
Representing and Reasoning About Commitments in Business Processes∗

Nirmit Desai and Amit K. Chopra and Munindar P. Singh
Department of Computer Science
North Carolina State University
Raleigh, NC 27695-8206, USA

{nvdesai, akchopra, singh}@ncsu.edu

Abstract

A variety of business relationships in open settings can be un-
derstood in terms of the creation and manipulation of commit-
ments among the participants. These include B2C and B2B
contracts and processes, as realized via Web services and
other such technologies. Business protocols, an interaction-
oriented approach for modeling business processes, are for-
mulated in terms of the commitments. Commitments can
support other forms of semantic service composition as well.
This paper shows how to represent and reason about com-
mitments in a general manner. Unlike previous formaliza-
tions, the proposed formalization accommodates complex
and nested commitment conditions, and concurrent commit-
ment operations. In this manner, a rich variety of open busi-
ness scenarios are enabled.

Introduction

Business processes in Web-based IT environments are of-
ten complex and interorganizational, and involve rich inter-
actions among services representing autonomous, heteroge-
neous parties. There is a growing consensus that in order
to engineer modern business solutions, we must emphasize
business-level elements such as contracts over technical ele-
ments such as control and data flows.

Commitments capture the contractual essence of business
interactions. They can be thought of as directed obligations
that have been reified, and possibly conditionalized (Singh
1999). For example, a merchant may commit to a customer
to delivering specified goods if a specified payment is re-
ceived. The commitment can be manipulated: e.g., the mer-
chant may delegate the commitment to delivering to an inde-
pendent franchise owner. Other such manipulations are pos-
sible, leading to perspicuous descriptions of behaviors that
bypass low-level details and support the dynamic reconfig-
uration of businesses (e.g., by introducing new participants
such as a franchisee) without altering the overall structure
of the merchant-customer interaction. Associated with this
power is the need to specify the allowed manipulations pre-
cisely and to constrain possible behaviors in a manner that

∗With partial support from the US National Science Foundation
under grant IIS-0139037.
Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

guarantees the business requirements without unnecessarily
restricting the autonomy of the participants.

Classically, a process can be specified as an orchestra-
tion (describing the control and data flows among services
that are centrally invoked) or a choreography (describing the
messages exchanged among services in a distributed man-
ner). Traditional representations, however, either ignore se-
mantics altogether or merely specify the semantics at a low
level, i.e., in terms of a finite state machine (e.g., Fu et al.
(2004)) or a Petri net (van der Aalst & van Hee 2002). Both,
however, ignore the “meanings” (in the business sense) that
the representation supports. For example, with a low-level
representation, we cannot easily determine if introducing a
franchisee into a business interaction is sound.

Semantic Web services, e.g., (OWL-S 2004), are a lead-
ing AI approach. In simple terms, these provide represen-
tations of services that would support composing them via
an application of automatic planning based on their IOPEs:
inputs, outputs, preconditions, and effects. Conventionally
these compositions have been viewed from a single perspec-
tive, and can be thought of as semantic orchestration. Chore-
ography is more general than orchestration, because it can
support the request-response pattern of orchestration as well
as other more complex interaction patterns. For this reason,
we present our results in the context of choreography. In
particular, our interest is in enriching choreographies with
meaning, i.e., semantic choreography.

Choreographies modeled via commitments correspond
to (business) protocols (Fornara & Colombetti 2003; De-
sai et al. 2005; Winikoff 2007; Desai & Singh 2007).
Although well-motivated and conceptually valuable, exist-
ing approaches lack a rigorous semantics for commitments.
This limits the applicability of formal methods, for instance.
Moreover, the above papers make simplifying assumptions
that limit their applicability in practical business scenarios.

It is important to note that commitments are a fundamen-
tal abstraction for (contractual) business relationships. Com-
mitments arise independently of the underlying platform.
For example, you would be equally committed to paying for
your purchase whether you submit your order using remote
procedure call (RPC) or messaging. Consequently, if com-
mitments are understood properly, they can be used in RPC-
based service composition just as easily as in protocols.

This paper builds on (Chopra & Singh 2006), which pro-

vides a basic formalization of commitment protocols in the
C+ action description language (Giunchiglia et al. 2004). It
goes beyond previous work on representing and reasoning
about commitments in two main respects.

Complex commitments The proposed formalization sup-
ports the modeling of complex commitments, where the
condition of a commitment may itself be a logical for-
mula or another commitment. Complex commitments are
common in real life. For instance, an insurance company
commits to covering a customer if the premium is paid,
where covering the customer in turn means committing to
processing claims, providing repair services, and so on.

Concurrent operations The proposed formalization sup-
ports concurrent operations on commitments. The need
to handle concurrent commitment operations arises from
the fact that typically the interacting parties are organi-
zations, and individual agents within such organizations
may act concurrently on the extant commitments.

This paper introduces an ontology for commitments in-
cluding concurrent commitment operations, shows how to
apply it in modeling a protocol for ordering goods, and
shows how to accommodate complex commitments.

Commitments and Protocols
A protocol specifies a set of roles, the messages they ex-
change, the meanings of the messages, and any constraints
on message order or occurrence. Specifically, the meanings
of messages include their effects on the commitments among
the agents playing the specified roles.

Commitments

Following Singh (1999), we define a commitment
cc(x, y, p, q) as an obligation from a debtor x to a credi-
tor y to satisfying the condition q if p holds. Here p is the
precondition and q is the condition of the commitment. Con-
sider, for example, a scenario where a buyer and a seller are
exchanging goods for payment. The commitment cc(buyer,

seller, goods, payment) denotes an obligation from the buyer

to the seller that if the goods are delivered, then the buyer
will pay.

Unlike an obligation as traditionally understood, a com-
mitment can be manipulated. Singh describes six operations
on commitments: create, discharge, delegate (changing the
debtor), assign (changing the creditor), release (creditor re-
leasing the debtor from the commitment), and cancel (debtor
canceling the commitment).

A commitment cc(x, y, p, q) may be base (p=T) or con-
ditional (p 6=T). Conditional commitments yield base com-
mitments via an operation termed toBase. For example, if
the precondition goods holds, the above conditional com-
mitment would change to a base commitment that the buyer

would make the payment. Conditional commitments can be
satisfied if their condition holds, regardless of the precondi-
tion.

Specifying Commitments in C+
Listing 1 shows a partial specification of commitments in
C+. The object cc(Role,Role,Condition,Condition) (line 15)

denotes a set of commitments (each of sort Commitment)
ranging over Role and Condition objects. A multivalued iner-
tial fluent comm(Commitment) (line 21) represents the state
of each commitment. The domain of this fluent is thus the
sort State. The exogenous actions act(Message) (line 19)
correspond to protocol messages, and the inertial fluents
fl(Message) (line 18) record occurrences of corresponding
messages. The causation of commitment conditions is mod-
eled as a set of actions cond(Condition) (line 20), one per
condition object. The commitment operations are modeled
similarly (lines 23–26).

Commitments properly should be specified with a unique
identifier. For example, if x commits twice to y to pay $1,
a single payment of $1 should discharge only one of them.
This can be handled by having an identifier as a parameter
in commitment objects and cond action constants. When a
cond with a particular ID is caused, only the commitment
with a matching ID is discharged. The present formalization
skips these details.

Listing 1: Commitment ontology (part 1: declarations)
� �

1 :− s o r t s

2 Role ; S l o t ; Message ; S t a t e ; Commitment ; C o n d i t i o n .

4 :− v a r i a b l e s

5 msg : : Message ; p , q : : C o n d i t i o n ;

6 c1 : : Commitment ; db1 , cr1 , db2 , c r 2 : : Role .

8 :− o b j e c t s

9 NIL , BASE , CONDITIONAL, RELEASED, SATISFIED ,

10 BASE DELEGATED, CONDITIONAL ASSIGNED , BASE ASSIGNED ,

11 CONDITIONAL DELEGATED, BASE ASSIGNED DELEGATED ,

12 CONDITIONAL ASSIGNED DELEGATED, CANCELLED : : S t a t e ;

14 T : : C o n d i t i o n ;

15 cc (Role , Role , Cond i t ion , C o n d i t i o n) : : Commitment .

17 :− c o n s t a n t s

18 f l (Message) : : i n e r t i a l F l u e n t ;

19 a c t (Message) : : exogenous Ac t ion ;

20 cond (C o n d i t i o n) : : a c t i o n ;

21 comm(Commitment) : : i n e r t i a l F l u e n t (S t a t e) ;

23 c r e a t e (Commitment) , d i s c h a r g e (Commitment) ,

24 toBas e (Commitment) , d e l e g a t e T o (Role , Commitment) ,

25 a s s i g n T o (Role , Commitment) , c a n c e l (Commitment) ,

26 r e l e a s e (Commitment) : : a c t i o n ;

28 a c t i v e (Commitment) , i n i t i a l : : s d F l u e n t .
� �

Listing 2 continues the commitment ontology. The static
fluent initial is used to obtain an initial state void of any mes-
sage or commitment fluents (lines 1–3). The static fluent ac-

tive denotes a commitment’s being in one of the states con-
sidered active (lines 9–13). Also, each message action oc-
currence is recorded as an inertial fluent (line 5). The com-
mitment operation actions are disabled by default (lines 15–
18).

Listing 2: Commitment ontology (part 2: operations)
� �

1 caus ed i n i t i a l i f i n i t i a l .

2 caus ed − i n i t i a l i f comm(c1)\=NIL .

3 caus ed − i n i t i a l i f f l (msg) .

5 a c t (msg) c a u s e s f l (msg) .

7 −cond (p) c a u s e s −cond (p) .

9 caus ed −a c t i v e (c1) i f −a c t i v e (c1) .

11 caus ed a c t i v e (c1) i f

12 comm(c1)\=NIL & comm(c1)\=SATISFIED &

13 comm(c1)\=RELEASED & comm(c1)\=CANCELLED.

15 −c r e a t e (c1) c a u s e s −c r e a t e (c1) .

16 −d i s c h a r g e (c1) c a u s e s −d i s c h a r g e (c1) .

17 . . .

18 −r e l e a s e (c1) c a u s e s −r e l e a s e (c1) .
� �

Figure 1: Life cycle of a commitment in three parts

In Figure 1, the state machine for C1 describes the primary
life cycle for a commitment. The delegate and assign tran-
sitions on C1 spawn additional commitmentsC2 and C3, re-
spectively. C2 and C3 are full-fledged commitments them-
selves and thus follow the life cycle indicated by the state
machine for C1. However, the satisfaction of C2 and C3

causes the satisfaction of C1.
Let’s now explain Figure 1 in more detail. The abbrevi-

ated labels D denote delegate, A assign, CR create, and TB

toBase. These labels are appended with the index of the
commitment to which they apply. For example, TB1 denotes
toBase(C1). Edges with multiple labels denote concurrent
operations. Solid circles denote default states of the respec-

tive composite states. Transitions out of composite states
can be taken concurrently with the transitions within the
composite state. Thus, TB1 can be concurrent with A1, D1, or
both. For example, if the current state is the default state of
the composite state CONDITIONAL, and TB1 occurs concurrently
with A1 and D1, the resulting state is ASSIGNED DELEGATED in
the BASE composite state.

Initially, the state of a commitment is NIL. During enact-
ment, when a commitment is created, its state changes to
either BASE (p=T) or CONDITIONAL (p 6=T). The commitment
may be assigned, delegated, or both. If the commitment is
conditional (composite state CONDITIONAL), it changes to a
base commitment (composite state BASE), if its precondition
holds. An active commitment can be released, cancelled, or
discharged, causing state changes.

When a commitment (interpreted as C1) is delegated, its
state is updated and a new commitment (interpreted as C2)
for the delegatee is created. Thus, C2 becomes active when
delegate(C1) happens. Similarly, in the case of assign, a
new commitment for the new creditor is created making C3

active. Naturally, C2 and C3 can themselves be interpreted
as C1, and thus delegated or assigned.

Specifying Commitment Operations in C+

In an organizational setting, a commitment could be acted
upon simultaneously by more than one agent. Such inde-
pendent actions by agents may potentially cause the com-
mitment state to be ambiguous. Thus, it is important to
prioritize the operations to obtain a desirable state of the
commitment. For example, if the creditor is an organization
consisting of agents Alice and Bob, Alice could release the
debtor from a conditional commitment, while Bob satisfies
the precondition of the same commitment (thereby causing
toBase, which results in an inconsistent state of the commit-
ment). Concurrent operations of the debtor and the creditor
could also be problematic. Therefore, we handle concurrent
commitment operations according to a priority scheme.

Table 1 shows the proposed priority scheme. A ‘�’ in a
cell means the row operation overrides the column opera-
tion if they happen concurrently on the same commitment.
For example, toBase overrides a concurrent create. A ‘‖’
means that the row and column operations may happen con-
currently. For example, a concurrent delegate and toBase

would result in the delegator’s original commitment’s state
changing to BASE DELEGATED from CONDITIONAL (à la C1), and
a new commitment (à la C2) being created in which the del-
egatee is the debtor, and the state of which is BASE.

Table 1 is configurable, and thus incomplete. For ex-
ample, prioritizing release over cancel may not always be
reasonable. Such situations are marked with a ‘?’ indicat-
ing their configurability. A protocol designer may choose
a priority scheme depending on domain requirements. The
following formalization assumes discharge � release and
release � cancel. Table 1 does not show the parallel rela-
tionship among the concurrent transitions TB1, A1, D1. And,
the column for assign, which would be similar to that of
delegate, is skipped. Listing 3 axiomatizes the commitment
operations according to the priority scheme of Table 1 and
the life cycle of Figure 1. The axiom of lines 1–2 means that

Table 1: Override relationships among concurrent commit-
ment operations

Operations create toBase delegate cancel release

toBase �
delegate � ‖

assign � ‖ ‖

cancel � � � ?

release � � � ?

discharge � � � � ?

a discharge occurs when the condition of a commitment is
met and the commitment is either active or being created.
Similarly, toBase is caused if the precondition of the com-
mitment is met (lines 4–6). These two are the only opera-
tions not caused directly by agents.

The axiom of lines 8–15 describes the transition NIL →
BASE. If create is caused on a NIL commitment, and none of
the operations that override create are caused concurrently,
then the state of the newly created commitment is BASE

(its precondition being T). A similar axiom would model
the transition NIL → CONDITIONAL. Similarly, axioms for dis-

charge, release, and cancel are defined according to the
override relationships.

Listing 3: Commitment ontology (part 3: rules)
� �

1 caus ed d i s c h a r g e (cc (db1 , cr1 , p , q)) i f cond (q) &

2 (a c t i v e (cc (db1 , cr1 , p , q)) ++ c r e a t e (cc (db1 , cr1 , p , q))) .

4 caus ed toBas e (cc (db1 , cr1 , p , q)) i f cond (p) &

5 (a c t i v e (cc (db1 , cr1 , p , q)) ++ c r e a t e (cc (db1 , cr1 , p , q)))

6 where db1<>c r 1 & p<>T .

8 caus ed comm(cc (db1 , cr1 , T , q)) =BASE i f t r u e a f t e r

9 c r e a t e (cc (db1 , cr1 , T , q)) &

10 −(d i s c h a r g e (cc (db1 , cr1 , T , q)) ++

11 r e l e a s e (cc (db1 , cr1 , T , q)) ++

12 d e l e g a t e T o (db2 , cc (db1 , cr1 , T , q)) ++

13 c a n c e l (cc (db1 , cr1 , T , q)) ++

14 a s s i g n T o (cr2 , cc (db1 , cr1 , T , q))

15) & comm(cc (db1 , cr1 , T , q)) = NIL where db1<>c r 1 & q<>T .

17 caus ed comm(c1)= SATISFIED i f t r u e a f t e r d i s c h a r g e (c1) .

19 caus ed comm(c1)=RELEASED i f t r u e a f t e r r e l e a s e (c1) &

20 −d i s c h a r g e (c1) & (a c t i v e (c1) ++ c r e a t e (c1)) .

22 caus ed comm(c1)=CANCELLED i f t r u e a f t e r c a n c e l (c1) &

23 −(d i s c h a r g e (c1) ++ r e l e a s e (c1)) &

24 (a c t i v e (c1) ++ c r e a t e (c1)) .
� �

Listing 4 continues with the axioms for commitment op-
erations. The axiom of lines 1–4 means that a commitment
in state CONDITIONAL enters state BASE if toBase is caused
and the operations overriding toBase are not caused con-
currently. Even though delegate can happen concurrently
with toBase, this axiom blocks it as the desirable effect in
that case would be BASE DELEGATED instead of BASE as in this
case. Similar axioms for other TB1 transitions are skipped.

When an agent x delegates a commitment to another agent
y, the original commitment is changed to reflect its DELE-

GATED state and a new commitment for the new debtor y is
created. The axiom of lines 6–10 models delegate by fol-
lowing the pattern and complying to delegate‖assign, and
delegate‖toBase. Similar axioms for transitions D1 are not
shown here. The axiom of lines 12–22 captures the creation
of a new commitment if the delegate is not being overrid-
den and the original commitment is active or being created
and has not been already delegated. The axiom of lines 24–
28 handles concurrent toBase and delegate. Another such
axiom would capture the transition CONDITIONAL ASSIGNED →
BASE ASSIGNED DELEGATED.

Axioms relating to assign follow the same pattern as those
for delegate and are not shown here. Concurrent dele-

gate‖ assign, assign‖toBase, and toBase‖assign‖delegate

are handled analogously to toBase‖delegate.

Listing 4: Commitment ontology (part 4: rules)
� �

1 caus ed comm(c1)=BASE i f t r u e a f t e r toBas e (c1) &

2 −(d i s c h a r g e (c1) ++ r e l e a s e (c1) ++ c a n c e l (c1) ++

3 d e l e g a t e T o (db2 , c1) ++ a s s i g n T o (cr2 , c1)

4) & comm(c1)=CONDITIONAL.

6 caus ed comm(c1)=CONDITIONAL DELEGATED i f t r u e a f t e r

7 d e l e g a t e T o (db2 , c1) & (a c t i v e (c1) ++ c r e a t e (c1)) &

8 −(d i s c h a r g e (c1) ++ r e l e a s e (c1) ++ c a n c e l (c1) ++

9 a s s i g n T o (cr2 , c1) ++ toBas e (c1)

10) & comm(c1)=CONDITIONAL.

12 caus ed c r e a t e (cc (db2 , cr1 , p , q)) i f

13 d e l e g a t e T o (db2 , cc (db1 , cr1 , p , q)) &

14 −(d i s c h a r g e (cc (db1 , cr1 , p , q)) ++

15 r e l e a s e (cc (db1 , cr1 , p , q)) ++

16 c a n c e l (cc (db1 , cr1 , p , q)) ++

17 a s s i g n T o (cr2 , cc (db1 , cr1 , p , q))) &

18 (a c t i v e (cc (db1 , cr1 , p , q)) ++ c r e a t e (cc (db1 , cr1 , p , q)))

19 & (comm(cc (db1 , cr1 , p , q)) =BASE ++

20 comm(cc (db1 , cr1 , p , q)) = CONDITIONAL ++

21 comm(cc (db1 , cr1 , p , q)) = BASE ASSIGNED ++

22 comm(cc (db1 , cr1 , p , q)) = CONDITIONAL ASSIGNED) .

24 caus ed comm(c1)=BASE DELEGATED i f t r u e a f t e r

25 d e l e g a t e T o (db2 , c1) & toBas e (c1) &

26 −(d i s c h a r g e (c1) ++ r e l e a s e (c1) ++

27 c a n c e l (c1) ++ a s s i g n T o (cr2 , c1)) &

28 (a c t i v e (c1) ++ c r e a t e (c1)) & comm(c1)=CONDITIONAL.
� �

The listings of this paper are posted online (MAS Lab 2007).

A Purchase Example

Consider the simplified purchase process often studied in the
literature (e.g., (Desai et al. 2005)). The Order protocol de-
fines the interactions between a Customer and a Merchant
role in reaching an agreement on a purchase. The Customer
requests a quote for an item, to which the Merchant responds
by quoting a price. The meaning of quoting a price is that
it creates a commitment from the Merchant to the Customer

that if the price is paid, the goods would be delivered. The
Customer can then either accept or reject the quote (the re-
ject case is at (MAS Lab 2007)). The meaning of acceptance

is that the Customer commits to paying for the delivered
goods. Listing 5 specifies Order.

Listing 5: Order protocol� �

1 :− i n c l u d e ‘ commi tmen t on to logy ’ .

3 :− s o r t s

4 S l o t >> I t em ; S l o t >> I t e m P r i c e ;

5 Role >> Customer ; Role >> Merchant .

7 :− o b j e c t s

8 reqForQuo te (Customer , Merchant , I t em) : : Message ;

9 q u o t e (Merchant , Customer , Item , I t e m P r i c e) : : Message ;

10 a c c e p t (Customer , Merchant , Item , I t e m P r i c e) : : Message ;

11 d e l i v e r (I t em) : : C o n d i t i o n ;

12 payment (I t e m P r i c e) : : C o n d i t i o n ;

13 c : : Cus tomer ; m : : Merchant ;

14 myItem : : I t em ; myPrice : : I t e m P r i c e .

16 :− v a r i a b l e s

17 i t em : : I t em ; p r i c e : : I t e m P r i c e .

19 n o n e x e c u t a b l e a c t (reqForQuo te (c ,m, i t em)) i f

20 f l (reqForQuo te (c ,m, i t em)) .

22 n o n e x e c u t a b l e a c t (q u o t e (m, c , i tem , p r i c e)) i f

23 −f l (reqForQuo te (c ,m, i t em)) ++

24 f l (q u o t e (m, c , i tem , p r i c e)) .

26 n o n e x e c u t a b l e a c t (a c c e p t (c ,m, i tem , p r i c e)) i f

27 −f l (q u o t e (m, c , i tem , p r i c e)) ++

28 f l (a c c e p t (c ,m, i tem , p r i c e)) .

30 a c t (q u o t e (m, c , i tem , p r i c e)) c a u s e s

31 c r e a t e (CC(m, c , payment (p r i c e) , d e l i v e r (i t em))) .

33 a c t (a c c e p t (c ,m, i tem , p r i c e)) c a u s e s

34 c r e a t e (CC(c ,m, d e l i v e r (i t em) , payment (p r i c e))) .

36 :− que ry

37 l a b e l : : 5 ; maxs tep : : 4 ; 0 : i n i t i a l ;

38 maxs tep : f l (a c c e p t (c , m, i tem , p r i c e)) .
� �

The nonexecutable rules control the autonomy of the par-
ticipants. In this protocol, no message can be exchanged
twice with the same parameters. Thus, once the Customer
requests a quote for an item, it cannot request it again for
the same item in the same instance of the protocol. Such
repeated messages can be allowed by not restricting the ex-
ecution of the action even though the corresponding fluent
holds. The standard model of Order is shown in Figure 2(a).

Listing 6: Adding Shipping and Payment to Order protocol� �

1 n o n e x e c u t a b l e a c t (goods (m, c , i t em)) i f

2 −f l (a c c e p t (c ,m, i tem , p r i c e)) ++ f l (goods (m, c , i t em)) .

4 a c t (goods (m, c , i t em)) c a u s e s cond (d e l i v e r (i t em)) .

6 n o n e x e c u t a b l e a c t (pay (c , m, p r i c e)) i f

7 −f l (a c c e p t (c ,m, i tem , p r i c e)) ++ f l (pay (c , m, p r i c e)) .

9 a c t (pay (c ,m, p r i c e)) c a u s e s cond (payment (p r i c e)) .
� �

Figure 2: Standard model of Order and its extension

For illustration, let’s introduce the axioms of Listing 6
into Order. Figure 2(b) shows the desired behavior of com-
mitments as their conditions and preconditions are met. For
clarity, the states only show the commitment fluents. Notice
that discharge and toBase are caused automatically when
the conditions and preconditions are respectively met.

Let us examine Figure 2(b) further. According to List-
ing 6, messages goods and pay can be exchanged concur-
rently, as denoted by the middle transition from the state
labeled C0 and C1 (at the top) to the empty state (at the bot-
tom). If discharge did not override toBase, there would be a
contradiction as toBase would attempt to change the state to
BASE while discharge is changing the state to SATISFIED. As
the conditions of both C0 and C1 are being met, the desired
outcome is the effect of the discharge operation alone.

Complex Commitment Conditions

Commitments in the above example involve only atomic
conditions. In practice, preconditions and conditions can be
more complex formulas, including those with nested com-
mitments. The ability to represent and reason about such
conditions is vital. For example, assume that in the Order
protocol, the Merchant also sends a receipt of payment. Say
the meaning of the quote message is that the Merchant com-
mits to sending goods and providing a receipt if the payment
is made for the quoted price.

Listing 7: Order with receipt
� �

1 a c t (q u o t e (m, c , i tem , p r i c e)) c a u s e s

2 c r e a t e (CC(m, c , payment (p r i c e) ,

3 d e l i v e r n r e c e i p t (i tem , p r i c e))) .

5 caus ed cond (d e l i v e r n r e c e i p t (i tem , p r i c e)) i f

6 (a c t (goods (m, c , i t em)) & f l (r e c e i p t (m, c , p r i c e))) ++

7 (f l (goods (m, c , i t em)) & a c t (r e c e i p t (m, c , p r i c e))) ++

8 (a c t (goods (m, c , i t em)) & a c t (r e c e i p t (m, c , p r i c e))) .
� �

Listing 7 captures this commitment. The inner condition
(delivernreceipt) acts as a placeholder. It is related to the
appropriate logical expression via a separate axiom. As the
receipt follows payment but can be concurrent with goods,
either of the three possible combinations of actions and flu-
ents can cause the condition. In general, a commitment

cc(x, y, φ, ψ) where φ and ψ are arbitrary formulas, can be
represented as cc(x, y, pφ, pψ) where pφ and pψ are place-
holders (albeit with all the parameters of φ and ψ, respec-
tively), and separate axioms state that pφ is caused by φ and
pψ is caused by ψ.

Now, let us consider the case of nested commitment con-
ditions. Say, the meaning of quote is that the Merchant com-
mits to committing to delivering the goods if the payment is
made. While this may sound redundant, it enables a degree
of flexibility found commonly in practical situations. For
example, the debtor of the inner commitment can be a third
party, such as a shipper. Thus, the Merchant can promise the
Customer that a third party would commit to delivering the
goods if the payment is made. Also, if the condition itself is
a commitment, it can be manipulated in various ways by the
usual operations. Listing 8 shows the modifications.

Listing 8: Nested commitment in Order protocol
� �

1 a c t (q u o t e (m, c , i tem , p r i c e)) c a u s e s

2 c r e a t e (CC(m, c , payment (p r i c e) , commi tT oDe l ive r (i t em))) .

4 caus ed cond (commi tT oDe l ive r (i t em)) i f

5 c r e a t e (CC(m, c , d e l i v e r (i t em))) .
� �

The creation of the inner commitment causes the place-
holder condition. The debtor role in the inner commitment
could as well be a party other than the merchant. The cre-

ate itself would be caused separately. In general, a nested
commitment cc(x, y,T, cc(z, w,T, p)) can be represented
as cc(x, y,T, ccp) where ccp is a place holder atomic con-
dition having all the parameters of p and a rule that ccp is
caused by creation of cc(z, w,T, p). The technique naturally
extends to conditional commitments and arbitrary levels of
nesting.

Discussion

Causal logic specifications can be translated into transition
systems. However, as programming language abstractions,
transition systems are unwieldy at best. Causal logic spec-
ifications can be refined with ease; they support elabora-
tion tolerance (McCarthy 2003). Hence, the ability to de-
rive transition systems from causal logic specifications is an
added bonus as existing verification techniques can be ap-
plied on such transition systems.

Obligations have been shown to be useful in modeling
contracts among entities interacting over the Web (Tan &
Thoen 1998; Foster et al. 2006). Obligations can take com-
plex formulas and can be nested. Minsky and Ungureanu
(2000) propose law governed interactions with a stronger
notion of obligations where the agents are guaranteed to
keep their obligations as occurrences of violations are pre-
vented. Grosof and Poon (2004) represent contracts and ex-
ceptions in a rule-based framework. However, unlike com-
mitments, their contracts cannot be delegated or assigned.

Unlike directed obligations, which have been previously
formalized in modal logic, commitments can be easily ma-
nipulated as the interaction progresses. Commitments en-
able flexible modeling and enactment, and accommodating
organizational changes. Modeling complex commitments

and handling concurrent commitment operations in interor-
ganizational settings are the main contributions of this paper.

Chopra and Singh (2006) show how a protocol mod-
eled in causal logic may be transformed to adapt to a con-
text. Winikoff (2007) discusses distributed enactment of
commitment machines for agent interactions. Fornara and
Colombetti have studied the basic life cycle of commitments
(2003). However, these papers do not discuss the challenges
of concurrent operations and complex commitments.

In future, it would be interesting to explore the effects
of organizational structures on the management of commit-
ments, e.g., monitoring progress and falling back to the su-
periors in the case of a failure.

References

Chopra, A. K., and Singh, M. P. 2006. Contextualizing
commitment protocols. In AAMAS, 1345–1352.

Desai, N., and Singh, M. P. 2007. A modular action de-
scription language for protocol composition. In AAAI.

Desai, N.; Mallya, A. U.; Chopra, A. K.; and Singh, M. P.
2005. Interaction protocols as design abstractions for busi-
ness processes. IEEE T. Soft. Engg. 31(12):1015–1027.

Fornara, N., and Colombetti, M. 2003. Defining interaction
protocols using a commitment-based agent communication
language. In AAMAS, 520–527.

Foster, H.; Uchitel, S.; Magee, J.; and Kramer, J. 2006.
Model-based analysis of obligations in web service chore-
ography. In ICIW.

Fu, X.; Bultan, T.; and Su, J. 2004. Conversation protocols:
A formalism for specification and verification of reactive
electronic services. Theoret. Comp. Sci. 328(1–2):19–37.

Giunchiglia, E.; Lee, J.; Lifschitz, V.; McCain, N.; and
Turner, H. 2004. Nonmonotonic causal theories. Artificial
Intelligence 153(1-2):49–104.

Grosof, B. N., and Poon, T. C. 2004. SweetDeal: Rep-
resenting agent contracts with exceptions using semantic
web rules, ontologies, and process descriptions. Intl. J.
Electronic Commerce 8(4):61–98.

MAS Lab. 2007. Action description examples in C+.
http://research.csc.ncsu.edu/mas/code/causal/.

McCarthy, J. 2003. Elaboration tolerance. http:// www-
formal.stanford.edu/ jmc/ elaboration.html.

Minsky, N. H., and Ungureanu, V. 2000. Law-governed in-
teraction. ACM Trans. Soft. Engg. Method. 9(3):273–305.

OWL-S. 2004. OWL-S: Semantic markup for web ser-
vices. http://www.w3.org/Submission/OWL-S/.

Singh, M. P. 1999. An ontology for commitments in mul-
tiagent systems Artificial Intelligence and Law 7:97–113.

Tan, Y.-H., and Thoen, W. 1998. A logical model of
directed obligations and permissions to support electronic
contracting. Intl. J. Electronic Commerce 3(2):87–104.

van der Aalst, W., and van Hee, K. 2002. Workflow Man-
agement Models, Methods, and Systems. MIT Press.

Winikoff, M. 2007. Implementing commitment-based in-
teraction. In AAMAS.

