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Abstract—The systematic study of software self-adaptation
has emerged as one of the key areas of software engineering.
The challenges and the ontology relevant to this area are still
being formulated. I take this opportunity to present some of
my observations on compliance, context, and uncertainty as they
pertain to adaptation. I also argue that requirements engineering,
and to a large extent software engineering, takes a centralized
perspective of systems, and therefore cannot model let alone
enable reasoning about adaptation in multiagent systems.

Index Terms—Verifiability, Crisp requirements, Fuzzy require-
ments, Critical requirements, Multiagent Systems, Interaction,
Commitments, Requirements engines

I. INTRODUCTION

In recent years, software self-adaptation has emerged as one

of the focus areas in software engineering. Self-adaptation

is not a new goal in itself; in fact, it has been applied in

systems design all along. The Internet was designed to adapt

to routing failures and the discovery of new routers. Self-

tuning databases could decide which indexes to create thereby

making database administration simpler. Work in multiagent

teamwork has considered adaptation via the formation of joint

intentions and plans. What we are witnessing now is the push

to understand adaptation systematically in terms of software

requirements and architecture so that we may design systems

with adaptation in mind.

Requirements modeling approaches deal in such high-level

concepts as stakeholder goals, capabilities, responsibilities,

and goal dependencies. Lately, various manifestos and broad

technical outlines have been published that advocate systems

reflecting upon their own requirements models at runtime

in order to effect adaptation [1], [2]. In such systems, the

requirements are usually represented in terms of goals. The

basic idea is that a system would monitor the satisfaction of its

own goals and if some goals fail, then the system would adopt

alternative goals. Architectural approaches typically assume an

adaptation manager that rewires together components based

upon observed events [3]. In a sense, RE approaches address

adaptation at the strategic level: ultimately, even architectural

adaptation would be driven by the necessity to fulfill high-

level requirements [4]. The advantage of effecting adaptation

based upon high-level models, whether of requirements or

architecture, is that technical details such as the exact plans

and procedures may be left to the infrastructure.

I take this opportunity to put forward some observations

about requirements-driven adaptive systems. I take the follow-

ing positions.

• Compliance is key. Requirements must be crisp in that

one should be able to check if systems comply with them.

Some new requirements languages fail this criterion.

• Modeling context is key. The distinction between critical

(invariant or crisp) and noncritical (fuzzy) requirements

is misleading. Instead, it is much better to think of

requirements as being contextual.

• Adaptation to unforeseen circumstances is not realistic.

It is better to pay more attention to the methodological

details of requirements specification so that we have

robust specifications.

• Modeling interaction and social commitments among

agents is key to adaptation in multiagent systems. Cur-

rently, RE lacks the abstractions to model such systems.

I discuss each of these positions one by one and then

conclude the paper with some additional observations.

II. COMPLIANCE

The key property that ties systems with their requirements

is that of compliance: one should be able to tell if a system

is compliant with, in other words, meets its requirements. In

general, stakeholders want systems that are compliant with

requirements. However, it is well known that determining

software compliance by testing and verification is not easy,

especially in open settings. In general, we can only talk about

our confidence that the system meets its requirements. That is

the reason why mission critical systems often have redundancy

built into them—redundancy is a way to increase confidence.

However, what we should not compromise upon is the abil-

ity to tell whether a system is compliant or not by observing its

operation. Thus during operation, if the rate of flow of coolant

in a nuclear reactor fails to meet requirement, we should

be able to detect that. Detecting noncompliance is crucial to

our ability improving systems design. Once noncompliance

is flagged, we can analyze the chain of events that led to

noncompliance and take preventive measures.

Detecting noncompliance at runtime necessarily implies that

the requirements be crisp. The requirement R0: the rate of

coolant flow shall be high does not meet this criterion because

we do not know what “high” means. R1: the rate of coolant

flow shall not drop below 3000 gallons per second is crisp

though. (Requirements such as R0 are often characterized

as soft goals in the literature. R1 may be interpreted as

a metricized version of R0). R2: the rate of coolant flow

shall remain in the range of 2800-3200 gallons per second
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Label Requirement Crisp

R0 The rate of coolant flow shall be high No

R1 The rate of coolant flow shall not drop below 3000
gallons per second

Yes

R2 The rate of coolant flow shall remain in the range of
2800-3200 gallons per sec

Yes

R3 The backup coolant pump shall be operational 98%
of the time

No

R4 The mean time between failure for the coolant pump
shall be more than two years

No

R5 The pump shall not malfunction more than once in
any 730 day period

Yes

W0 The fridge shall detect and communicate with all
food packages

Yes

W1 The fridge shall detect and communicate with AS
MANY food packages AS POSSIBLE

No

W2 The system shall raise an alarm if no activity by
Mary is detected for some hours (to be decided)
during normal waking hours

Yes

W3 . . . EVENTUALLY, all devices SHALL use the same
data

No

TABLE I
SOME EXAMPLES OF CRISP AND NONCRISP REQUIREMENTS. CRISP

REQUIREMENTS ARE THOSE THAT SUPPORT VERIFYING COMPLIANCE AT

RUNTIME

is likewise crisp. R3: the backup coolant pump shall be

operational 98% of the time is not crisp because the number

of observations are unbounded. For the same reason R4: the

mean time between failures for the coolant pump shall be more

than two years is not a crisp requirement. R5: the pump shall

not malfunction more than once in any 730 day period is crisp

though. Table I requirements summarizes this discussion. In

summary, a requirement is crisp if and only if compliance with

it can be verified at runtime.

Whittle et al. [5] introduce a language RELAX with new

operators for the express purpose of supporting adaptation

under uncertainty. They consider two kinds of requirements:

requirements that are invariants and requirements that are not.

Invariant requirements are understood to be critical, whereas

the others are understood to be noncritical. The idea is that

whereas a system must meet the critical requirements, the

system has leeway, that is, room for adaptation, in meeting the

noncritical requirements. Whittle et al. consider a smart home

setting. According to them, the requirement W0: a fridge shall

detect and communicate with all food packages is invariant.

By contrast, Whittle et al. do not deem the requirement W1:

the fridge shall detect and communicate with AS MANY food

packages AS POSSIBLE an invariant; they deem it relaxed.

Whittle et al. consider another requirement W2: the system

shall raise an alarm if no activity by Mary is detected for

some hours (to be decided) during normal waking hours. They

deem W2 an invariant. The advantage Whittle et al. claim is

that if the requirements specification is {W1,W2}, then in

situations where all available resources are required to satisfy

W2, the system could forgo the satisfaction of W1. Besides

quantitative RELAXed requirements expressed using operators

such as AS MANY AS POSSIBLE, one can also express

temporal RELAXed requirements using operators such as AS

EARLY AS POSSIBLE, AS LATE AS POSSIBLE, and so on.

Baresi et al. [6] introduce a language with operators similar

to RELAX to support runtime adaptation. We refer to such

operators as relaxed operators and requirements expressed

using relaxed operators as relaxed requirements.

Relaxed requirements are not crisp. In other words, such

requirements do not yield to compliance checking. Even a

system where the fridge was designed to never monitor its

contents could not be proven noncompliant with W1 by

observing its operation. The reason is the unbounded nature

of these requirements: it places no time or quantity bounds.

Requirements specifications are necessarily prescriptive.

There avails no benefit from considering requirements as

noncritical in the sense of Whittle et al. (equivalently, fuzzy

in the sense of Baresi et al.). The users of a system may view

some requirement as being uncritical but that just means we

are willing to tolerate noncompliance with that requirement.

That does not mean a requirement cannot be flexibly specified.

The OR-decomposition of a goal represents alternative ways

in which a system can achieve the goal. Specifying tolerances

for quality requirements gives a system room to maneuver

and adapt. The flexibility that comes with using relaxed

requirements comes at the cost of compliance—a price not

worth paying.

Whittle et al. formulate an interesting relaxed requirement

W3: . . . EVENTUALLY, all devices SHALL use the same

data for a device synchronization application. I mention this

requirement especially because it is formalized in traditional

temporal logic unlike the ones I mentioned above which are

formalized in a fuzzy temporal logic. The notion of eventual

consistency sits well with the nature of distributed systems. At

a first glance, therefore, it would seem that such requirements

would be unavoidable for distributed systems. However, W3

is not crisp because eventually can be at any point in the

future, and is therefore unbounded in time. No system will

ever be noncompliant with W3. No temporal requirement of

the nature AFp (on all paths, eventually p) is crisp.

III. CONTEXT

Instead of talking about critical versus noncritical require-

ments, it is far more beneficial to talk about contextual

requirements in the sense of Ali et al. [7]. The motivating

idea is that for any reasonably complex system, requirements

can seldom be effectively specified without specifying the

context in which a requirement would apply. Further, as the

context changes, the system adapts to meet the applicable

requirements. In their work, the context is understood as a

property of the environment. Ali et al.’s produce Tropos-

like goal models, except that the models are also explicitly

annotated with the context. Another kind of model in their

approach is a detailed model of the context itself. They start

with abstract contextual conditions and refine them to events

that can be monitored from the environment. Ali et al. [8] and

Dalpiaz et al. [9] elaborate on adaptation driven by changes

in context.
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What Whittle et al. deem an invariant requirement may be

better understood as a crisp requirement that is applicable in

all contexts. A relaxed requirement may be better formulated

as a crisp requirement that is applicable in some specified

contexts. For example, in the smart home example, I could

express the requirement that in the course of normal operation

(a suitably modeled contextual condition), both W0 and W2

apply. That may be considered the default case. In the case

of abnormal operation though (again, a suitably modeled

contextual condition), W0 does not apply. If the abnormal

condition is a power failure, that means that the system would

adapt by using the backup generator towards the satisfaction

of W2. How the system adapts may be left to the system (as

a lower-level plan); however the specification of the abnormal

conditions is part of the requirements specification.

Whittle et al. also consider, as part of the methodology

of going from the invariant to the relaxed requirement, the

contextual conditions that lead to the relaxation of the require-

ment. They also produce a mapping to monitorable events.

However, differently from Ali et al., the exact conditions under

which a requirement may be relaxed (the abnormal conditions)

are themselves not part of the specification. Whittle et al. seem

to want to avoid making the conditions part of the requirements

specification in order that the system would have the freedom

to adapt as suits the satisfaction of the invariant requirements.

Doing that amounts to underspecification: there is no recourse

to explicitly modeling the context as part of requirements

specification.

IV. UNCERTAINTY

In the literature, I often come across phrases such as adap-

tation to unanticipated situations (equivalently, unforeseen

situations). Enabling such adaptation is an ambitious goal

although, in general, I do not think we can engineer systems

to handle unanticipated situations. What can we do is thor-

oughly analyze the environment and build our specifications

in accordance, much as advocated by Zave and Jackson [10].

We can build contextualized representations of requirements

so that the system can adapt to changes in context. We can

build flexibility into our specifications. We can extensively test,

verify, and simulate the system to make sure that the system

works for the assumptions we have made. Part of coming up

with a specification is thinking of all possible scenarios in

which we need to the system to work.

Consider the recent partial meltdown at the Fukushima

reactor in Japan. Modern nuclear plants are designed with

elaborate safety systems to meet the requirement of preventing

a reactor core meltdown. Designers envisage various threat

scenarios and perform extensive simulations to make sure the

safety systems meet requirements. However, the Japanese did

not take into account a tsunami and an earthquake, both more

powerful than their systems were built for, striking at the

same time. This is what happened in Fukushima leading to a

catastrophic core meltdown. Even though the system tried to

adapt to cope with the circumstances (for example, by stopping

the operation of the reactor and using alternate mechanisms

to cool down the reactor), it simply wasn’t built to handle the

twin threat.

The lesson is that practical systems have limits: no matter

how deep the analysis, engineers cannot design a system to

cope with unforeseen circumstances. Your system is as only

as robust as the assumptions you have made.

A conceptually helpful way to think of uncertainty is in

terms of flexibility and compliance. Flexibility and compliance

are two sides of the same coin. Higher-level abstractions

enable more operational flexibility at the lower-level. However,

flexibility cannot be unbounded, as is the case with relaxed

requirements. There must also be a way to determine compli-

ance. To satisfy W2 in case of a power failure, the system can

either use a backup generator or immediately alert a human

operator. As long as W2 is satisfied, it does not matter which.

(The connection between compliance, flexibility, and abstrac-

tion in due to Yolum and Singh’s work on business protocol

specification [11].) Cheng et al. [1] bring up the issue of

managing uncertainty. The idea is to prevent adaptation from

producing undesirable unforeseen results. This possibility is

much more distinct with relaxed requirements than with crisp

ones.

V. SYSTEMS

I am interested in the class of information systems that

support social and business interactions among multiple au-

tonomous—broadly, independently motivated—parties. In set-

tings as diverse as social networking, collaborative scientific

computing, emergency response systems, cross-organizational

supply networks, electronic commerce, and health care, to

name but a few, we see that the systems are constituted

from a number and variety of autonomous parties. I refer to

each autonomous party as an agent and to the system as a

multiagent system.

What I mean by autonomy above is different from what is

understood as autonomous operation in the self-* approaches.

I conceptualize an agent as a social entity that can be traced

back to a real-world principal whose rationale it represents.

The principal would be a human or an organization. Agents

are autonomous because their principals are autonomous. By

contrast, autonomous operation means the degree to which a

software system can function without supervision. My vacuum

cleaner may operate autonomously but it is not an agent in the

above sense—ultimately, I control it. By contrast, bidders and

sellers on eBay are all autonomous parties, that is, agents.

Because the agents are autonomous, they interact on the

basis of social convention (just as humans do). A protocol is

a specification of convention. Instead of referring to specific

agents, a protocol is specified in terms of the roles that

agent may adopt. Traditional computer science approaches for

protocol specification are operational: they specify a flow of

messages. They overlook the semantic content of messages.

For example, traditionally a purchase protocol would specify

that the accept or reject of an offer follow the offer; however, it

ignores the fact that in many business settings an offer would,

by force of convention, mean a social commitment from the
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seller to the buyer for goods in return for payment. Commit-

ments are in fact a higher level abstraction for interaction:

they abstract over message flow, similar to how goals abstract

over low-level procedures [11]. Commitments also support

compliance-checking: an agent is compliant as long as he does

not violate his commitments to others.

Multiagent systems are logically distributed. Each agent in a

multiagent system is a locus on control. There is no centralized

computer that controls the actions of agents. You cannot

integrate two agents; you must model the interactions among

them. Each agent is independently designed starting from an

independent set of requirements (an implication of autonomy)

and therefore acts, interacts, and adapts independently of

other agents in the system. The commitments that come

about from enacting the protocol form the social fabric that

connects agents. In adapting an agent would also consider his

commitments with others. For example, if the winning bidder

reasons that it will not be able to fulfill its commitment to pay

on time, it may adapt by delegating payment to another agent

or by offering an incentive to the seller in return for a delay in

payment. The notion of compliance is relevant to adaptations

here. Each agent would run his own monitor-deliberate-adapt

loop independently of others. Normally, agents would not

be reckless in their adaptations for fear of violating their

commitments. Noncompliance will usually have bad social

repercussions for an agent. Prudent agents would not ar-

bitrarily make or cancel commitments when adapting; they

would try to remain compliant. Dalpiaz et al. [12] propose

a conceptualization of adaptation in multiagent systems that

takes into account the commitments among agents.

When the software engineering community (including archi-

tecture and RE) discusses the engineering of systems such as

flight control systems, washing machine, smart homes, vacuum

cleaners, mission-critical safety systems, and so on, it takes a

logically centralized perspective. RE approaches advocate elic-

iting requirements from different stakeholders; however, from

the perspective of designing the system, there would simply

be a unified pool of requirements that would have to be met

by the system by performing the correct computations. This is

what is traditionally referred to as integration. Approaches for

architectural adaptation are likewise centralized: they assume

a controller that manages the adaptations [3].

Logical centralization should not be confused with physical

centralization. A logically centralized system does not mean

that components in the system cannot be physically distributed.

For example, a workflow engine is a logically centralized

system that invokes distributed services; a flight control system

would involve communication among different sensors.

Consider any system that involves two or more agents. I

gave the example of auctions above, but it could just as well be

scheduling a meeting, hosting a party, negotiation, argumen-

tation, an interorganizational business process, or healthcare.

To reason about adaptation in such a system, one would have

no recourse but to model the interactions among agents. RE

must adopt agents and commitments as first class ontological

concepts. Recent work on core ontologies for RE [13] is

crucially lacking in this regard.

VI. CONCLUSION

In this paper, I have dwelled on the nature of requirements

specifications and systems as relevant to adaptation. I have

argued that specifications should be crisp; in other words,

one should be able to determine runtime compliance with

the specification. I have also argued that rather than modeling

requirements as critical or noncritical, one should model the

context in which requirements are relevant. Further, I have

argued that engineering for adapting to conditions unforeseen

at runtime is a futile goal and that instead, one should focus

on a careful analysis of the environment in coming up with

specifications. And lastly, I have claimed that because current

RE approaches take a centralized perspective on systems

engineering, multiagent systems are outside the scope of what

they can model.

I conclude by raising two further points.

One, in my vision, a requirements specification would

ultimately be seen as a program that is interpreted by a virtual

machine (VM). The VM computes a strategy for achieving the

goals a specification denotes. It then puts the strategy in action,

monitors the success of the strategy by observing events from

the environment and tracking the achievement of goals, and if

necessary computes and applies a new strategy. I dub the VM

a requirements engine because what it is doing is essentially

executing the requirements. Based on conversations I’ve had

with several researchers, it seems to me that many consider the

idea of requirements specifications as programs somewhat far-

fetched. Their principal objection seems to be that too many

details would have to be captured in the requirements models

for the model to be executable, and that this would makes

both the models and their analysis unwieldy. However, I do

not see why the same objections would also not apply to any

reflection-based approach for adaptation.

Two, problems with compliance aside, requirements such

as AFmessageDelivered are more complex than they initially

let on. Let’s label this requirement R (R is a somewhat

simplified form of the device synchronization requirement

mentioned in Section II). Zave and Jackson [10] distinguish

between requirements and specifications in the sense that a

specification is implementable whereas a requirement may

not be. AFmessageDelivered is a requirement, but it is not

a specification. It is not a specification because message

delivery is controlled by the environment. R would have to

be further refined to arrive at a specification. One could make

the domain assumption (K) that eventually some attempt to

send a message will succeed. The specification (S) could

say that messages be resent at periodic intervals until an

acknowledgment is received. Informally, we can see that

S, K ⊢ R. If we want to support requirements-driven runtime

adaptation, we should make sure what the system is given is

a crisp specification.
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