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e
Q&A via Slido.com #Al-tutorial

sli.do

At this event, we want to make sure we address your most burning questions.
Therefore, we'll be using a simple audience interaction platform called Slido.

Slido allows you to submit your questions as well as upvote the questions of
other participants. Questions with the highest number of votes will stand a
better chance to get answered by speakers.

Throughout the event, you will also be able to express your opinion
by voting on live polls.

It's really easy to join.

1. Please take out your smartphones and connect to the WiFi
2. Open the web browser
3. Go to www.slido.com and enter the event code, which is...

www.slido.com = #Al-workshop —
CMAF
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http://www.slido.com/
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Al in Forecasting

* Capabilities of Al
* The hype
* How Al can “see”
* Al Demos

* Using Al in Forecasting

* Al in Forecasting
e Case studies

* The Gap

* Forecasting?
* State of Forecasting
* Sizing the Gap

and
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Picking up on the most commonly occurring

Al Art at Christies
Sells for $432,500

r

“Edmond de Belamy, from La Famille de Belamy,” by the French art collective Obvious, was sold on

Thursday at Christie’s New York. Christie

Rv Gabe Cohn



The Hype on Al, ML & Deep Learning?
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Emerging Technologies Hype Cycle

New Technologies make bold promises

- how to discern the hype
from what's commercially viable?

Should you make - cross-industry perspective
an early move?
Take a moderate
approach?
Wait for further
maturation?

Expectations

| t Eiodi o Trough of Plateau of
nnovation rough o ateau o
Trigger inflated Disill \-J Syt Slope of Enlightenment Productivit

49 Expectations isillusionment ctivity

Time

Gartner




Emerging Technologies Hype Cycle

‘ Connected Home
Virtual Assistants Deep Learning
oT Platform. Machine Learning
Smart Robots A("_‘Autonomous Vehicles
Edge Computing Nanotube Electronics
Auamented Dat A Cognitive Computing
gmented Data ‘ .
Discovery . A Blockchain
A Commercial UAVs (Drones
Smart Workspace ' ( )
A Conversational
Brain-Computer User Interfaces Cognitive Expert Advisors
Quantum Displays
Computing Digital Twin
» Serverless
5 PaaS
=) 5G
8
4 Human
o Augmentation )
| ﬂeudromorphic Enterprise Taxonomy
ardware
Deep Reiforcement and Ontology Management
¢ Leaming Software-Defined
» Artificial General Security
4D Printing /X" Intelligence
Augmented
Reality
Smart Dust
: Peak of
Innovation Inflated Trough of
Trigger Expectations Disillusionment

Plateau will be reached in:
less than 2 years
@ 2to5years

@ 5to10years

/\ more than 10 years

Where is Forecasting?
Where is SCM?

Virtual Reality

50% of applications &
solutions are fuelles by
deep learning 2017

Plateau of

[ li S
Slope of Enlightenment Productivity

ro

Time

Source: Gartner (July 2017)
© 2017 Gartner, Inc. and/or its affiliates. All rights reserved
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Ehe New Pork Times

How Many Computers to Identity a Cat? 16,000

By JOHN MARKOFF  JUNE 25, 2012

An image of a cat that a neural network taught itself to recognize

MOUNTAIN VIEW, Calif. — Inside Google's secretive X laboratory, known

LIVESCISNCE

How Computers Can Teach
Themselves to Recognize Cats

By Tanya Lewis, Staff Writer | May 28, 2015 07:03am ET

f In June 2012, a network of

4 16,000 computers trained itself
to recognize a cat by looking at

g+ 10 million images from
YouTube videos. Today, the

@ technique is used in everything
from Google image searches to

Jv Facebook's newsfeed

algorithms.

h MOREY  credit: Michelangelus | Shutterstock.com
The feline recognition feat was

accomplished using "deep
' an approach to machine learning that works by exposing a

Picking up on the most commonly oc REVIEW
images featured on YouTube, the sys
achieved 81.7 percent accuracy in de
human faces, 76.7 percent accuracy '
identifying human body parts and 74
accuracy when identifying cats.

Deep learning

Yann LeCun'?, Yoshua Bengio & Geoffrey Hinton*

al language understanding™, particularly
ntiment analysis, question answering ” and lan-
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How does a Neural Network , see®?

Convolutional layers Classification
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Ehe New Work Times LIVESCISNCE

How Many Computers to Identity a Cat? 16,000

How Computers Can Teach
— | Themselves to Recognize Cats
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L8-Output

43 neurons /5

class "max 30km/h™
300 neurons e e e L7-Fully Connected
250 maps of 3x3 neurons L6-MaxPooling
250 maps of 6x6 neurons L5-Convolutional
A
W .
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PATTE RN REC@GM’M S - I
e r |
e .
: 150 maps of 9x9 neurons L4-MaxPooling
150 maps of 18x18 neurons L3-Convolutional

2011: First Superhuman Visual Pattern Recognition

IJCNN 2011 competition in Silicon Valley:
twice better than humans 15000 filters of 4x4 weights
three times better than the closest artificial competitor
six times better than the best non-neural method

A Committee of Neural Networks for Traffic Sign Classification

D G, Gl M, et M Xnituner

100 maps of 21x21 neurons
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Figure 5: The 68 errors of the MCDNN, with correct label (left) and first (middle) anc
second best (right) predictions. Best seen in color.



How does a ANN ,,see®?

Convolutional layers Classification
128 128
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feature extraction classification

-

Why not before? Needed to overcomevanishing gradient problem ;.,,
- parameterisation (Optimisation!) like before with backprop!

LCF




43 neurons L8-Output

300 neurons L7-Fully Connected

250 maps of 3x3 neurons L6-MaxPooling

250 maps of 6x6 neurons L5-Convolutional
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igure 5: The 68 errors of the MCDNN, with correct label (left) and first (middle) and
second best (right) predictions. Best seen in color.




Al & Deep Learning in Autonomaous cars,
Speech Recognition, Image recagnition ...

traffic ight - 0.887

https://www.youtube.com/watch?v=DeCFxPQIOVk






Unsupervised Deep Learning in Games

The
Economist

- In 43 out of 49 cases
DeepMind outperformed
programs designed to play
that particular game

- In % it defeated professional
human players.

- Super-human performance ?!

https://www.youtube.com/watch?v=V1eYniJORnk
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* Using Al in Forecasting

* Al in Forecasting
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* The Gap

* Forecasting?
* State of Forecasting
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e
What is Forecasting?

This is a time series ...

(a collection of observations
made sequentially in time)

Jan 2016 91.36 200 L : L L L i L L L d
Feb 2016 100.77

Mar 2016 87.85 150k | ?
Apr 2016 88.86 .

May 2016 99.93
Jun 2016 115.32 EERp 1OOWWMr
July 2016 92.30

Aug 2016 103.71 sol- |

Sep 2016 97.74 How will it
Oct 2016 111.17 continue?
.[.).ec 2016 89 26 0 5 10 15 20 25 30 35 40 45 50

Time

... how will it continue?
"Estimation how the sequence of observations

observed in the past will continue into the future”
[Makridakis, Wheelwright, Hyndman, 1998]

and
CMAF
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e
What is Forecasting?

2000 L L T T T C
1500 |- ’?
n
-*2 1000 |-
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continue?
0
400
300 ?
200
100
How will it
0 [ [ [ [ [ [ [ [ [ continue? oA
h 10 15 20 25 30 3 40 45 2
CMAF
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Oh, pls repeat

Why Forecast with Al? 40000 items

every day
in 1000 locations
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How does a Neural Network ,,see“?

Convolutional layers Classification
128 128

256

Needs compute
power to repeat
for 40000 items
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Neural Network Demo

- g
View Training  ?
NN Training View ' = L[] G | 11 Pause mi Step » Continue > Mat M Stop
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Free Parameter: 61
Medel Pattern: Unclassified
Scaling: [TS-Min:TS-Max]->[-0,6:0,6]TVG (0:(
- Lagstructure: Lag-00002 (0;0)
L0 [-12,1]
- Topology: Topo-01 (0:0)
i N=4IF=Sum; AF=Log(1};Bias=Train
.. IF=Sum;AF=Id;Bias=Train
- Sampling: Random Sampling without replac
Learning: Leam-01 (;0)
L5=7200015WS=global;LR=0,5,ASF=0,99;
Early-Stopping: ZF:1| FERMSE ES:Rel 11560
Weight Initialisation (0:0)
Distribution function=Uniform Distributis
Scale Sampled Values=Yes
lower bound=-0,6
upper bound=0,6

T+1 AE (1 T+1 Re M@ acr

Ak Srart ralevlation Curle 1 Curle 172

Initialisation: Init-002[3] (0;0) v




FMCG Forecasting for manufacturmg @ BBZ;:;JO”

Median sMAPE SAP | iqast
SMAPE test | error | error | error error% |tems

Seasonal Linear Regression (35B) 18.20

Canada 40,7 33,8 9 -16,9%

SLR + Judgment 18.02 Germany 55,4 51,7 -3,7 -6.8%

\ MLP AR, SinCos + Selection 9.00  France 43,7 426 -12 -2.7%
Greece et 33%

Improvement -9.02 Italy NNET achieves _6.5%
Improvement in % -49.83% Netherlar super-human -5.1%

- NNET achieves ﬁ” poland _SCSlection accuracy |, 4o,
super-human |Q§t South Africa 37,3 359 4 -3.7%

forecast accuracy Average -7.5%

155
262
196
175
154

78

36
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Neural Network Demo
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: virgin aflantic
Container forecasts @ 9 e

Regional calendar events
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Container forecasts @ V9N

Expand Models with more variables?
* Internal factors, eg. Capacity (different hullspace)
« External factors, eg. GDP growth, industry leading indicators, Global PMI, OECD Confidence index etc.

aflant

od

Cargo

1. Forecast for GDP Growth

4, Freight Traffic Growth

7. World trade in goods and air FTKs
Source: Nethertands CPB and IATA
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Source: IATA, SIA
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Beer Forecasting for manufacturing @ ABm;};

© 2017 Sven F. Crone. All rights reserved.



R EEEEEEEEE—————————

Beer Forecasting for manufacturing @ agingav

Drivers for Consumer Demand?

*  Weather +5 - 8%
 Price & Price promotions +10 - 700%
* Marketing +2 - 3%

» Politics & regulation -0 - 100%

« Changes in Retail strtures

'« Manufacturer consolidation .
« only few are regional

* Regional Preferences .
. etc. « these have lesser impact!

Total Network

| APAC I | AMERICAS I l EMEA
|FarEast&AustraI|a | |_India IICanadal[Caribbean| [ Us | | Africa | | Caribbean |{_Middle East | (UK |

sy

9315
. ﬁ. o e EEEEE B
[:78 - , 4,04, 604 sae
034 4, |m, L
% i 9301, '

I
umop do|
gP
T
i
%

Bottom Up

I £EEE I
ES
EE
B
Nz

Kourentzes et al (2016) Forecasting with Combinations and Hierarchies, ISF’16
Hyndman et al. (2011) Optimal combination forecasts for hierarchical time series

(= R-package hts, MAPA etc.)
© 2017 Sven F. Crone. All rightSmeserves:




Beer Forecasting for manufacturing @ agina

o — =)
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8: Dummy SPORT UEFA European Cu A
8: Dummy SPORT UEFA European Cu
4 BrusselWeekly Max TemperatureC
Data Partition (T|V|G): 1A|0A]104F (0;0)
Pre-Processing: None (0;0)
Forecast Horizon: 13
Free Parameter: 86
Model Pattern: Unclassified

Scaling: [TS-Min;TS-Max]->[0,3:0,7]TVG (0:0;

& Lagstructure: Lag-001 AR 1...13, 51 (0;0)

0:-51;[-13,1]

- Topology: Topo-00001 (3;0)
N=5;IF=Sum;AF=Log(1);Bias=Train
IF=Sum;AF=Id;Bias=Train

Sampling: Random Sampling without replac

- Learning: Learn-01 (0;0)

LS=1000E;SWS=global;LR=0,5;ASF=0,99;Z
Early-Stopping: ZF:1E F:MAE ES:Rel [£:20 VB:

[=)- Weight Initialisation (0;0)

Distribution function=Uniform Distributis

& X

Facebook

Heute ist Gyde Schmidts Geburtstag.
{98 weitere neue Benachrichtigungen)

“.
CMAF
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Forecast from MLP including
bank holidays, sales price
changes & weather
& football events

3502 == 0 aTh 010 =0 200 250 A00 450
sy L \_
e 5 :q;li,] O E%;lilssion M ” ﬂ Naive Level 23.91%
. [ ] ' Naive Season A1 00/
B \f\&%z -, . Single Exponential Smoc achieves
8000 ZOO A:uoal == Seasonal ARIMA nSUper- human®
ool [ ’ Additive Exponential Sm. forecast accuracy

4000

2000
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Dynamic Regression 13.37% a
Neural Networks 13.01% =
Human Expert Demand Planner 14.42% A\F




o
Neural Nets in Retail & Promos

— —— o

e

Fit appropriate fog€Fasting models to:
HH‘ Fredict futuref@lte ===« « - o

“Updetetanp BliBtielasiisiryy oeach ex@é éﬁlﬁ%%f%@@f
| — Y . ; f

‘[ j.':J h ‘é:‘ =, - - =
Time Series: 5 | Product: 1080215 (Trend: 0, Season13: 0, Season52: 1)
f(X) = +125.37*Constant +0.71*Lagl +0.07*Lag2 +610.76*Adcode: 401 +617.24*Discount -1569.46*Xmas -696.48*Xmas+1 +1209.29*Xmas-2 -1581.59*Easter-1 -894.91*Labour
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International Time Series Forecasting Competition

C I F 2 01 6 Computational Intelligence in Forecasting

ELl

FOR FULLY LUGK
AND TECHNOLOGY

# | Method SMAPE ZD ﬁf )
Ty

1 LSTM-Deseasonalized Microsoft 0.105 +-0.107 1 \)
2/LSTMs and ETS Microsoft |0.108 +-0.116 | 2 @ CERT,F.C,S‘;'EFOE%SEVEMENT ,RQ IEMM 5
3 *ETS 0.119+-0.142 9 UNIVERSITY o Varcower - Ganada
4/MLP igast 0.121 +-0.135 7
5 REST 0.124 +-0.133 6 SLANER ST
6 *FRBE 0.129 +-0.162 13 o neveony
7 HEM 0.130+-0.147 | 11 HE NTERNATIONAL TIWE SENIES COUPETITION.
8 *Avg 0.131 +-0.133 5 with his method
9/ *BaggedETS 0.131 +-0.176 | 17 O LR o PSR e

10/LSTM Microsoft |0.133 +-0.155 12

11 Fuzzy c-regression 0.137 +-0.127 4

12 PB-GRNN 0.145 +-0.166 = 14 B e o = i B8 @ - b

13 PB-RF 0.145 +-0.166 = 15 M e AN e ey Y BT 8  ace /\

14 *ARIMA 0.146 +-0.218 21 okl bacaaieoicn’: i o L

15 *RW 0.146 +-0.137 8 i el

16 *Theta 0.148 +- 0.122 3 - ‘ SVEN CRONE

17 PB-MLP 0.149 +-0.172 | 16}

18 TSFIS 0.151+-0.147 10 BN ... WO

19 *Boot.EXPOS 0.153 +-0.206 | 20 : °°"""""°"“L";“:'::":“F°"°m"°

20 MTSFA 0.165 +-0.180 | 18 LSTM NEURAL NETWORK APPLIED TO DESEASONALIZED DATA "."‘"

21 FCDNN 0.166 +-0.194 | 19

| 22 MSAKAF 0.204 +-0.225 22 PV V
23 HFM 0.224+-0.251 23 —R
24 CORN 0.288 +-0.263 24 &

e - - P —



Forecasting for | )

pioneers Iin forecasting with artificial intelligence

Forecast Server

~~~~~~

New Al forecasting engine for SAP APO DP

ﬁ‘lntelligent model selection
ﬁ‘lntelligent forecast algorithms
ﬁTnteIIigent safety stocks

aBInBav  SANOF| g Beiersdorf @sﬁﬁle?m% fohmonsfolmon Janssen J©
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How to get started?

1-2 man days 5 man-days analysis 10-20 man-days analysis
skype call results Kick-off on site scalability to other countries
Final results on site product categories

need historical sales  <€10k
explanatory variables
(price, promo, ...)

FLY
WALK RUN

CRAWL

© 2017 Sven F. Crone. All rights reserved.



Take aways

* Alis hyped, but here to stay

* Al (aka Deep Learning Neural Networks) is a
driver for Digitalisation and Industry 4.0

* Forecast accuracy is a core obstacle in SCM
e Alis largely ignored in Forecasting for SCM

* |nnovators are leading the way
— High opportunities from low-cost pilot studies
— Try new algorithms!
* Neural Networks
Support Vector Regression
Decision Trees
K-Nearest Neighbours

%

—
4"

; g Lancaster University Lancaster Centre for
= s Forecasting
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Unless otherwise indicated, all material in this presentation is copyrighted by Sven F. Crone. No part of these pages,
either text or images may be used for any purpose other than personal use, unless explicit authorisation is given by
the author. Reproduction, modification, storage in a retrieval system or retransmission, in any form or by any means
— electronic or otherwise, for reasons other than personal use, is strictly prohibited without prior permission.

This restriction explictly inlcudes the use of this training material for company internal or external trainings, train the
trainer setups or any other trainign activities other than a one-tot-one personal job handover.

1. The content of the pages of this presentation is for your general information and use only. It is subject to change
without notice.

2. Neither we nor any third parties provide any warranty or guarantee as to the accuracy, timeliness, performance,
completeness or suitability of the information and materials found or offered in this presentation for any particular
purpose. You acknowledge that such information and materials may contain inaccuracies or errors and we expressly
exclude liability for any such inaccuracies or errors to the fullest extent permitted by law.

3. Your use of any information or materials in this presentation is entirely at your own risk, for which we shall not be
liable. It shall be your own responsibility to ensure that any products, services or information identified in this
presentation meet your specific requirements.

4. This presentation contains material which is owned by or licensed to us. This material includes, but is not limited
to, the design, layout, look, appearance and graphics. Reproduction is prohibited other than in accordance with the
copyright notice, which forms part of these terms and conditions.

5. All trade marks reproduced in this website which are not the property of, or licensed to, the operator are
acknowledged in the presentation.

6. Unauthorised use of this presentation may give rise to a claim for damages and/or be a criminal offence.

7. From time to time this presentation may also include links to other presentations or websites. These links are
provided for your convenience to provide further information. They do not signify that we endorse the other
presentations or website(s). We have no responsibility for the content of the linked presentations or website(s).

8. Your use of this presentation and any dispute arising out of such use of the presentation is subject to the laws of
Hamburg, Germany.

9. No images rendered can be used for mechanical, electronic or printed reproduction without prior written
permission by thee author. Images generated are for previewing purposes only.
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