
Canary: Extracting Requirements-Related
Information from Online Discussions

Georgi M. Kanchev
Lancaster University

g.kanchev@lancaster.ac.uk

Pradeep K. Murukannaiah
Rochester Institute of Technology

pkmvse@rit.edu

Amit K. Chopra
Lancaster University

amit.chopra@lancaster.ac.uk

Pete Sawyer
Aston University

p.sawyer@aston.ac.uk

Abstract—Online discussions about software applications gen-
erate a large amount of requirements-related information. This
information can potentially be usefully applied in requirements
engineering; however currently, there are few systematic ap-
proaches for extracting such information. To address this gap,
we propose Canary, an approach for extracting and query-
ing requirements-related information in online discussions. The
highlight of our approach is a high-level query language that
combines aspects of both requirements and discussion in online
forums. We give the semantics of the query language in terms of
relational databases and SQL. We demonstrate the usefulness
of the language using examples on real data extracted from
online discussions. Our approach relies on human annotations
of online discussions. We highlight the subtleties involved in
interpreting the content in online discussions and the assumptions
and choices we made to effectively address them. We demonstrate
the feasibility of generating high-quality annotations by obtaining
them from lay Amazon Mechanical Turk users.

Keywords-Requirements elicitation; Crowdsourcing; Social me-
dia; Online discussions; Query language

I. INTRODUCTION

Conventional methods for requirements elicitation involve
direct communication between stakeholders and requirements
engineers via interviews, questionnaires, focus groups, work-
shops, and consultations with field experts [25]. Combinations
of such methods are often successfully used, but eliciting
the more elusive, tacit requirements remains challenging [34].
Informing requirements from user feedback on applications
[31], [38], [18] and crowdsourcing requirements [12], [23] are
new avenues for obtaining a fuller picture of user requirements.

This paper applies crowdsourcing to support a rich, dy-
namic, and user-driven understanding of an application’s re-
quirements from information in online discussion forums.
Further, it employ argumentation [29], [10], [24] to structure
discussions for obtaining high-quality requirements.

An online discussion about a software application typically
has the following structure. First, a user posts a question
about how he or she may accomplish something with a
software application, or describes a feature that he or she
wishes the application had. We consider such natural language
descriptions—problems the users encounter and descriptions
of what they expect the application to do—as requirements,
broadly. Next, other users may respond with expressions of
support for the user’s comment or rebut it, e.g., by pointing
out the infeasibility of what the user is requesting. Yet others

may respond by proposing solutions that accomplish what the
original user wanted. That is, a solution describes an existing
means of addressing (solving) a requirement. In addition,
users may employ upvotes and downvotes to indicate their
support (or lack of support) for comments. In general, such
a discussion would have a nested structure in that users may
respond to any user’s comment, not just the original poster’s.

In a nutshell, online discussions include two kinds of infor-
mation valuable to RE: requirements-oriented and social inter-
action or argumentation-oriented. Extracting such information
helps understand the challenges stakeholders face, which in
turn helps formulate requirements and prioritize development
tasks. However, current techniques are inadequate for extract-
ing and utilizing information in online discussions.

Several aspects of online discussions make the task of using
them to inform application development challenging. One, the
data is often voluminous with a single top-level post often
invoking a long discussion. Two, most of the discussion is
carried out in natural language; so identifying aspects of the
discussion (e.g., whether some comment expresses a require-
ment) is nontrivial. Three, there is currently no systematic
methodology of leveraging requirements-related information
from social media that supports features related to social
interaction. For example, there is no tool that would allow a
requirements engineer at Google to formulate a query such as
give me the five most controversial requirements about Google
Maps over the last two months, where “controversy” captures
aspects of social interaction (discussion). Our contributions in
the paper lie in addressing these challenges.

Contributions: Our overarching contribution is a method-
ology called Canary that effectively creates a requirements-
oriented view of online discussions as Figure 1 shows. The
centerpiece of the methodology is a conceptual model that
combines requirements-relevant and argumentation-relevant
aspects of online discussions. We demonstrate that it is feasible
to transform online discussions into instances of this model
by crowdsourcing annotations of the discussions. The payoff
of Canary is a novel high-level query language that combines
features of requirements and argumentation in interesting ways
and whose queries can be executed over databases of the
annotated discussions. For practical usefulness, we provide
the semantics of Canary queries in terms of SQL queries. We
have implemented a prototype and demonstrate the results on
databases of real online discussions. Canary makes writing a

Requirements Analyst

Requirements Database
(virtualized as Canary queries)

User Discussions
(stored in a relational database)

Fig. 1. Canary realizes a requirements-oriented store over user discussions
stored in traditional information stores. The view is realized via a mapping
from Canary queries to SQL queries.

variety of sophisticated queries simple, which would otherwise
be written in a low-level language. Importantly, it goes signif-
icantly beyond technology such as IBM DOORS [13], where
querying is limited to text searches.

Our contributions are informed by considerations of simplic-
ity and the structure of online discussions. Unrestricted (free-
form) interactions in online discussions can be quite rich and
subtle in meaning. We kept our models of both requirements
and argumentation simple. However, we exploit the structure
and information in online discussions to our advantage. Thus,
e.g., when a requirement appears in a reply to a comment
which is also a requirement, we consider the former a derived
requirement. We also exploit discussion features such as votes
and user reputation in computing queries.

Organization: Section II describes the structure and sub-
tleties we observed in online discussions and motivates our
conceptual model and methodology. Section III illustrates
running queries in Canary and its formal syntax, semantics,
and implementation. Section IV evaluates the efficacy of
obtaining annotations from lay users. Section V positions
our contributions with respect to the literature. Section VI
discusses our contributions and future directions.

II. METHODOLOGICAL DETAILS

We present a conceptual model of online discussions and
describe the subtleties in real discussions that we encountered.

A. Conceptual Model

Our conceptual model relates elements of users discussions
with elements of requirements and argumentation. Figure 2
shows main types of information Canary considers.

User discussions capture information related to social in-
teraction between application users, who may be playing
different roles in the discussion. Interaction is captured via
comments (and their replies) and users’ votes for comments,
usually measured in a metric called score. Requirements in-
formation is captured via annotations to comments in the user
discussion. Currently, Canary supports two kinds of require-
ments annotations, requirement and solution for a requirement
(a solution always refers to a requirement). A requirement
may have multiple solutions. Argumentation information is
captured via annotations to comments made in response to

User (name, role, reputation) Comment (text, score, time)

make, vote

RE Object Argumentation Object

annotate annotate

Requirement Solution Support Rebut

solve

Fig. 2. Conceptual model of information considered in Canary

a requirement or solution. The two kinds of argument annota-
tions currently supported in Canary are support and rebuttal.
A requirement or a solution may have multiple support and
rebuttal comments. An argument comment may itself be
argued about; thus, argumentation is unbounded in depth.

B. Canary Methodology

Canary has four main steps, potentially performed by a
requirements analyst.

1) Acquire discussions. Analyst acquires data from online
discussion forums, where possible by using an API (e.g.,
from Reddit). The extracted data reflects the discussion
accurately, including the flow of the discussion, user names,
reputation, votes, and so on.

2) Acquiring annotations. At this stage, the discussion
data contains no information about requirements or
argumentation-related information. To obtain such infor-
mation, the analyst sets up annotation tasks on Amazon
Mechanical Turk (MTurk).

3) Creating a database of discussions. The analyst creates a
relational database that reflects the schema of Figure 2 (the
full schema is available in [5]) and loads the annotated
discussion data into the database.

4) Run Canary queries. Analyst runs Canary queries against
the database. Internally, the Canary compiler generates the
appropriate SQL queries that can be run on the database.

C. Challenges and Assumptions

Online forums provide a flexible way of interaction be-
tween users. This creates several non-trivial challenges for
acquiring requirements-related information from them. One
primary challenge is how do we infer relationships between
annotated comments (objects), e.g., for the purpose of deter-
mining whether the sentiment for some requirement should
count as sentiment toward another or whether the solution for
one should count as solution for another. To be precise, the
challenge arises from the fact that (1) there are no restrictions
on what a user can say at any point in the discussion and (2)
that discussion is of the form of a tree of unbounded depth.

In general, our strategy is to infer relationships between
two objects only if one of them appears in a comment that
is a reply (however deeply nested) to the comment in which

I d be happy if it stopped giving me estimations if I went by car, by default. I ve
never owned a car, I go everywhere by bicycle or walking.

You can set your default mode of transportation. Just hit the three dots
button next to the estimation in Google Now, and you can pick there.

Fig. 3. Example of a solution to a requirement

Google maps should have an "I need gas" feature. This button would re-
direct your route through the nearest gas station.

Or a toilet. And by "toilet" I mean a clean toilet.

I'd also like it if you could set a max speed limit for your trip so I could
find routes for my scooter more easily

what google maps really needs is to increase the amount of gas
stations that show up on google maps when you search for "gas"...alot
of stations do not show up

Fig. 4. Example of derived requirements

the other one appears. This means that it is possible that
we would miss relationships between two objects that do
not appear along the same path in the discussion tree. This
is the price we chose to pay for simplicity of annotations.
Specifically, if we had wanted to capture all relationships
regardless of nesting, the annotation task would have become
much more difficult. In that case, the annotators would have
to give a unique name to each object and indicate explicitly
the relationships among them. However, because we decided
to forego such relationships, annotators need not use labels or
indicate relationships; they simply need to pick the annotation
that applies best. We expect that arbitrary relationships would
be rare occurrences in any discussion.

The implementation of Canary queries uses propagation to
infer relationships among annotated objects that arise from
nesting in the discussion. We propagate both semantics (e.g.,
if a solution is deeply nested in a requirement, we assume
that the solution addresses the requirement) and sentiment,
which is captured as a metric over the number of supports and
rebuttals and up and down votes for an object. Propagating
sentiment would mean that, e.g., if a requirement acquires
some sentiment then its parent requirement (if any) will also
acquire that sentiment. In general, a parent would acquire the
sentiments of all its children.

In order to support our assumptions we show examples
from real discussions of instances where some subtleties occur.
When a solution is nested in the responses to a requirement, we
assume that the solution is proposed to address the requirement
(Figure 3). A requirement can occur in reply to another
requirement. In this case, we assume that the former is derived
from the latter (Figure 4 shows three derived ones). The notion
of a derived solution is analogous (Figure 5).

Argumentation objects can be nested as well. Positive
and negative argumentation about a requirement is shown in
Figure 6 and Figure 7, respectively, and mixed argumentation
is shown in Figure 8. A support for an object of interest ex-
presses positive sentiment toward it. Supporting the supporting

You actually can get coordinates in the mobile version but its kind of annoying, you
hold down on a location to drop a pin and then you share it and copy it to your
clipboard or text it to yourself, open up the link you and you should get coordinates.
I was stuck on the side of the road and and his is how I let the tow truck driver know
where I was.

slightly better way: hold down to place a drop pin yada yada; tap it and tap
'SAVE'; press back; when you are done just un-save it

Fig. 5. Example of a derived solution

Google has a maps engine that is designed to make your own custom map overlay on to google maps.
Its a separate app that you can make custom points on. I use to use it all the time to make notes of

areas that I submitted or plan to submit to ingress.Looks like they renamed it as My Maps

Last time I did this it directed me to the station from the exit I had just passed, so it wanted me
to get off the next exit and head back up the interstate the other direction On-route search is

much better.

Fig. 6. Example of a rebuttal to a requirement

argument adds positive sentiment to the original object. A
rebuttal to an object of interest expresses negative sentiment
toward it. A rebuttal to this rebuttal adds positive sentiment
toward the original object of interest. In unbounded nesting
of rebuttals the sentiment may switch between positive and
negative toward the root object. Finally, imagine we observe a
support to an object of interest. A rebuttal of this support adds
negative sentiment to the original object of interest. If we add
another rebuttal then the sentiment becomes positive toward
the original object. Analogously, supporting of rebuttals adds
to the negative sentiment.

Gaps in nesting can occur. Imagine a comment with no
object of interest, and then in a reply to this comment we
observe something interesting. Such gaps provide a challenge
in the way Canary infers relationships between objects of
interest. Canary queries propagate to the end of the discussion
tree to make sure all relations between objects are detected.

You know what is more infuriating you search for something on maps say home
depot and you see a list of homepots and starratings and descriptions of home
depot beneath that how s that remotely useful, why not show address/phone
number etc who cares about ratings and descriptions of what home depot is I
have stopped using maps searching now this is just bad design.

Yeah, I don t even have Google Maps on my phone anymore

Fig. 7. Example of a support to a requirement

OK Google, find directions to the nearest gas station Done.

Last time I did this it directed me to the station from the exit I had just passed, so it wanted me to
get off the next exit and head back up the interstate the other direction On-route search is much

better.

That probably just means that gas station is closer even if you have to go back than forward.
Sometimes the one ahead of you will be too far away. Otherwise if you're not in a hurry you

can probably just get off at the next gas sign.

There was gas at the exit they wanted me to turn around at...

Going to a gas station that is en route for you is going to be less added distance

than if you have to back track.

Yes but if you don't have enough gas to make that distance adding that

distance is kind of necessary.

Fig. 8. Example of mixed argumentation about a solution

The flexibility of natural language allows for more than
one object of interest in the same comment. We make the
assumption that each comment contains one object of interest.
During annotation we favor RE objects over argumentation.

Online discussion forums can differ. In this paper, we
include observations from two forums: Reddit.com (which
allows for unbounded nesting of comments) and GoogleFo-
rums.com (which only allows one level of nesting). Forums
also store different details of the interaction that become
available metadata. For example, Reddit stores the sum of
votes for each entity in a metric called score. Google forums
has a role associated with its users, such as Google community
manager or a regular user. Reddit has a numerical value for
reputation of user of the forum. Queries for missing metadata,
for example a query for user role in Reddit, are handled
gracefully by Canary. It runs the rest of the query as normal
and ignores the condition, producing a warning.

III. QUERIES IN CANARY

In this section, we provide examples of high-level Canary
queries and their results on a database of real online discus-
sions from Reddit. Then, we provide the formal syntax and
semantics of queries. For brevity, we only show an overview
of the semantics (full details available at [5]).

A. Example Discussion

Figure 9 shows an example discussion that illustrates the
framework. In the example, users are discussing features and
requirements of Google Maps. The example is extracted from
Reddit. John suggests a requirement about being able to save
addresses in Google Maps. The requirement gets a score of
805. Mary expresses support for the requirement. Henry and
Patrick both propose solutions for the requirement (and get
a score of their own, which is a result of summing upvotes
and downvotes). Henry’s solution attracts rebuttal comments
in addition to a score. Patrick’s solution attracts support and a
score. In general, each comment may attract up and down votes
(resulting in a positive/negative score), as explained above.

B. Queries

Below are examples of queries that leverage the framework.
Each query is shown in a listing, and the output of the query
is shown in a table immediately after. The queries are run on
the example discussion shown in Figure 9, so the information
returned is taken from there. The natural language text is
shortened for space reasons.

Figure 10 shows a query to select all objects of interest
annotated as requirements in the discussion.

The score of the “save address” requirement is different
from the discussion above because of propagation. In the
replies of “save address” there is one support with a score of
2 and one derived (nested) requirement with the score of 105.
So, the score of these propagates up to the original requirement
and is added to its own score, yielding 912.

Requirements are the only objects of interest that are stand-
alone. A solution must address a requirement, a support must

requirement John UR: 9,101

 There is now way to properly save an address in Google Maps ...

requirement John UR: 9,101

 There is now way to properly save an address in Google Maps ...

support Mary UR: 12,474 Score: 2

 spot on!

support Mary UR: 12,474 Score: 2

 spot on!

solution Henry UR: 82,104 Score: 61

 you could long-press to drop a pin and then use the share option to
send it to Google Keep. In Keep, it appears to populate the address
and links to the map. You can then add your description right there.

solution Henry UR: 82,104 Score: 61

 you could long-press to drop a pin and then use the share option to
send it to Google Keep. In Keep, it appears to populate the address
and links to the map. You can then add your description right there.

rebuttal James UR: 50,028 Score: 48

The problem is that it saves it as an address, not as a name.
When I want to go to a store, I want to search for the store name, not
the address of the store ...

rebuttal James UR: 50,028 Score: 48

The problem is that it saves it as an address, not as a name.
When I want to go to a store, I want to search for the store name, not
the address of the store ...

rebuttal John UR: 9,101 Score: 33

Now, leaving aside that I have to use a second app to do something
that I consider basic for a maps app, with so many starred points as I
have, that quickly becomes a mess...

rebuttal John UR: 9,101 Score: 33

Now, leaving aside that I have to use a second app to do something
that I consider basic for a maps app, with so many starred points as I
have, that quickly becomes a mess...

solution Patrick UR: 921 Score: 25

Google has a maps engine that is designed to make your own custom
map overlay on to google maps. Its a separate app that you can make
custom points on. I use to use it all the time ...

solution Patrick UR: 921 Score: 25

Google has a maps engine that is designed to make your own custom
map overlay on to google maps. Its a separate app that you can make
custom points on. I use to use it all the time ...

support Amanda UR: 1,264 Score: 120

Thanks! Its not perfect, took me a few minutes to figure out how to
drop my first pin...

support Amanda UR: 1,264 Score: 120

Thanks! Its not perfect, took me a few minutes to figure out how to
drop my first pin...

support John UR: 9,101 Score: 4

Ey, thanks for the suggestion. Maybe that's the closes thing there is...

support John UR: 9,101 Score: 4

Ey, thanks for the suggestion. Maybe that's the closes thing there is...

requirement Stuart UR: 34,856 Score: 105

 Another thing I really wished Google will understand is that people
still rely on coordinates

requirement Stuart UR: 34,856 Score: 105

 Another thing I really wished Google will understand is that people
still rely on coordinates

rebuttal Alex UR: 82,107 Score: 2

Isn't that exactly what it already does? If the venue doesn't exist on
Google Maps then be a good user and add it.

rebuttal Alex UR: 82,107 Score: 2

Isn't that exactly what it already does? If the venue doesn't exist on
Google Maps then be a good user and add it.

Depth: 1Score: 805

Depth: 2

Depth: 2

Depth: 3

Depth: 3

Depth: 4

Depth: 2

Depth: 3

Depth: 3

Depth: 2

Fig. 9. Example discussion following information framework

requirement

text annotation user UR score depth
save address requirement John 9101 912 1
coordinates requirement Stuart 34856 105 2

Fig. 10. Canary requirement query

address something, and a rebuttal must rebut something. We
will exemplify using solutions below; writing queries for
support and rebuttal is analogous.

Figure 11 shows a query to select solutions for requirements
that mention ‘save address’. This figure shows to interesting
elements. First, it shows an example of conditions, which can
be applied to objects of interest to leverage the associated
metadata such as score, natural language text (with support
for regular expressions and fuzzy matching), user reputation or
role, creation time, and depth in discussion. Second, it shows
the value of propagation. In the original discussion ‘long
press...’ has a bigger score than ‘...overlay engine’, but with
propagated values the score of ‘...overlay engine’ increases

greatly because of its two supporting arguments, while the
score of ‘long press...’ drops from the rebutting arguments.

s o l u t i o n (
requirement where t e x t r eg ex p ‘ save a d d r e s s ’

)

text annotation user UR score depth
long press and send to Keep solution Henry 82,104 -18 2

custom overlay engine solution Patrick 921 149 2

Fig. 11. Canary solution query and results

In Figure 12, we query for popular requirements; this is
an example of what we refer to as aggregator queries. The
idea of popular is to select those requirements which caused
a high amount of positive interaction from the community. As
positive interaction we consider score, supporting arguments,
or any object of interest in the reply tree that has positive
sentiment toward the original object of interest. Canary is
able to propagate support through nested positive interaction
entities (support of support, support of derived, etc.)

popular (s o l u t i o n (requirement where r eg ex p
‘ save a d d r e s s ’))

text annotation user UR score pop score
custom overlay engine solution Patrick 921 149 298

Fig. 12. Canary aggregator query and results

Popularity is measured as the ratio of the sums of quanti-
tative data about positive and negative interactions.

Popularity Score =

∑n
i=0 PV(i) × n∑m
i=0 NV(i) × m

where n is the number of children with positive sentiment
and PV(i) the number of votes for a given child i, and m is
the number of children with negative sentiment and NV(i) the
number of votes for a given child i. In Table I, we present the
assumptions we can make based on the ratio.

TABLE I
AGGREGATOR ASSUMPTIONS

Pop ratio Aggregator Assumption

<1 Unpopular Negative interaction has prevalence
1 Controversial Balance between positive and negative

>1 Popular Positive interaction has prevalence

C. Formal Syntax and Semantics

In this section, we describe the language formally. Table II
defines the syntax of Canary.

The semantics of every expression in the language of
Table II is given as an SQL query. Formally, for any such
expression x in Table II, the function SQL(x) gives the SQL
query that x maps to. Below, we define SQL inductively from

TABLE II
SYNTAX OF CANARY

<query> : <expr> | <arg_expr>
<expr> : <req_expr> | <sol_expr>
<req_expr> : requirement | requirement where <condition> |

<aggregator> (<req_expr>)
<sol_expr> : solution (<req_expr>) | solution (<req_expr>) where

<condition> | <aggregator> (<sol_expr>)
<arg_expr> : <arg_entity> (<expr>) | <arg_entity> (<expr>) where

<condition>
<arg_entity> : support | rebuttal
<aggregator> : popular | unpopular | controversial | discussed

the simplest expressions to the most complex ones. For the
purposes of this paper we give the definitions in pseudocode.

SQL(requirement). This gives the SQL query to return all
the comments expressing requirements. We then traverse their
trees (comment-reply structure of the discussions) to reduce
their propagated scores. In the example in Listing 1 posScore
is the sum of the score of positive interaction (supports or
derived objects), posInter is the count of how many positive
objects of interest are in the tree. Calculating the negative side
of the tree is done the same way.

Listing 1. SQL(requirement)
s e l e c t comment . ∗ , sum (p o s S c o r e) ,

count (p o s I n t e r) ,
sum (negScore) , count (n e g I n t e r) from (

s e l e c t comment−r e p l y−t r e e in (
s e l e c t ∗ from comment
j o i n r e q u i r e m e n t
on comment . i d = r e q u i r e m e n t . idcomment))

SQL(x) where φ. Gives the SQL query to return all x that
satisfy the condition φ. In essence, φ acts as a selection filter,
as shown in Listing 2.

Listing 2. SQL(x) where <condition>
s e l e c t ∗ from SQL (x) where φ

SQL(solution(x)). Since solutions must be related to a
requirement to make sense, we must link them to the re-
quirements they satisfy. We accomplish this by joining the
solutions table and SQL(requirement), in this case represented
as SQL(x). Listing 3 is the SQL pseudocode for the definition.

Listing 3. SQL(solution(x))
s e l e c t comment . ∗ , sum (p o s S c o r e) ,

count (p o s I n t e r) ,
sum (negScore) , count (n e g I n t e r) from (

s e l e c t comment−r e p l y−t r e e in (
s e l e c t ∗ from comment
j o i n s o l u t i o n
on comment . i d = s o l u t i o n . idcomment)

) as s o l u t i o n
j o i n SQL (x) as r e q u i r e m e n t

on s o l u t i o n . i d p a r e n t = r e q u i r e m e n t . idcomment

SQL(support(x)). Similarly, in order to find supporting
arguments for an RE entity, we first traverse tree, then reduce
the score, and then join it with the RE entity itself (in this
case represented as SQL(x)), using a common foreign key.

SQL(rebuttal(x)). Finding rebuttal arguments for an RE
entity is analogous: we traverse the tree, then reduce the score,
and join it with the RE entity itself (represented as SQL(x)),
using a common foreign key.

Canary supports aggregators such as discussed, popular,
unpopular, and controversial to allow a selection of objects
of interest based on aggregate metrics.

SQL(discussed(x)). We define a requirement to be dis-
cussed if the sum of the number of replies (support and
rebuttals) and upvotes and downvotes is greater than some
threshold. We find the number of supports by using the SQL
count function and grouping by the foreign key we will use for
the join with the entity. We compute the number of rebuttals
in an analogous way. Then we join with SQL(x). The resulting
relation has both counts of support and rebuttal comments as
attributes, and we apply the threshold condition α so we get
only those x with values above threshold. Note that the value
of α will be configured by the analyst. For the purposes of
this paper, we set α = 10.

Listing 4. SQL(discussed(x))
SQL (x) as o b j e c t
where (o b j e c t . r e b s + o b j e c t . sups) > 10

The sets of popular, unpopular, and controversial records
are all subsets of discussed. They are all discussed entities,
where either the positive sentiment dominates (popular), or
the negative sentiment dominates (unpopular), or there is a
balance between the two (controversial). We define positive
sentiment as the sum of the number of support and upvotes
and negative sentiment as the sum of the number of rebuttals
and downvotes. In order to calculate them, we encapsulate
SQL(discussed(x)) in a select statement and apply the appro-
priate selection filter to it.

SQL(popular(x)). Gives all discussed x where the ratio of
positive to negative sentiment is greater than β. Again, β is
configurable by the analyst. For this paper, we set it to 1.15,
as shown in Listing 5.

Listing 5. SQL(popular(x))
s e l e c t ∗ from (

SQL (d i s c u s s e d (x))
) as o b j e c t
where ((o b j e c t . s u p s S c o r e ∗ o b j e c t . sups) /

(o b j e c t . r e b s S c o r e ∗ o b j e c t . r e b s)) > 1 . 1 5

SQL(unpopular(x)). Gives all discussed x where the ratio
of positive to negative sentiment is less than θ. Again, θ is
configurable by the analyst. For this paper, we set it to 0.85.

SQL(controversial(x)). Gives all discussed x where the
ratio of positive to negative sentiment lies between θ and β.

D. Implementation of Canary Compiler

We implemented a compiler for Canary syntax in Java. We
use the Eclipse XText (version 2.9) language definition and
parsing library. The compiler takes queries written in Canary
grammar and generates SQL queries following the definitions
in Section III-C that can then be run on the aforementioned
database. To accomplish this, the compiler essentially takes

advantage of XText facilities. Given a Canary expression,
XText creates a parse tree of a Canary expression based on the
grammar and allows a recursive traversal of the tree, plugging
in the SQL expressions that each node in the tree maps to.

IV. EVALUATION

Canary exploits a crowdsourcing approach to acquire anno-
tations for users’ comments. In this section, we evaluate the
feasibility of this crowdsourcing approach. To be feasible, we
conjecture that, the crowdsourcing approach must yield high-
quality annotations, and be efficient. Accordingly, we seek to
answer the following research questions.
Q1. What is the quality of the crowd-acquired annotations?
Q2. How efficient is the annotation process for the crowd?

A. User Study

We conducted Canary’s feasibility study employing Amazon
Mechanical Turk (MTurk) users. As study units, we selected
five online discussions from two social forums, each involving
user discussions about Google Maps and related software
applications. Table III summarizes these discussions (actual
discussions are available in an online appendix [5]). Initially,
we planned to include more discussions from Google Forums.
However, we noticed that unlike Reddit discussions which
involved a rich variety of user interactions, Google Forum
discussions were much simpler in that they involved a few
requirements and a huge number of supports (Table IV). Thus,
we decided against adding more Google Forum discussions
since that would not likely influence potential conclusions.

TABLE III
SUMMARY OF THE ONLINE DISCUSSIONS WE EMPLOYED IN OUR STUDY

Disc. Comments Words Source Discussion title

1 141 6034 Reddit Feature Google Now should add:
"Nearest x that is still open"

2 184 13333 Reddit There is no way to properly save
an address in Google Maps

3 79 3975 Reddit Google Maps should use your av-
erage walking speed from Google
Fit to calculate walking times

4 261 8654 Reddit Google maps should have an "I
need gas" feature. . .

5 218 11310 Google
Forum

Make ‘avoid tolls’ option sticky
otherwise directions are wrong

A typical online discussion starts with a topic (e.g., a
question) and several top-level threads fork from it. These
discussions, in general, tend to be long. A lay user may
require several hours to annotate one full discussion. For tasks
crowdsourced to lay users, Cheng et al. [6] find that requiring
users to perform smaller parts (microtasks) of a large task
(macrotask) yields higher output quality, completion rate, and
experience than requiring workers to perform the macrotask
(our tasks are similar to the ones Cheng et al. study in that
both require analytical and language understanding abilities).
Accordingly, we decided to split the discussions in our study
into smaller chunks of approximately equal length (µ = 1882
and σ = 229 words). Each microtask in our study included

the topic of a discussion followed by one or more threads
about it. We decided not to split the top-level threads so as
to preserve the context of interactions (we note, however, that
some interactions may span top-level threads, but from our
experience such instances are rare).

Splitting the discussions yielded 38 microtasks. We sought
to acquire annotations from two users for each microtask so
as to get a reliable estimate. Accordingly, we launched 76
HITs (human intensive tasks) on Amazon MTurk and collected
annotations from 44 unique MTurk users. We restricted partic-
ipants to be from majority native English speaking countries;
UK, USA, Canada, Australia, and New Zealand. Overall, we
rejected three HITs as incomplete. We paid USD 4 for each
successful HIT. Our study was approved by the Ethics Board
at Lancaster University and we received an informed consent
from each participant. Complete questionnaires and ethics
documents are available the online appendix [5].

As part of the study, the MTurk users were asked to
(1) answer a pre-survey about demographics, (2) complete a
main task, and (3) answer a post-survey about time, difficulty,
and the understanding of instructions and the concepts.

In the main task, first, we asked users to read about the
core concepts of requirements, solutions, supports and rebut-
tals from a document we provided. The document included
multiple examples for each concept from online discussions.
Next, we asked users to download a PDF file consisting of
a discussion chunk and annotate the file via Adobe Acrobat
Reader. We provided instructions to install the software, a
tutorial on performing annotations, and an example PDF file
with relevant annotations. Finally, we asked users to upload
the annotated PDF file via an URL we provided.

We instructed users to select any comment or a part of a
comment in the provided discussion and annotate it as one of
the four entities: requirement, solution, support, or rebuttal.
For simplicity, we asked users to annotation a piece of text
with at most one entity. Further, for each annotation, we asked
users to indicate their confidence in the annotation on a Likert
scale of very low, low, medium, high, and very high.

In the post-survey, we asked participants to report the
time they spent for the main task (i.e., time for reading and
annotating the PDF file with the discussion, excluding the time
for pre- and post-surveys). We also asked participants, the
difficulty of the main task, and how well they understood the
concepts of requirements, solutions, supports, and rebuttals,
each on a scale of 1 (very low) to 5 (very high). Finally, we
asked users to provide additional comments, if any.

B. Ground Truth

A key challenge in evaluating the quality of annotations
is establishing a standard for comparison. To establish the
ground truth, the first two authors of the paper, acting as
expert annotators, annotated each discussion in three rounds.
In the first round, the two experts annotated the discussions
independently without seeing each others’ annotations. In the
second round, they saw each others’ annotations and updated
their annotations, independently. In the third round, the experts

discussed their annotations, resolved differences, and settled
on one set of annotations as the ground truth.

Table IV summarises the experts’ annotations. Note that the
two experts were in complete agreement after the third round.

TABLE IV
A SUMMARY OF EXPERT ANNOTATIONS FOR EACH DISCUSSION

Disc. Requirement Solution Support Rebuttal

1 26 20 17 13
2 53 50 27 29
3 12 3 10 17
4 51 65 16 12
5 21 7 127 3

C. Measures

After expert and MTurk users’ annotations, we prepared
a dataset for measuring quality as follows. First, for each
discussion, we collected all pieces of text that had an anno-
tation (from experts or users). For each such piece of text,
we assigned an expert-label and a user-label as follows. The
expert-agreed annotation (requirement, solution, support, or
rebuttal) of a piece of text is its expert-label. If a piece of text
in the list was not annotated by experts, we assigned none as
its expert-label. Next, for each piece of text, if the two users’
annotations for the text match (irrespective of confidence), we
assigned the corresponding annotation as the user-label for
the piece of text. Further, for a piece of text such that the two
annotations do not match, but one annotation has a confidence
of high or very high, and is higher than the confidence of the
other annotation, we assigned the annotation with the highest
confidence as the user-label for the text. We assigned none as
the user-label for all remaining pieces of the text.

For each discussion, given the list of annotated text, and
their expert- and user-labels, we measured the quality of user
annotations via the following metrics.

Precision =
TP

TP + FP
; Recall =

TP
TP + FN

;

F1-score = 2× precision × recall
precision + recall

;

where TP, FP, TN, and FN refer to true and false positives
and negatives, respectively.

D. Results

1) Quality: Table V shows the confusion matrix comparing
the expert- and user-labels, aggregating counts across all five
discussions. Table VI shows the mean and variance of the per-
discussion precision, recall, and F1 scores.

First, we observe that a vast majority of MTurk users’
annotations are true positives (diagonal elements in the con-
fusion matrix). Considering the complexity of the annotation
task, we believe that the overall quality of user annotations
is quite promising. Specifically, the precision for requirements
annotations is very high. Second, we observe that the counts
in the row corresponding to the none class-label are quite low

TABLE V
THE CONFUSION MATRIX COMPARING EXPERTS’ AND MTURK USERS’

ANNOTATIONS (COUNTS AGGREGATED FOR FIVE DISCUSSIONS)

MTurk User Annotation
Req. Sol. Sup. Reb. None

E
xp

er
t

A
nn

ot
at

io
n Req. 122 3 6 3 29

Sol. 1 107 14 4 19
Sup. 1 7 131 1 57
Reb. 2 0 3 51 18
None 3 9 7 8 –

TABLE VI
THE QUALITY OF MTURK USERS’ ANNOTATIONS

Precision Recall F1 Score
Mean Var. Mean SD Mean SD

Requirement 0.94 0.05 0.71 0.12 0.81 0.10
Solution 0.72 0.33 0.70 0.22 0.70 0.28
Support 0.76 0.19 0.68 0.19 0.67 0.10
Rebuttal 0.76 0.18 0.67 0.33 0.68 0.28

in the confusion matrix. This indicates that users are quite
effective in distinguishing text containing requirements-related
information from noisy comments (i.e., comments irrelevant
for RE) that abundant in online discussions.

2) Efficiency: Figure 13 (top-most box plot) shows the
distribution of the durations reported by the users. The mean
amount of time participants spent on the main task is about 35
minutes. However, the variance in time spent is high. A few
users, in the comments, indicated that they were using the
Adobe Reader software for the first time and we believe that
there may be other such users in our sample. We conjecture
that it is for such users that the main task duration is high.

We had a few returning users in our dataset (n = 10).
The bottom two box plots in Figure 13 compare the durations
reported by these users for the first task and the second tasks.
We find that users take significantly less time the second time
(p = 0.02; measured via Wilcoxon’s ranksum test, excluding
outliers). This suggests that lay users can annotate online
discussions in a time-efficient manner once they are familiar
with the concepts and tools.

20 40 60 80 100

Second-timer

First-timer

All

Time in minutes

Fig. 13. Times spent by MTurk users for one annotation task

Figure 14 shows the distributions of clarity and difficulty
ratings reported by MTurk users. A vast majority of users rated
their understanding of instructions and the concepts involved
as high or very high. Further, the difficulty ratings suggest that
the annotation task is of moderate difficulty.

1 2 3 4 5
0

20

40

60

Clarity rating

C
ou

nt
(%

)

1 2 3 4 5
0

20

40

60

Difficulty rating

C
ou

nt
(%

)

Fig. 14. Clarity and difficulty ratings provided by MTurk users

Finally, we manually analyzed 24 comments that users
provided. We found 11 comments to be conveying a positive,
8 neutral, and 6 negative comments. The negative sentiment
comments mainly indicated that some annotations can be
ambiguous; one comment indicated that annotations in Adobe
Reader are clunky. However, many of the positive comments
indicated the task to be fun and interesting.

E. Threats to Validity

We identify an internal threat to validity of our results. The
authors of the paper who performed expert annotations were
also part of designing the evaluation. Although the authors per-
formed expert annotations systematically, in multiple rounds,
there is a slight risk that the experts have subconsciously tried
to second-guess how lay users are likely to annotate. Future
studies can mitigate this risk by employing third-party experts.
For this study we only targeted Google Maps as a target
application for the discussions. We also only used Reddit and
Google Forums as a source of discussion, with a focus on
Reddit. Variations in the social media sources might affect the
results as Canary is closely tied to the raw data input.

V. RELATED WORK

Crowdsourcing and user feedback. Numerous services now
support user feedback on applications. For example, UserVoice
[2] attracts participation from a large community of users
and has elicited thousands of bugs, problems, and suggestions
for improvements. Likewise, user feedback on Google Play
and Apple Appstore has been used toward gaining a better
understanding of requirements for the next release [27].

User feedback and crowd-based RE have long been argued
as essential for the RE process [26], [9]. Tools have been
developed to enable crowdsourcing requirements in enterprise
settings. StakeRare [15] is a methodology for identifying
stakeholders and requirements using collaborative filtering
based on social networks. Seyff et al. [32] show how general
purpose social networking sites can support requirements
elicitation, prioritization, and negotiation. Johann and Maalej
[14] discuss giving users varying degrees of influence in RE by
using different e-democracy strategies. Gamification is another
approach for deeper inclusion of end-users in RE. iThink [7]
and REfine [33] are platforms that apply gamification toward
requirements elicitation and refinement. A recent study by
Lombriser et al. [16] evaluated application of gamification

to RE and found that gamification improves the quantity
and quality of elicited requirements and has a positive effect
on motivation and participation. Canary complements these
works by leveraging richer content creation by the crowd via
annotations and enabling sophisticated queries of the content.

Some work builds requirements-related annotations into a
user platform [3], [20]. The alternative would be to obtain the
annotations offline, either manually or with natural language
processing support [22]. We note ongoing efforts to develop
conceptual models of online user discussions [21].

Various other benefits of involving the crowd in the RE
process have been studied in literature, such as creativity
[23], [11], [35]. Stimulating the creativity of the crowd by,
e.g., interacting with each others’ ideas, has been found
to measurably increase the quality of elicited requirements.
Canary is built upon data generated by interaction in the form
of argumentation between users in online forums. Murukan-
naiah et al. [24] report that such argumentation promotes the
elicitation of better requirements.

Querying requirements. IBM DOORS [13] enables cap-
turing users discussions on requirements; however, querying
is limited to text searches. Canary queries are significantly
more sophisticated and would allow for the elicitation of
more pertinent information. Tools such as DOORS would
benefit from Canary. TiQi by Huang et al.[43] allows the
transformation of spoken natural language into structured
SQL. It’s designed to make traceability information easily
accessible to its users, similar to what we’re trying to achieve
with Canary and information generated in online interaction.
ReqIF [44] makes the exchange of formalized requirements
between autonomous business partners possible. It also allows
for the creation of custom relations between objects in the
database and other queries based on attributes and pattern
matching on strings.

Argumentation has long been advocated as a way of record-
ing the rationale of requirements [29]. In recent work, Yu et
al. [39] apply Toulmin’s argumentation schema [36] to auto-
mated reasoning about security requirements. The reasoning
is akin to running queries on argumentation bases. Versions
of Canary targeted toward expert users could support richer
argumentation and reasoning.

Natural language processing (NLP) has traditionally been
seen as a promising tool for requirements analysis and there
is resurgence of interest, recently [30], [1], [8], [19], [28].
Pagano and Maalej [27] evaluate online feedback as a source
of information and find that, with proper classification (into
categories such as feature requests, bug reports, and sentiments
about them), online feedback can be used to construct better
requirements. Maalej and Nabil [17] provide NLP techniques
for such classification with a high degree of precision and
recall. Canary’s annotations bear some similarity to Maleej
and Nabil’s categories; however, the online discussions we
analyze are more complex in structure and richer in content.
Maalej et al. [18] in fact discuss the lack of systematic
approaches to organize, summarize, and aggregate data from

user communities. Our approach using human intelligence is
complementary to machine intelligence techniques.

VI. DISCUSSION

In this paper, we have presented Canary; a tool-supported
approach for querying requirements-related artifacts from user
discussions. The centerpiece of the approach is a high-level
query language in which requirement analysts can pose simple
but useful queries to take advantage of the social features
of online discussions. Our query language has a translation
into SQL, which means that queries can be executed against
discussions stored in relational databases. We implemented a
compiler and demonstrated the results of a few Canary queries
on a database of real discussions. Analysts and developers may
use Canary to inform their reasoning when compiling the list
of formal requirements.

To obtain the metadata for storage in database, we obtained
requirements and argumentation-related annotations from Me-
chanical Turk users. We demonstrated the efficacy of our
approach for annotations by providing a detailed empirical
analysis of the quality of annotations. Although the results are
promising, we observe a high variance in results in Table VI.
This suggests that the quality may vary for discussions.

Canary annotations are simpler than some requirements
models in the literature. In particular, we did not consider
conflict, priority, positive and negative contributions, and as-
sumptions [4], [37] and argumentation [36]. Including these
concepts in Canary would require considering their meaning
in the context of user discussions. For instance, priority
could map to a suitable notion of popularity. The tradeoff of
richer requirements models is more complex annotation. It is
conceivable that there would be a proliferation of conceptual
models with various levels of technical sophistication and
associated query languages and tools.

An important future direction is to augment Canary with au-
tomated annotation techniques based on NLP. Argumentation
mining [42] has recently been applied to social media [41],
[40] and Canary may be able to exploit argumentation mining
toward automating annotations. Another interesting application
of NLP would be to use NLP as the underlying query
processing engine. Such an engine might, for example, detect
discussions about similar requirements in two or more distinct
discussions and merge the interaction from both discussion to
calculate the output of the query.

The overall methodology is currently labour intensive. We
had to extract data from online forums, and reproduce it in a
format suitable for annotation by MTurk users, and then load
the annotated data into the database. We created several custom
tools to help us with the tasks, e.g., for extracting data from
Reddit using its published API and scripts to load annotated
data into a database. A future direction will be to build an
automated tool chain.

REFERENCES

[1] Vincenzo Ambriola and Vincenzo Gervasi. On the systematic analysis
of natural language requirements with CIRCE. Automated Software
Engineering, 13(1):107–167, 2006.

[2] Dejana Bajic and Kelly Lyons. Leveraging social media to gather user
feedback for software development. In Proc. of the 2nd International
Workshop on Web 2.0 for Software Engineering, pages 1–6. ACM, 2011.

[3] Travis D. Breaux and Florian Schaub. Scaling requirements extraction
to the crowd: Experiments with privacy policies. In Proc. of RE, pages
163–172, 2014.

[4] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and
John Mylopoulos. Tropos: An agent-oriented software development
methodology. Autonomous Agents and Multi-Agent Systems, 8(3):203–
236, 2004.

[5] Canary supplementary information. http://www.lancaster.ac.uk/staff/
chopraak/canary/index.html Accessed: 2017-02-18.

[6] Justin Cheng, Jaime Teevan, Shamsi T. Iqbal, and Michael S. Bernstein.
Break it down: A comparison of macro-and microtasks. In Proc. of CHI,
pages 4061–4064, 2015. ACM.

[7] João Fernandes, Diogo Duarte, Claudia Ribeiro, Carla Farinha,
João Madeiras Pereira, and Miguel Mira da Silva. iThink: A game-
based approach towards improving collaboration and participation in
requirement elicitation. Procedia Computer Science, 15:66–77, 2012.

[8] Vincenzo Gervasi and Didar Zowghi. Supporting traceability through
affinity mining. In Proc. of RE, pages 143–152. IEEE, 2014.

[9] Eduard C Groen, Joerg Doerr, and Sebastian Adam. Towards crowd-
based requirements engineering a research preview. In Proc. of REFSQ,
pages 247–253. Springer, 2015.

[10] Charles B. Haley, Robin C. Laney, Jonathan D. Moffett, and Bashar
Nuseibeh. Security requirements engineering: A framework for repre-
sentation and analysis. IEEE TSE, 34(1):133–153. 2008.

[11] Jennifer Horkoff, Neil Maiden, and James Lockerbie. Creativity and
goal modeling for software requirements engineering. In Proc. ACM
SIGCHI Conference on Creativity and Cognition, pages 165–168. 2015.

[12] Mahmood Hosseini, Keith Phalp, Jacqui Taylor, and Raian Ali. The
four pillars of crowdsourcing: A reference model. In Proc. RCIS, pages
1–12. IEEE, 2014.

[13] IBM. IBM Rational DOORS product overview. https:
//www.ibm.com/support/knowledgecenter/SSYQBZ_9.6.1/com.ibm.
doors.requirements.doc/topics/c_welcome.html. Accessed: 2016-03-15.

[14] Timo Johann and Walid Maalej. Democratic mass participation of users
in requirements engineering? In Proc. of RE, pages 256–261, 2015.

[15] Soo Ling Lim and Anthony Finkelstein. Stakerare: Using social net-
works and collaborative filtering for large-scale requirements elicitation.
IEEE TSE, 38(3):707–735, 2012.

[16] Philipp Lombriser, Fabiano Dalpiaz, Garm Lucassen, and Sjaak
Brinkkemper. Gamified requirements engineering: Model and experi-
mentation. In Proc. of REFSQ, pages 171–187. Springer, 2016.

[17] Walid Maalej and Hadeer Nabil. Bug report, feature request, or simply
praise? On automatically classifying app reviews. In Proc. of RE, pages
116–125, 2015.

[18] Walid Maalej, Maleknaz Nayebi, Timo Johann, and Guenther Ruhe.
Toward data-driven requirements engineering. IEEE Software, 33(1):48–
54, 2016.

[19] William Martin, Federica Sarro, Yue Jia, Yuanyuan Zhang, and Mark
Harman. A survey of app store analysis for software engineering. IEEE
TSE, 2016.

[20] Itzel Morales-Ramirez, Dimitra Papadimitriou, and Anna Perini. Crowd
intent: Annotation of intentions hidden in online discussions. In Proc. of
2nd IEEE/ACM International Workshop on CrowdSourcing in Software
Engineering, pages 24–29, 2015.

[21] Itzel Morales-Ramirez, Anna Perini, and Renata S. S. Guizzardi. An
ontology of online user feedback in software engineering. Applied
Ontology, 10(3-4):297–330, 2015.

[22] Itzel Morales-Ramirez, Matthieu Vergne, Mirko Morandini, Anna Perini,
and Angelo Susi. Exploiting online discussions in collaborative dis-
tributed requirements engineering. In Proc. of i* Workshop, pages 7–12,
2015.

[23] Pradeep K. Murukannaiah, Nirav Ajmeri, and Munindar P. Singh.
Acquiring creative requirements from the crowd: Understanding the

influences of personality and creative potential in crowd RE. In Proc.
of RE, pages 176–185, 2016.

[24] Pradeep K. Murukannaiah, Anup K. Kalia, Pankaj R. Telang, and
Munindar P. Singh. Resolving goal conflicts via argumentation-based
analysis of competing hypotheses. In Proc. of RE, pages 156–165, 2015.

[25] Bashar Nuseibeh and Steve Easterbrook. Requirements engineering: A
roadmap. In Proc. of FSE, pages 35–46. ACM, 2000.

[26] Dennis Pagano and Bernd Brügge. User involvement in software
evolution practice: A case study. In Proc. of ICSE, pages 953–962.
IEEE, 2013.

[27] Dennis Pagano and Walid Maalej. User feedback in the appstore: An
empirical study. In Proc. of RE, pages 125–134, 2013.

[28] Sebastiano Panichella, Andrea Di Sorbo, Emitza Guzman, Cor-
rado Aaron Visaggio, Gerardo Canfora, and Harald C. Gall. Ardoc:
app reviews development oriented classifier. In Proc. of FSE, pages
1023–1027, 2016.

[29] Balasubramaniam Ramesh and Vasant Dhar. Supporting systems de-
velopment by capturing deliberations during requirements engineering.
IEEE TSE, 18(6):498–510, June 1992.

[30] Pete Sawyer, Paul Rayson, and Ken Cosh. Shallow knowledge as an aid
to deep understanding in early phase requirements engineering. IEEE
TSE, 31(11):969–981, November 2005.

[31] Norbert Seyff, Florian Graf, and Neil Maiden. Using mobile RE tools
to give end-users their own voice. In Proc. of RE, pages 37–46, 2010.

[32] Norbert Seyff, Irina Todoran, Kevin Caluser, Leif Singer, and Martin
Glinz. Using popular social network sites to support requirements
elicitation, prioritization and negotiation. Journal of Internet Services
and Applications, 6(1):1–16, 2015.

[33] Remco Snijders, Fabiano Dalpiaz, Sjaak Brinkkemper, Mahmood Hos-
seini, Raian Ali, and Atilla Ozum. REfine: A gamified platform for
participatory requirements engineering. In Proceedings of 1st Interna-
tional Workshop on Crowd-Based Requirements Engineering, pages 1–6.
IEEE, 2015.

[34] Alistair Sutcliffe and Pete Sawyer. Requirements elicitation: Towards
the unknown unknowns. In Proc. of RE, pages 92–104. IEEE, 2013.

[35] Richard Berntsson Svensson and Maryam Taghavianfar. Selecting
creativity techniques for creative requirements: An evaluation of four
techniques using creativity workshops. In Proc. of RE, pages 66–75.
IEEE, 2015.

[36] Stephen E. Toulmin. The Uses of Argument. Cambridge University
Press, Cambridge, UK, 1958.

[37] Axel van Lamsweerde. Requirements Engineering: From System Goals
to UML Models to Software Specifications. Wiley, Chichester, UK, 2009.

[38] Jon Whittle, William Simm, Maria-Angela Ferrario, Katerina Frankova,
Laurence Garton, Andrée Woodcock, Baseerit Nasa, Jane Binner, and
Aom Ariyatum. VoiceYourView: Collecting real-time feedback on the
design of public spaces. In Proc. UbiCom, pages 41–50, 2010.

[39] Yijun Yu, Virginia N.L. Franqueira, Thein Than Tun, Roel J. Wieringa,
and Bashar Nuseibeh. Automated analysis of security requirements
through risk-based argumentation. Journal of Systems and Software,
106:102–116, 2015.

[40] Filip Boltuzic and Jan Snajder. Back up your stance: Recognizing
arguments in online discussions. In Proc. of the First Workshop on
Argumentation Mining, 49–58, 2014.

[41] Joonsuk Park and Claire Cardie. Identifying appropriate support for
propositions in online user comments. In Proc. of the First Workshop
on Argumentation Mining, 29–38, 2014.

[42] Marie-Francine Moens and Erik Boiy and Raquel Mochales Palau and
Chris Reed. Automatic detection of arguments in legal texts. In Proc.
of the 11th International Conference on Artificial Intelligence and Law,
225–230, 2007.

[43] Piotr Pruski, Sugandha Lohar, Rundale Aquanette, Greg Ott, Sorawit
Amornborvornwong, Alexander Rasin, and Jane Cleland-Huang. Tiqi:
Towards natural language trace queries. In Proc. of RE,123–132, 2014.

[44] Christof Ebert and Michael Jastram. ReqIF: Seamless requirements
interchange format between business partners. IEEE Software, 29(5):82–
87, 2012.

