
Published in Control and Cybernetics, vol. 30, No2, 2001, pp. 159-176, ISSN: 0324-8569

Supplementary Crossover Operator for Genetic

Algorithms based on the Center-of-Gravity Paradigm

Plamen Angelov

Department of Civil and Building Engineering,
University of Loughborough

Loughborough, Leicestershire LE11 3TU, UK
tel.: +44 (1509) 223 774; fax: +44 (1509) 223 981; e-mail: P.P.Angelov @Lboro.ac.UK

Abstract A supplementary crossover operator for genetic algorithms (GA) is
proposed in the paper. It performs specific breeding between the two fittest parental
chromosomes. The new child chromosome is based on the center of gravity (CoG)
paradigm, taking into account both the parental weight (measured by their fitness) and
their actual value. It is designed to be used in combination with other crossover and
mutation operators (it applies to the best fitted two parental chromosomes only) both in
binary and real-valued (evolutionary) GA. Analytical proof of its ability to improve the
result is provided for the simplest case of one variable and when elitist selection strategy
is used. The new operator is validated with a number of usually used numerical test
functions as well as with a practical example of supply air temperature and flow rate
scheduling in a hollow core ventilated slab thermal storage system. The tests indicate that
it improves results (the speed of convergence as well as the final result) without
significant increasing computational expenses.

Key words: Genetic algorithms; crossover, mutation, selection operators; center of gravity.

1 Introduction

Recently, GA have been widely applied to different control and optimization

problems due to their robustness, success in dealing with multi-modal and complex

problems (Pal and Wang, 1996; Angelov and Guthke, 1997, Onnen et.al., 1997). The

main specific of the GA as an optimization method is their implicit parallelism, which is

a result of the evolution and the hereditary-like process (Michalewicz, 1996). GA is, in

fact, a driven stochastic search technique, which combine stochastic (represented by

mutation operator) and 'logical' search (represented by crossover of parental

chromosomes and survival of the fittest by appropriate selection). These characteristics of

GA offers possibilities for their improvement by appropriate balance between exploration

(possible because of the diversity in the population) and exploitation (due to the

preservation of the search logic). Initially, improvements of GA has been sought in the

optimal proportion and adaptation of the main parameters of the GA, namely probability

of mutation, probability of crossover, population size (Davis, 1989) – (Grefenstette,

1986). More recently, the attention has been shifted to the breeding (process of forming

new trial chromosomes at each epoch) (Muhlenbein and Schlierkamp-Voosen, 1993).

In this paper a supplementary crossover operator is introduced, which is more

informative than mutation and more innovative than crossover itself. It increases diversity

by creating a new chromosome different to the previous population elements and in the

same time preserves the 'search logic' by accumulating weighted information about

parental population. It is designed to be used in addition (in combination) with other

crossover and mutation operators both in binary and real-valued GA. Supplementary

crossover operator is applied to the best fitted two parental chromosomes only. The rest

of the chromosomes in the population are produced by applying any other mutation and

crossover operators as usual. The new child chromosome, very often have better fitness

as it represents a CoG of the two best parental chromosomes and, thus, improves the

search capability of the whole algorithm.

The supplementary crossover operator has been tested with a number of commonly

used in the literature test functions. A practical problem of scheduling of the supply air

temperature and flow rate to a ventilated slab thermal storage system is also presented.

The results demonstrate its superiority compared with the case when it is not used.

2 Basic concepts of GA

GA mimics the process of natural selection where "the fittest survives". The basic

difference between the GA and all other optimization techniques is its implicit

parallelism, a result of the evolution and hereditary. The GA explore a set of trial points

(chromosomes) forming a population at each iteration (epoch). A gene (g) in the

chromosome represents binary encoded problem variable (x) in the 'standard' binary-

coded GA (Goldberg, 1989) or directly its value in the real-value coded GA

(Michalewicz, 1996).

 chromosome1 chromosome2 … chromosomeps
1
1g 1

2g … 1
ng 2

1g 2
2g … 2

ng … psg1 psg 2 … ps
ng

Table 1: Population of Individual Chromosomes

In binary coded GA each gene is represented by a number of bits, which have value

0 or 1. For example:

gi = {1;0;1;1;1;0;0}; i=1,2,...,n

In real-value coded GA each gene is a real value representing certain variable gi = xi.

The measure of the quality of a chromosome (candidate solution) is its fitness

function (F), which should be maximized. All individual chromosomes are evaluated (by

calculating their fitness) at each epoch. A part of the chromosomes from the current

epoch (parental chromosomes) are selected for mating and reproduction, based on their

fitness values.

Crossover and mutation are then applied for producing new (child) trial points

(chromosomes). An example of a two-point crossover is represented as:

chrom 1
child ={ •

1g ; •
2g ;...; •

−11xoverg ; o

1xoverg ; o
11+xoverg ;....; o

12 −xoverg ; •
2xoverg ; •

+12xoverg ;...; •
−1ng ; •

ng }

chrom 2
child ={ o

1g ; o
2g ;...; o

11−xoverg ; •
1xoverg ; •

+11xoverg ;...; •
−12xoverg ; o

2xoverg ; o
12 +xoverg ;...; o

1−ng ; o
ng }

where • denotes the first parent;
o denotes the second parent;

xover 1 denotes the first crossover point
xover 2 denotes the second crossover point

Mutation in binary-coded GA is a triggering from 0 to 1 and vice versa. In real-

coded GA, generally, uniform and non-uniform mutation exist (Michalewicz, 1996) with

alteration of the mutated gene to a random value (in the range of feasible values) in the

former one and alteration of the mutated gene with a certain value (added or subtracted

depending on the 0 or 1 value of a random number) in the later one.

A two-point mutation operator, generally, could be represented as:

chromchild = {g1; g2; ... ; g 11−i ; g 1

1

mut
i ; g 11+i ;…; g 12 −i ; g 2

2

mut
i ; g 12 +i ;...;gn}

where g 1

1

mut
i and g 2

2

mut
i are mutated genes.

A GA could be represented by the following pseudo-code:

Program GA

Begin

Number_of_epochs = 0;

Set the initial population ∏
0

Determine fitness function value F;

While (Number_of_epochs < Maximal_number_of_epochs) do

Number_of_epochs = Number_of_epochs + 1;

Selection;

Crossover;

Mutation;

Fitness evaluation;

 end

End.

In this general scheme the main objects (Selection, Crossover and Mutation) could

vary depending on the specific type chosen (Michalewicz, 1996).

3 New supplementary crossover operator

3.1 New operator - definition

The operator proposed in the paper is designed to be used in combination with (in

addition to) the usually used crossover operators both in binary- and real-coded GA. It

considers one of the child chromosomes to be produced by a special breeding of the two

best fitted parental chromosomes (called chromprime and chromsecond), while all other (ps-

1) child chromosomes are produced in an usual way. The last place in the population is

preserved for this special chromosome, which represents the center of gravity of

chromprime and chromsecond from the previous population (Table 2):

chromosome i
1 chromosome i

2 … CoGi-1

Table 2 Population ∏i

For the fittest chromosome we have:

F(chromprime) ≥ F(chromj); j=1,...,ps

If it take the last place in the population, then the second best chromosome

(chromsecond) could be determined as:

F(chromsecond) ≥ F(chromj); j=1,...,ps -1

Using these notations, the genes of the child chromosome are determined as CoG of

the parental ones:

)()(
)(*)(*

sec

secsec

ondprime

ondond
i

primeprime
iCoG

i chromFchromF
chromFgchromFgg

+
+

= ; i=1,…,n

where gprime denotes a gene from the chromprime;
gsecond denotes a gene from the chromsecond.

In the case of binary GA the supplementary crossover operator is applied after

selection and decoding of the genes values from binary into decimal numbers together

with the main crossover operator. Each gene of the resulting child (CoG-based)

chromosome is then encoded into binary bits in a similar way as the rest (ps-1) child

chromosomes (see Table 2) and, finally, mutation and reproduction are applied to the

whole new (∏i+1) population.

3.2 New operator - how it works

Let us consider a simple example to illustrate the new operator. The example

population consists of chromosomes having 4 real-coded genes each. Let the best

chromosome at the i-th epoch be:

chromprime = {1; 3; 4; 2} Let its fitness is F(chromprime) = 0.85.

Further, let the chromsecond and its fitness be respectively:

chromsecond={8; 6; 5; 3}; F(chromsecond) = 0.75

Then the CoG-based child chromosome will be:

CoG={4.28; 4.41; 4.47; 2.47}, because

CoGg1 =
75.085.0

75.0*885.0*1
+
+ =4.28;

CoGg2 =
75.085.0

75.0*685.0*3
+
+ =4.41,

etc.

3.3 New operator - why it works

Though, it is difficult to prove strongly that some new operator in GA is better even

for some class of problems because of the probabilistic nature of the GA (Michalewicz,

1996), we can expect that in many cases CoG chromosome will have better fitness. This

could easily be illustrated with the very simple example of one variable function

F(x)=
2

2
)11(1.0

x
x

e
−

−
 (Fig.1).

Figure 1: How Supplementary CoG Crossover Works - simple one variable example

Let the i-th population be ∏i={1; 2; 3; 4; 5; 6; 7; 8}. The chromprime and chromsecond

will obviously be respectively:

chromprime = 3; F(chromprime) = e-0.0444 = 0.9565;

chromsecond = 4; F(chromsecond) = e-0.1563 = 0.8553;

The CoG-based new child chromosome/gene (in the case of one variable the

chromosome is equivalent to the gene) then will be:

CoG i=
)1563.0exp()0444.0exp(

)1563.0exp(4)0444.0exp(3
−+−
−+− = 3.4721; F(3.4721) = 0.9908

It is easy to see that it is much closer to the real maximum (11). In the next

population CoG-based child chromosome is considered. Note that the last gene (3) is due

to the elitist strategy applied in addition to CoG in this case:

∏i+1={ 1
1
+igene ; 1

2
+igene ; ...; 1

6
+igene ; 3.4721; 3}

The other 6 chromosomes are produced by crossover and mutation of the parental

chromosomes from the previous epoch (generation) as usual.

Analytically it is possible to prove that improvements will occur for the simplest

case with one variable and convex in the interval (x-;x+) fitness function (F) when:

x- ≤ x* ≤ x+

where x* = {x | F(x*) = max(F)}
x- = min (cromprime, chromsecond)
x+ = max (cromprime, chromsecond)

Real situations, however, are more complex, but as the test results indicate

improvements often occur. This could be explained with the fact that CoG-based child

chromosome is produced by the two best parent individuals incorporating also

information about their fitness. By differ from the simple hill climbing it determines the

new (often better) value of variables (x) directly (without using an estimation of the

gradient and a step, which is usually computationally expensive, problem-dependent and

a source of subjectivity).

4 Test examples

The new supplementary CoG-based crossover operator has been applied to five

different commonly used numerical test problems (Michalewicz, 1996). Each test is

performed with the same GA parameters (probabilities of crossover, mutation, population

size). For consistency of the results, the same random number sequence is also used in

both cases (with and without applying the new supplementary crossover operator).

4.1 Numerical test functions

Two series of 30 runs has been carried out with all of the five test functions:

i) search stops after a value of the objective function (J*) close to the

theoretical optimum (Joptimal) is reached (J* ≈ Joptimal). The number of epochs

needed is recorded for both cases:

• using CoG-based supplementary crossover (NCOG);

• without using CoG-based supplementary crossover (Nconv).

They make possible to calculate the rate of convergence (rateconv =
conv

CoG

N
N) which

illustrates the effect of the new operator in saving computational time. Number of

floating point operations for both cases is also registered and respective rate is

calculated. In addition the number of improvements (Nimpr) is registered as the

number of epochs in which CoGi>F(chrom 1+i
j); j=1,2,…ps; i=1,2,…,Nepochs. This

indicates the number of cases in which the improvements in the fitness function

are due to the new operator (in all other cases normally used crossover and

mutation leads to the fitness improvement);

ii) search stops after a pre-specified number of epochs (max_Nepoch). Then

objective function values and the number of improvements (Nimpr) are

recorded. The rate of objective is calculated (rateobj=
conv

CoG

J
J

), which illustrates

improvements in precision.

4.1.1 De Jong's function

The simplest test function is the so-called De Jong's function. It is continuos, convex

and unimodal function:

fi(x)=∑
=

n

i
ix

1

2

The global minimum (Joptimal) of f(x) = 0 is at xi = 0. The test with n = 30 variables

and parameters of GA pc = 0.6, pm = 0.03, ps = 30 has been carried out for 60 different

runs. The results are shown in Table 3 and a typical plot of the convergence is given on

Fig. 2 (In this as well as in all next diagrams solid line represents the case when the new

operator is used, while the dash-dotted line - the case when it is not used).

From the results one can conclude that the new operator allows to find the same

solution (J*=0.1) for almost 25% less epochs in average. In 15.8% of epochs

improvement of the fitness is due to the new operator. Similarly, for a fixed number

(3000) of epochs the result is closer to the global minimum of the objective function

Run Results after J* ≤ 0.1 is reached Results after max_Nepochs=3000

No NCoG Nconv Nimpr rateconv rateflops JCoG Jconv rateobj Nimpr

1 2308 2750 285 0.8393 0.8424 0.0189 0.0726 0.2603 407
2 1218 2056 215 0.5924 0.594 0.0161 0.1079 0.1492 442
3 1817 2138 213 0.8499 0.8531 0.0168 0.0803 0.2092 590
4 1357 2332 119 0.5819 0.5838 0.0275 0.0769 0.3576 343
5 2053 2331 506 0.8807 0.8842 0.0250 0.0810 0.3086 265
6 1718 1912 135 0.8985 0.9022 0.0130 0.0331 0.3927 641
7 1775 3000 199 0.5917 0.5935 0.0423 0.0424 0.9976 667
8 1704 2041 271 0.8349 0.8373 0.0326 0.0995 0.3276 315
9 1469 2395 152 0.6134 0.6149 0.0106 0.0188 0.5638 245
10 1776 2057 283 0.8634 0.8668 0.0374 0.0482 0.7759 356
11 2552 2647 248 0.9641 0.9681 0.0146 0.0347 0.4207 562
12 2159 3000 474 0.7197 0.7221 0.0608 0.0906 0.6711 352
13 2526 3000 311 0.842 0.8453 0.0553 0.0748 0.7393 677
14 1378 2761 296 0.4991 0.501 0.0335 0.0492 0.6809 311
15 1539 2570 227 0.5988 0.6008 0.0541 0.0600 0.9017 350
16 1831 2246 227 0.8152 0.8181 0.0395 0.1629 0.2425 596
17 1834 2617 151 0.7008 0.7034 0.0190 0.0765 0.2484 370
18 1447 1715 251 0.8437 0.8464 0.0278 0.0921 0.3018 379
19 1957 2282 210 0.8576 0.8609 0.0450 0.0587 0.7666 360
20 1558 2663 212 0.5851 0.5871 0.0185 0.0476 0.3887 333
21 1715 2112 264 0.8121 0.8142 0.0211 0.0387 0.5452 406
22 1750 2050 357 0.8537 0.8559 0.0899 0.0954 0.9423 364
23 1530 2152 312 0.7109 0.7109 0.0385 0.0405 0.9506 268
24 1659 2578 288 0.6435 0.6435 0.0834 0.1228 0.6792 575
25 1724 2350 477 0.7336 0.7352 0.0312 0.0614 0.5081 389
26 1453 2467 366 0.5889 0.5889 0.0268 0.1070 0.2505 444
27 2002 2225 515 0.8998 0.9023 0.0372 0.0394 0.9442 341
28 1889 2716 298 0.6955 0.6955 0.0976 0.1458 0.6694 492
29 2112 2235 302 0.9449 0.9449 0.0388 0.0506 0.7668 397
30 1618 2186 273 0.7401 0.7401 0.0266 0.0343 0.7755 391

Avrg 1781 2386 281 0.7532 0.7552 0.0300 0.0689 0.5681 427

Table 3 DeJong's function. Two series of 30 runs

Fig. 2 A typical convergence in DeJong's function minimization

(Joptimal=0) - the value of the objective function is almost 2 times less in average with

improvements in 14.2% of epochs due to the new operator. It should be mention that the

rate of elementary floating point operations is practically the same as the rate of

convergence, which means that the additional computational effort due to the application

of the new operator is negligible.

4.1.2 Rastrigin's function

Rastrigin's function has many local minima as it uses cosine modulation. Although,

the test function is highly multi-modal, the minima are regularly distributed.

fi (x)=10n+∑
=

−
n

i
i xx

1

2))2cos(10(π

The global minimum (Joptimal) of f(x)=0 is at xi=0. GA parameters used were

pm=0.005, pc=0.8, number of bits = 10, population size =30. Test results for n=30

variables for two series of 30 runs are given in Table 4. A typical convergence in both

cases (with and without using the new supplementary CoG-based crossover) are shown

on Fig.3. Similar conclusions could be made that 3 times faster convergence take place to

reach J*=100 with practically no additional computation effort; in 22% of cases

improvement is due to the new operator and 1.54 times better result is achieved for the

fixed number (10000) of epochs and improvements occur in the same proportion

(21.9%) of epochs.

4.1.3 Sum of different powers

The sum of different powers is usually used in unimodal tests:

fi (x)=∑
=

+
n

i

i
i

x
1

1

The global minimum (Joptimal) of f(x)=0 is at xi=0. The test results for n=30 variables

and the following GA parameters (pm=0.01, pc=0.6, ps=60, bits=10) are given in Table 5

and a typical convergence is depicted on Fig.4. In this test the advantage of the addition

of the new operator is most obvious: while J*=0.01 is reached for 18 epochs in average

when it is used, 2781 epochs are necessary for the case when it is not used, which means

Run Results after J* ≤ 100 is reached Results after max_Nepochs = 3000
No NCoG Nconv Nimpr rateconv rateflops JCoG Jconv rateobj Nimpr

1 1432 4169 348 0.3435 0.3441 82.903 119.72 0.6924 700
2 738 10000 214 0.0738 0.0739 63.052 81.856 0.7703 744
3 802 6494 156 0.1235 0.1237 88.878 167.90 0.5293 269
4 2419 10000 333 0.2419 0.2423 71.121 112.57 0.6318 726
5 1939 9528 150 0.2035 0.2039 76.592 78.459 0.9762 743
6 1702 2122 299 0.8021 0.8036 60.040 179.97 0.3336 901
7 3986 4323 882 0.9220 0.9238 64.056 172.59 0.3711 1023
8 754 2824 128 0.2670 0.2674 88.375 130.09 0.6793 743
9 655 3040 159 0.2155 0.2158 43.319 159.33 0.2719 902
10 4112 9906 1002 0.4151 0.4159 50.529 91.858 0.5501 849
11 3148 3866 646 0.8143 0.8158 76.961 90.826 0.8473 381
12 1204 4415 333 0.2727 0.2732 74.444 119.87 0.6210 424
13 1093 5912 213 0.1849 0.1852 75.388 148.96 0.5061 304
14 854 3969 176 0.2152 0.2155 58.065 119.20 0.4871 639
15 1195 2123 252 0.5629 0.5639 51.118 153.48 0.3330 1117
16 1467 3201 382 0.4583 0.4591 78.084 104.75 0.7454 852
17 1240 3873 397 0.3202 0.3207 68.007 109.52 0.6209 696
18 2467 3000 436 0.8223 0.8239 68.309 116.99 0.5839 218
19 846 7241 193 0.1168 0.1170 125.16 132.95 0.9414 627
20 1527 2762 212 0.5529 0.5538 103.84 107.34 0.9674 276
21 640 10000 122 0.0640 0.0641 79.832 137.29 0.5815 1292
22 2257 7353 571 0.3069 0.3075 113.90 140.51 0.8106 382
23 974 1358 337 0.7172 0.7185 76.928 89.272 0.8617 398
24 1316 8651 208 0.1521 0.1524 57.077 81.241 0.7026 902
25 2877 5412 758 0.5316 0.5326 72.125 142.74 0.5053 407
26 843 4135 162 0.2039 0.2042 114.70 116.09 0.988 624
27 2290 6354 422 0.3604 0.3610 78.067 149.76 0.5212 571
28 1148 4288 298 0.2677 0.2682 81.932 128.93 0.6355 789
29 865 7823 182 0.1106 0.1107 89.497 115.46 0.7751 669
30 3647 7383 1018 0.4940 0.4949 100.00 130.59 0.7658 517
Av. 1681 5518 366 0.3712 0.3719 76.977 124.34 0.6497 656

Table 4 Rastrigin's function. Two series of 30 runs

 Fig. 3: Rastrigin's Function Minimization

Run Results after J* ≤ 0.01 is reached Results after 3000 epochs
 *10-10

No NCoG Nconv Nimpr rateconv rateflops rateobj JCoG Jconv Nimpr
1 4 3000 2 0.0013 0.0012 0.4130 0.0091 0.0221 458
2 10 2591 4 0.0039 0.0037 0.7090 0.0091 0.0129 1520
3 14 3000 6 0.0047 0.0045 0.2070 0.0091 0.0044 436
4 3 3000 2 0.0010 0.0008 0.3070 0.0091 0.0296 405
5 3 3000 2 0.0010 0.0008 0.1640 0.0091 0.0556 369
6 148 3000 33 0.0493 0.0494 0.2980 0.0091 0.0305 360
7 4 3000 1 0.0013 0.0012 0.7490 0.0091 0.0122 305
8 28 3000 12 0.0093 0.0092 0.4350 0.0091 0.0209 333
9 8 3000 4 0.0027 0.0025 0.2420 0.0091 0.0376 1557
10 3 3000 1 0.0010 0.0008 0.7620 0.0091 0.0119 411
11 14 3000 11 0.0047 0.0045 0.3750 0.0091 0.0243 1680
12 3 3000 2 0.0010 0.0008 0.5480 0.0097 0.0177 1547
13 5 3000 3 0.0017 0.0015 0.4940 0.0092 0.0186 518
14 3 3000 0 0.0010 0.0008 0.5750 0.0091 0.0158 320
15 3 3000 1 0.0010 0.0008 0.3870 0.0096 0.0249 423
16 9 1395 2 0.0065 0.0061 0.3590 0.0104 0.0291 403
17 12 3000 4 0.0040 0.0039 0.3150 0.0091 0.0289 1724
18 3 3000 2 0.0010 0.0008 0.2920 0.0094 0.0322 1552
19 3 3000 2 0.0010 0.0008 0.3220 0.0092 0.0284 285
20 3 3000 1 0.0010 0.0008 1.2200 0.0173 0.0142 341
21 3 3000 1 0.0010 0.0008 1.6060 0.0369 0.0023 341
22 7 3000 2 0.0023 0.0022 0.3990 0.0094 0.0235 1456
23 43 3000 1 0.0143 0.0142 3.2120 0.0824 0.0257 1684
24 3 344 2 0.0087 0.0074 0.3890 0.0091 0.0234 1400
25 38 3000 13 0.0127 0.0126 0.3700 0.0114 0.0308 267
26 2 3000 1 0.0007 0.0005 0.6630 0.0182 0.0275 490
27 18 3000 2 0.0060 0.0059 0.2850 0.0092 0.0321 1725
28 3 1111 1 0.0027 0.0023 0.8380 0.0183 0.0218 1776
29 117 3000 6 0.0390 0.0390 3.4400 0.0277 0.0081 1542
30 8 3000 3 0.0027 0.0025 0.6110 0.0092 0.0151 411
Av. 18 2781 4 0.0063 0.0060 0.6995 0.0142 0.0247 868

Table 5 Different powers function. Two series of 30 runs

Fig. 4: Different powers function minimization

150 times more epochs (!). In each forth epoch an improvement occur due to the

addition of the new operator. 14 billion times (!!!) better result is achieved for the same

fixed number of epochs (3000).

4.1.4 Schwefel's function

Schwefel's function (Schwefel, 1981) determines a geometrically distant minimum (at

xi = 420.9687; Joptimal = -418.9829*n) from the next best local minima. Therefore, the

search algorithms often converge in a wrong direction.

fi(x)=10n+∑
=

−
n

i
ii xx

1
)sin(

The test results for n=20 variables and pm=0.01, pc=0.6, ps=30, bits=10 are

represented in Table 6 and a typical convergence is given in Fig.5. The results are quite

obvious: the GA which does not uses the new operator much more often falls into a local

extremum. In average 5 times less epochs are necessary to reach J*=-6000 and value of

the objective function better with 56% in average is reached for the same fixed number

of epochs (1000). Improvements occur in 88% of epochs (!) due to the new operator. It is

interesting to mention that the standard deviation in results is 5 times higher for the case

when the new operator is not used than when it is used. This could be explained by the

fact that in the case when it is not used the algorithm relatively often falls into a local

extremum.

4.1.5 Griewangk's function

Griewangk's function is similar to Rastrigin's function and has many regularly

distributed local minimuma which are spread over the search space. The global one

(Joptimal) is at xi=0; f(x)=0.

fi(x)= 1)cos(
4000 11

2

+−∏∑
==

n

i

i
n

i

i

i
xx

The test results for n=30, pm=0.01, pc=0.7, ps=30, bits=20 variables are given in Table

7 and a typical convergence is represented on Fig.6. Again, 2 times faster convergence

with practically no additional computation effort has place. In 24% of the epochs

improvements are due to the application of the new operator. For a fixed number of

Run Results after J* ≤ -6000 is reached Results after 1000 epochs
No NCoG Nconv Nimpr rateconv rateflops JCoG Jconv rateobj Nimpr

1 91 4776 78 0.0191 0.0191 -6820 -5626 1.212 942
2 99 6904 96 0.0143 0.0144 -7237 -4055 1.785 942
3 83 783 58 0.1060 0.1061 -7021 -4671 1.503 976
4 100 4764 78 0.0210 0.0210 -7329 -5472 1.339 938
5 84 2264 83 0.0371 0.0371 -7438 -4444 1.674 919
6 182 6267 161 0.0290 0.0291 -7381 -4574 1.614 943
7 140 7246 78 0.0193 0.0193 -7512 -5504 1.365 958
8 151 3648 140 0.0414 0.0416 -7225 -6491 1.113 917
9 83 7542 75 0.0110 0.0112 -7773 -3931 1.977 842
10 67 2729 65 0.0246 0.0246 -7656 -4760 1.608 937
11 81 151 77 0.5364 0.5398 -7277 -3837 1.897 924
12 107 517 99 0.2070 0.2072 -6872 -4072 1.688 960
13 53 158 51 0.3354 0.3361 -7416 -3905 1.899 892
14 220 366 215 0.6011 0.6051 -7330 -3843 1.907 891
15 83 1097 63 0.0757 0.0759 -6735 -5540 1.216 869
16 76 1422 63 0.0534 0.0535 -7507 4209 1.784 959
17 57 158 56 0.3608 0.3616 -6899 -4116 1.676 916
18 36 53 35 0.6792 0.6816 -7717 -3805 2.028 927
19 65 176 59 0.3693 0.3705 -7508 -4537 1.655 928
20 68 1286 67 0.0529 0.0529 -7642 -4155 1.839 927
21 105 870 97 0.1207 0.1211 -7436 -4863 1.529 931
22 44 93 43 0.4731 0.4741 -7398 -4377 1.690 928
23 60 2465 31 0.0243 0.0243 -7527 -4707 1.599 934
24 57 704 54 0.0810 0.0810 -7615 -4161 1.830 883
25 78 620 77 0.1258 0.1261 -7435 -6746 1.102 903
26 56 349 45 0.1605 0.1606 -7047 -3896 1.809 952
27 96 132 95 0.7273 0.7318 -7182 -4502 1.595 901
28 93 2011 82 0.0462 0.0464 -7311 -4393 1.664 934
29 112 1141 78 0.0982 0.0985 -7658 -7266 1.054 970
30 120 554 116 0.2166 0.2176 -7434 -4585 1.621 927
Av. 92 2042 81 0.1889 0.1896 -7345 -4700 1.563 926

Table 6 Schwefel's function. Two series of 30 runs

Fig. 5: Schwefel's Function Minimization

Run Results after J* ≤ 1000 is reached Results after 3000 epochs
No NCoG Nconv Nimpr Ratecon rateflops JCoG Jconv rateobj rateflops Nimpr

1 733 1383 187 0.5300 0.5307 0.0712 0.1055 0.6755 1.0031 482
2 709 1417 142 0.5004 0.501 0.0181 0.0746 0.2428 1.003 476
3 604 1507 150 0.4008 0.4013 0.0298 0.0749 0.3973 1.0031 495
4 711 1029 137 0.6910 0.692 0.0369 0.073 0.5056 1.0029 453
5 711 1020 230 0.6971 0.6981 0.0406 0.0883 0.4605 1.0028 522
6 824 1253 161 0.6576 0.6586 0.0647 0.0666 0.9722 1.003 396
7 476 1103 119 0.4316 0.432 0.0363 0.3295 0.1102 1.0029 538
8 481 1149 128 0.4186 0.4191 0.0312 0.2225 0.1402 1.003 423
9 613 1597 184 0.3838 0.3843 0.0256 0.0597 0.4292 1.003 494
10 812 1080 198 0.7519 0.753 0.0804 0.0863 0.9319 1.0029 549
11 694 987 151 0.7031 0.7042 0.0738 0.1466 0.5032 1.0028 358
12 766 1045 192 0.7330 0.7341 0.0702 0.1165 0.6026 1.003 713
13 930 1448 198 0.6423 0.6432 0.0272 0.0572 0.476 1.0031 468
14 559 1204 167 0.4643 0.4648 0.0956 0.1079 0.8859 1.0029 486
15 686 1268 142 0.5410 0.5417 0.0376 0.1904 0.1976 1.003 536
16 769 1537 176 0.5003 0.501 0.0385 0.1275 0.3016 1.0028 507
17 787 1052 171 0.7481 0.7492 0.0373 0.1183 0.3149 1.0028 618
18 744 1790 176 0.4156 0.4162 0.0546 0.1277 0.4274 1.0028 703
19 848 994 265 0.8531 0.8545 0.0307 0.0465 0.6608 1.003 633
20 603 1146 152 0.5262 0.5269 0.0474 0.1182 0.4008 1.0029 369
21 717 1114 204 0.6436 0.6445 0.037 0.061 0.6072 1.0031 502
22 627 1422 131 0.4409 0.4415 0.0384 0.2698 0.1422 0.9559 589
23 863 1651 182 0.5227 0.5234 0.0258 0.0877 0.2942 1.0028 550
24 789 1175 174 0.6715 0.6725 0.03 0.0511 0.5878 1.0029 394
25 602 1521 166 0.3958 0.3963 0.0493 0.1024 0.481 1.0029 398
26 730 1508 157 0.4841 0.4847 0.0516 0.0581 0.8882 1.0028 378
27 865 1877 193 0.4608 0.4615 0.0257 0.0561 0.4572 1.0029 400
28 663 1318 105 0.5030 0.5037 0.0471 0.0688 0.6852 1.0029 503
29 543 1588 168 0.3419 0.3423 0.0291 0.1432 0.2032 1.0031 591
30 677 1323 198 0.5117 0.5124 0.0309 0.0666 0.4634 1.0029 437
Av. 706 1317 170 0.5522 0.5530 0.0438 0.1101 0.4815 1.0014 499

Table 7 Griewangk's function. Two series of 30 runs

Fig. 6: Griewangk's Function Minimization

 epochs (3000) 2 times better result (in average) is registered and in 17% of epochs

improvements are due to the new operator. It is interesting to mention that the standard

deviation of the results of the 30 runs with the new operator are more than 3 times

smaller (0.019 instead of 0.066) which means that the role of mutation and the

randomness is less important in this case than when it is not used.

4.2 Air-conditioning system optimization

The last example represents an practical optimization problem: to minimize the

energy costs in a hollow core ventilated slab system used as a thermal storage during the

night and off-peak electricity tariff periods such that not to compromise the comfort of

the occupants (Ren, 1997). The results of application of the new CoG-based

supplementary crossover operator together with the GA, which does not uses it are

depicted on Fig.7-Fig.10 (all other parameters, including random generator are the same).

Supplementary CoG-based crossover improves significantly the convergence (Fig.7)

as well as the final result: while the thermal comfort is practically not changed, the more

effective (with 6%) solution is achieved (normalized value of the costs is 0.90886 instead

of 0.95622). The optimal profiles of the fan power, supply air temperature and flow rate

are given on Fig.8 - Fig.10 respectively.

The effect is achieved by lowering the supply air flow rate during the morning pre-

cooling (Fig.10) while fan is switched on an hour earlier (Fig.9) with lower power.

Supply air-temperature during the morning pre-cooling and after working evening hours

is lower (Fig.9).

Fig. 7 Total costs of energy used Fig. 8 Fan Power Profile

Fig. 9 Supply Air Temperature Fig. 10 Supply Air Flow Rate

All final results are given in Table 8 with GA parameters used. They illustrate

efficiency of the proposed new CoG-based supplementary crossover operator.

Test functions Improvements effect GA parameters
 rateconv Nimprove rateobj Nimprove pm pc ps

De Jong's 0.7532 15.8% 0.5681 14.2% 0.01 0.6 30
Rastrigin's 0.3712 21.8% 0.6497 21.9% 0.005 0.8 30
Schwefel's 0.1889 88.0% 1.5628 92.6% 0.01 0.6 60

Griewangk's 0.5522 24.1% 0.4815 16.6% 0.01 0.7 30
different powers 0.0063 22.2% 7*10-11 28.9% 0.01 0.6 60
Air conditioning CostCoG=0.90896 Costconv=0.9562 0.001 1 80

Table 8 Improvements effect (summarizing averages from all tests)

5 Conclusions

The new supplementary crossover operator is proposed and tested in the paper. It

performs specific breeding between the two fittest parental chromosomes producing a

new child chromosome, which is based on the center of gravity of the parental ones. The

test results indicate that it leads to 2-3 times better results than when it is not used.

Without significant increasing computational expenses the speed of convergence as well

as the final result in tests is significantly improved. A limited proof of its efficiency is

provided for the case of one variable and using elitists selection strategy in combination

with the new operator. The new operator could be used both in binary as well as in real-

coded GA. A number of numerical tests as well as a practical example of supply air

temperature and flow rate scheduling in a ventilated slab thermal storage system are

presented, which proves the viability of the proposed new operator.

5 Acknowledgements

The author would like to acknowledge the support of the EPSRC (by grant

GR/M97299) as well as the helpful comments of Dr. J.A.Wright and Dr. R. Farmani.

6 References

1. P.P.Angelov, R. Guthke, A GA-based Approach to Optimization of Bioprocesses
Described by Fuzzy Rules, Journal of Bioprocess Engineering(1997) v.16, pp.299-
301

2. L.Davis, Adapting Operator Probabilities in Genetic Algorithms, Proc. of the
International Conference on Genetic Algorithms ICGA89 (1989) 61-69

3. T. C. Fogarty, Varying the Probability of Mutation in The Genetic Algorithm, Proc.
of the International Conference on Genetic Algorithms ICGA89 (1989) 104-109

4. D.E.Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning,
Addison-Wesley, Reading, MA (1989)

5. J.J.Grefenstette, Optimization of Control Parameters for Genetic Algorithms, IEEE
Transactions. on Systems Man and Cybernetics, 16 (1) (1986) 122-128

6. P.Hajela, J.Yoo, Constraint Handling in Genetic Search - A Comparative Study,
Proc. of the American Institute of Aeronautics and Astronautics (1995) 2176-2186

7. Matlab, High Performance Numeric Computation and Visualization Software,
MathWorks Inc. (1994)

8. Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs,
Springer Verlag, Berlin , 2nd edition (1996)

9. H.Muhlenbein, D.Schlierkamp-Voosen, Predictive Models for the Breeder Genetic
Algorithm. I. Continuous Parameter Optimization, Evolutionary Computation, 1 (1)
(1993) 25-49

10. L.M.Patanik, S.Mandavali, Adaptation in Genetic Algorithms, In: Genetic Algorithms
for Pattern recognition, S.K.Pal, P.P.Wang, Eds.,CRC Press, Boca Raton, FL (1996),
45-64

11. S.K.Pal, P.P.Wang,Genetic Algorithms for Pattern recognition, CRC Press, Boca
Raton, FL (1996)

12. C.Onnen et.al., Genetic algorithms for Optimization in Predictive Control, Control
Engineering Practice, 5 (10) (1997) 1363-1372

13. M.J.Ren, Optimal Predictive Supervisory Control of Fabric Thermal Storage
Systems, Ph.D. Thesis, Loughborough University, Loughborough, UK (1997)

14. Schwefel, H.-P., Numerical Optimization of Computer Models, John Wiley and Sons,
Chichester (1981)

15. R.Yager, D. Filev, Essentials of Fuzzy Modeling and Control, John Willey and Sons,
NY (1994)

