewells Hospital		
Glasgow		5
The Beatson	···· 🗾 🗾	-
The Beatson	🚽 👘 🍎 🔥	ξ
Manchester		
		2
The Christie		
Central Manchester		
University Hospitals		
Delfect		5/1
Belfast		
Belfast City Hospital	7	
Liverpool		
Royal Liverpool and Broadgreen	6	
University Hospital	A Company	۰ N
Nettingham		
Nottingham	1 - 5	
City Hospital 🛛 🚽 🦉		
	Y Y	•••••
Burton-on-Trent		
Queen's Hospital		
Wolverhampton		
New Cross Hospital		
Birmingham	-	-
Queen Elizabeth Hospital		×
Birmingham Heartlands Hospital		(
Cardiff		
University Hospital of Wales		
Bristol		
Dristoi		

University Hospital Bristol

Devon & Exeter

Royal Devon and Exeter

Stockton-on-Tees

University Hospital of North Tees

Leeds CTCO

Clinical Trials Coordinating Office

Leeds

St James's University Hospital

Sheffield

Royal Hallamshire Hospital

Leicester

Leicester Royal Infirmary

Oxford

Oxford University Hospital

Cambridge

Addenbrooke's Hospital

London

...

......

St Bartholomews Hospital King's College Hospital The Royal Marsden Hospital University College Hospitals Imperial College London Royal Free Guys & St Thomas

Brighton

The Royal Sussex County Hospital

Southampton

Southampton General Hospital

Discussion Points

- Updating the control arm part way through recruitment
- How to define simulation scenarios to demonstrate good operating characteristics
- The use of a different progression time point at interim and final analyses
- 120 patients is fixed, patients will be enrolled to single arm if one arm is dropped
 - Comparison of two arms at final analysis

