
Constitutive Interoperability

Amit K. Chopra
Department of Computer Science

North Carolina State University
Raleigh, NC 27695-8206, USA

akchopra@ncsu.edu

Munindar P. Singh
Department of Computer Science

North Carolina State University
Raleigh, NC 27695-8206, USA

singh@ncsu.edu

ABSTRACT

Commitments have recently emerged as a valuable abstraction for

characterizing interactions among autonomous agents at the level

of their business relationships. Traditionally, interoperation is ap-

proached from the standpoint of data exchange or of messaging.

We use commitments to characterize interoperability in high-level

terms: at the level of the communications among agents. Specifi-

cally, two agents are interoperable if their commitments align. Draw-

ing upon Kant’s famous distinction, we distinguish between two

kinds of interoperability, constitutive and regulative. Constitutive

interoperability takes into account solely the meaning of messages

whereas regulative interoperability also takes into consideration mes-

sage order, occurrence, and data flow. We present a language for

specifying agents constitutively and a decision procedure for deter-

mining their interoperability.

Categories and Subject Descriptors

D.2.12 [Software Engineering]: Interoperability; I.2.11 [Artificial

Intelligence]: Distributed artificial intelligence—Multiagent sys-

tems

General Terms

Verification

Keywords

Commitments, Business-level interoperability, Alignment

1. INTRODUCTION
Interoperability is a matter of manifest agreement. In other words,

the interoperability of two or more parties means not only that there

is an agreement among the parties but also that they can act accord-

ing to the agreement. An agent is a computational representation

of a “real” business principal. Agents interact with each other and

their environment. We restrict attention to arms-length interactions

in the form of communications among agents. These may be nat-

urally realized in the computational infrastructure through messag-

ing. For concreteness, we refer to the elements of communication

as messages.

The scope of the agreement among the agents determines the

scope of their interoperability. Communicating agents may thus in-

teroperate at the level of text encoding (as in ASCII), syntax (as

Cite as: Constitutive Interoperability, Amit K. Chopra, and Munindar
P. Singh, Proc. of 7th Int. Conf. on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2008), Padgham, Parkes, Müller and Parsons
(eds.), May, 12-16., 2008, Estoril, Portugal, pp. XXX-XXX.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

in XML InfoSet), grammar (as in UBL, the universal business lan-

guage or more simply the specification of a purchase order), mes-

saging (as in SOAP), terminology (as in the Dublin Core vocabu-

lary), and so on. Effective interoperation among two or more agents

presumes that they are interoperable at all relevant levels.

As agents communicate, they enter into commitments with one

another. The commitments reflect the organizational or social re-

lationships among the agents, and thus characterize their interac-

tions at a high level. We propose a commitment-based theory of

interoperability. This approach reflects the intuition that the most

relevant—and least implementation dependent—kind of agreement

is based on the commitments that the agents have toward one an-

other. Thus, agents are deemed interoperable if they can enter into

and maintain well-aligned commitments to each other. Commit-

ments represent an essential level at which to assess and establish

interoperability because they yield a notion of compliance emi-

nently suitable for open settings: the principals may act as they

please provided it is in accordance with their commitments. Ensur-

ing or verifying that agents act according to their commitments is a

different challenge [15].

Early in the study of software architecture, Parnas proposed that

connectors between components should be treated not as control

or data flow constructs but as assumptions made by each compo-

nent about the others [12]. Arguably, much of the subsequent work

on software architecture and interoperability regressed from Par-

nas’ insight: it has primarily considered connectors and concomi-

tant assumptions at the level of flow, e.g., dealing with message

order and occurrence [11]. Such low-level criteria are largely or-

thogonal to considerations of business meaning. It is generally ir-

relevant whether the parties communicate via a procedure call or

a message, and whether they follow a specific message order (un-

less the message order has a bearing on the meaning). Specifically,

just because two agents are able to interact according to a speci-

fied choreography (i.e., a description of message ordering and oc-

currence) doesn’t mean that their principals agree on the business

meaning of the messages they exchange. Thus existing and emerg-

ing standards such as the Web Services Choreography Description

Language (WS-CDL) [17] apply at too low a level of abstraction.

By contrast, commitments enable naturally expressing the as-

sumptions that agents make of other agents regarding the busi-

ness meanings of their interactions. What matters at the business

level is what commitments exist, not what low-level means are

used to create or manipulate a commitment. Of course, check-

ing commitment-level interoperability does not obviate the need for

checking the other kinds of interoperability, such as those alluded

to above. But checking other kinds of interoperability is rarely ad-

equate, and we need ways to define and check commitment-level

interoperability, which is what this paper seeks to do.



1.1 Commitments
Commitments help us address business level interoperability. For

the purposes of this paper, a commitment can be thought of as a rei-

fied directed obligation. Commitments are directed from one agent

(the debtor) to another (the creditor), and arise within a particular

organizational context [14, 7]. When the condition of the commit-

ment is met, the commitment is said to be discharged. In addition,

a commitment may be operated upon, for example, by being dele-

gated to a new debtor or assigned to a new creditor.

For us, interoperability is concerned with whether the agents in-

volved can enter into and maintain well-aligned commitments with

each other. Stated informally, this means that if an agent’s state

models a commitment of which the agent is the creditor, then the

debtor’s state must also model the same commitment. In other

words, the debtor covers the creditor’s assumption about the com-

mitment. For example, let’s say a customer takes a quote message

to mean that the merchant commits to sending goods if the cus-

tomer pays first, whereas the merchant takes it to mean no such

commitment. This problem can arise in foreign exchange transac-

tions as well [6]. The above illustrates commitment misalignment:

on receiving the message, the customer’s state models a commit-

ment in which it is the creditor and the merchant the debtor, but the

merchant’s state does not reflect this commitment. They are thus

noninteroperable.

The reverse condition—if a debtor’s state models a commitment,

then the creditor’s state must also model the commitment—is of no

relevance. An agent may adopt commitments towards other agents;

however, if other agents do not expect it, those commitments are

just harmless.

Our proposed definition of interoperability gives primacy to ob-

servations of each agent, i.e., the messages each sends and receives.

We model communication between agents as being asynchronous

and make only fundamental assumptions about it.

1.2 Commitment-Based Interoperability
We base our study of interoperability on Kant’s distinction be-

tween constitutive and regulative rules, as developed by Searle [13].

In simple terms, a constitutive rule specifies what action counts as

what. For example, raising your hand may count as bidding in an

outcry auction, or offering to give an answer if you are a student in

a class. In this case, bidding or offering to answer are institutional

actions. Similarly, a judge’s specific actions in the right context

may count as creating a married couple. By contrast, a regulative

rule constrains the performance of an action, e.g., that you cannot

bid in an auction after a winner has been declared. In our approach,

commitments are the key institutional facts, and the loci of insti-

tutional actions. Messages perform such actions by creating and

manipulating commitments.

In our framework, message meanings are expressed as constitu-

tive rules. The meaning of a message is specified in terms of its

effects. The meaning may directly refer to commitments or indi-

rectly affect commitments, as when the message counts as bring-

ing about a condition of the commitment. For example, a price

quote may constitute an offer to sell, treated as a (conditional) com-

mitment. Each agent is described via its constitutive specification,

which serves as an interface describing its assumptions. In essence,

the constitutive specification of an agent tells us the meanings of

the messages that the agent (presumably) respects. The intuition

behind constitutive interoperability is that, in order to interoperate,

the agents ought to agree about the institutional reality in which

they exist. In other words, the agents agree on what their commu-

nications count as.

Constitutive interoperability is determined from constitutive spec-

ifications, that is, specifications that consist only of constitutive

rules. If the interacting agents happen to apply mutually inconsis-

tent constitutive rules, they would fail to interoperate. The above

example where quote means different things to the customer and

the merchant shows a violation of constitutive interoperability.

Message occurrence (when a particular message must be sent),

ordering between the sends and receives of messages, and data flow

among the messages are all regulative rules. A regulative specifica-

tion may be viewed as encoding an agent’s policies. For example,

the merchant may have a regulatory rule that the customer must pay

first in order for shipment to proceed. Regulative interoperability

is determined from regulative specifications, that is, specifications

that consist of regulative rules.

This paper concentrates on constitutive interoperability. In ear-

lier work, we used C+ [10], an action description language, to

specify and reason about protocols [5]. Here we employ a simpler

language that is adequate for expressing constitutive rules and for

reasoning about interesting cases of constitutive interoperability.

1.3 Contributions and organization
Our contributions in this paper are:

• A high-level definition of constitutive interoperability that

takes into account the business meaning of communication,

and that supports asynchronous communication.

• A language for constitutive specifications and a decision pro-

cedure for determining the constitutive interoperability of pairs

of agents. A benefit of this approach is that it operates by pro-

gram analysis rather than by building potentially large tran-

sition systems.

Section 2 presents our technical framework. Section 3 formalizes

constitutive interoperability and provides a decision procedure for

the same. The correctness proof is also provided. Section 4 places

this work in the context of the literature.

2. TECHNICAL FRAMEWORK
The framework consists of a language for constitutive specifi-

cations, an operational model of asynchronously communicating

agents, and the formal semantics of the language in terms of the

model.

2.1 Constitutive Specifications
Below, mi range over messages; x, y, . . . range over agents; p,

q, . . . range over propositions or Boolean formulas over them; ⊤ is

the constant for truth; α is a propositional literal or its negation:

identify α with ¬¬α. A commitment is a propositional letter. A

commitment C(x, y, p, q) means that x is committed to y to bring

about condition q if precondition p comes about.

Let’s define our formal language via the following Backus-Naur

Form productions. L is the starting symbol of our formal language.

Below, Φ is a set of atomic propositions, X is a set of agent names,

and Message names a message. We simplify the syntax by eliding

parameters to concentrate on the points of interest here.

• L −→ {Message means Clause }

• Clause −→ Conjunction | Commitment

• Commitment −→ C(X ,X , Conjunction , Disjunction)

• Conjunction −→ Φ | Φ ∧ Conjunction

• Disjunction −→ Φ | Φ ∨ Disjunction



As described in the above grammar, we restrict the precondition

and condition of a commitment to be a conjunction and disjunction

of propositional literals, respectively. This simplifies the presen-

tation of the decision procedure for interoperability without a loss

of expressiveness. For example (omitting agent names in commit-

ments), m means C(p ∨ q , r ∧ s) may be expressed as the four

rules m means C(p, r), m means C(p, s), m means C(q , r), and

mmeansC(q , s). Our grammar places an additional restriction that

commitments may not be nested.

From a technical standpoint, an agent x’s constitutive specifica-

tion, Cx, is a finite set of rules, each of the form of Schema 1.

SCHEMA 1. m means p

The idea behind Schema 1 is to capture the counts as relation-

ships that describe the institutional meanings of messages. In

Schema 1, the head p is a conjunction of propositional letters, and

the body m is an action corresponding to a single message. When

p is a commitment, the constitutive rule describes the creation of

a commitment. Table 1 shows the constitutive specifications of a

customer and merchant.

Table 1: Constitutive specifications of a customer and merchant
customer (c)
Offer(m, c) means C(m, c,pay , goods)
Pay(c, m) means pay
Goods(m, c) means goods

merchant (m)

Offer(m, c) means C(m, c,pay , goods)
Pay(c, m) means pay
Goods(m, c) means goods

2.2 Modeling Communicating Agents
This paper goes beyond existing formalizations of commitment

protocols. It applies the language introduced above from the per-

spective of each agent. That is, each agent maintains its own theory

of the world.

We write the actions of sending and receiving a message m as

!m and ?m, respectively. Each message is uniquely identified, and

has exactly one sender and one receiver. Where the sender and re-

ceiver are relevant, m is expanded to m(x, y) to indicate a message

m from x to y. Let A be a multiagent system. We restrict the for-

mulation of constitutive interoperability to systems that have only

two agents. We abuse notation in places in letting A denote a set of

agents.

An agent’s observations are limited to the messages it sends or

receives. Thus agent x makes observations of the form !m(x, y)
or ?m(y, x), for a message m sent or received from some agent

y. We assume that each agent has a single input queue and thus its

observations are a sequence of messages sent or received (one at a

time). Ox, a finite sequence of observations of agent x is given by

a list 〈o0, o1, . . . , on〉.
To simplify the technical development, we assume that messages

are not created or lost by the infrastructure. Thus if the sender ob-

serves !m, the recipient will eventually observe ?m, and if a re-

cipient observes ?m the sender must already have observed !m.

Further, any two messages sent to the recipient by the same sender

arrive in the order in which they are sent. We term these the fun-

damental constraints on messaging. Even so, in general, agents

would make distinct observations because they send and receive

different messages. More importantly, even in a two-party system

and even if we neglect message direction, the agents may observe

the same messages in different orders.

An observation vector for a multiagent system is a vector each of

whose elements is an observation sequence, one for each agent in

the system. Observation vectors satisfy the fundamental constraints

on messaging: no messages are lost and messages arrive in order.

But the observation sequences could be incomplete: thus not every

message that has been sent would have been received. However, if

a message from x is received by y, then that message must have

been sent by x, and all messages previously sent by x to y would

have been previously received by y. In other words, an observation

vector describes a (partial) execution of the system.

DEFINITION 1. O = [Ox, Oy ] is an observation vector over

the agents x and y provided Ox and Oy are observation sequences

of x and y, respectively.

• If ?m(x, y) occurs in Oy , then !m(x, y) occurs in Ox

• If ?m1(x, y) occurs in Oy and !m0(x, y) precedes !m1(x, y)
in Ox, then ?m0(x, y) precedes ?m1(x, y) in Oy

A system is said to be in observational quiescence for a partial

execution where no messages are in transit—all sent messages have

been received. (Any or all agents could be computing even if no

messages are in transit, but this is not relevant here.) Definition 2

formalizes this intuition.

DEFINITION 2. An observation vector OQ = [Ox, Oy ] is qui-

escent provided if !m(x, y) occurs in Ox, then ?m(x, y) occurs in

Oy , and !m(y, x) occurs in Oy , then ?m(y, x) occurs in Ox.

Below, we apply the subscript Q to an observation vector (as in

OQ) to say it is a quiescent vector. OA is the set of all possible

observation vectors for system A.

An observation sequence Ox may be a prefix of another (i.e.,

intuitively later) observation sequence O′
x. This is written Ox �

O′
x. The definition of prefix expands to apply to vectors in the

obvious manner.

DEFINITION 3. O = [Ox, Oy ] � O
′ = [O′

x, O′
y] iff (∀z ∈

{x, y} : Oz � O′
z).

A simple consequence of the assumption of no messages being lost

is that if !m(i, j) occurs in Oi, then there exists O
′ such that O �

O
′ and ?m(i, j) occurs in O

′
j .

We require that communicating agents have standard names and

that their vocabularies are aligned. Thus we can talk coherently

of the commitments in which each agent features. Specifically, if x

and y are agents, and x refers to C(y, x, p, q), then we can compare

this to C(y, x, p, q) as referred to by y. This assumption is not

fundamental but simplifies our exposition.

2.3 Operational Semantics
Let x be an agent and Cx its constitutive specification. The for-

mula 〈m0, . . . , mn〉 
x p means that the state of x after having

observed 〈m0, . . . , mn〉 models the proposition p. (Below, p ⊢ q

means that we can derive q from p. When p and q are propositions,

⊢ is Boolean consequence.) Thus, 
x is closed under the following

rules of inference.

UNIT says that a message (by itself) always brings about the head

of its defining constitutive rule.

m means p ∈ Cx

〈m〉 
x p
−−−−−−−−−−−−−−−− (UNIT)

PROP states that a proposition (that does not derive any commit-

ments) holds if brought about by a message.

〈mn〉 
x p p 6⊢ C(r, s)

〈m0, . . . , mn〉 
x p
−−−−−−−−−−−−−−−−−−−−−−−−− (PROP)



HOLD states that a message that means a commitment brings

it about unless the condition of the commitment holds simultane-

ously. The condition would cause the commitment to discharge.

Thus a commitment may result only if it has not already and is not

concurrently discharged (see below). A special case of this rule is

when the precondition is ⊤.

〈m0, . . . , mn〉 
x ¬q 〈mn〉 
x C(p, q)

〈m0, . . . , mn〉 
x C(p, q)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− (HOLD)

DETACH explains the consequences of a commitment and its pre-

condition holding simultaneously. A stronger commitment, namely,

with a precondition of ⊤ comes to hold.

〈m0, . . . , mn〉 
x p ∧ ¬q ∧ C(p, q) p 6≡ ⊤

〈m0, . . . , mn〉 
x C(⊤, q)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− (DETACH)

SAT explains the satisfaction or discharge of a commitment. When

the condition of a commitment holds, the commitment is discharged

and is thus active no more.
〈mn〉 
x q

〈m0, . . . , mn〉 
x ¬C(p, q)
−−−−−−−−−−−−−−−−−−−−−−−−−− (SAT)

WEAKEN states that 
x is closed under propositional derivation

given by ⊢, as mentioned above.

〈m0, . . . , mn〉 
x p p ⊢ q

〈m0, . . . , mn〉 
x q
−−−−−−−−−−−−−−−−−−−−−−−−−−−− (WEAKEN)

NEG states that 
x deals with binary logic.

〈m0, . . . , mn〉 6
x p

〈m0, . . . , mn〉 
x ¬p
−−−−−−−−−−−−−−−−−−−− (NEG)

INERTIA says that if an atomic proposition α holds and is not

overturned by the next messaging action, then α continues to hold.

〈m0, . . . , mn−1〉 
x α 〈mn〉 6
x ¬α

〈m0, . . . , mn〉 
x α
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− (INERTIA)

CMT describes the consequence relation between commitments.

Of two commitments, the stronger commitment is the one whose

precondition is weaker or condition is stronger.

C(x, y, p0, q0) p1 ⊢ p0 q0 ⊢ q1

C(x, y, p1, q1)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− (CMT)

Thus CMT captures our intuition about covering the assumptions

of agents. Let c0 and c1 be commitments. We say c0 ⊢ c1—read

as c0 covers the assumptions of c1—if and only if they have the

same debtor and creditor, c1’s precondition is stronger than c0’s,

and c1’s condition is weaker than c0’s. For an example where the

precondition is stronger, consider a customer c’s commitment c0 =
C(c, m, goods, pay) to a merchant m that c will pay if m sends

the goods. Let’s say the merchant assumes the commitment c1 =
C(c, m, goods∧ receipt, pay) from the customer instead. c0 ⊢ c1

(c0 covers c1) because the customer’s precondition is weaker than

the customer’s. For an example where the condition is weaker, con-

sider the customer’s commitment c0 = C(c, m, goods, pay). Let

the merchant’s assumption be c1 = C(c, m, goods, pay∨return).

Clearly, c0 ⊢ c1 because now the merchant’s condition is weaker

than the customer’s.

LEMMA 1. 
x terminates.

PROOF. (Sketch) Each inference rule for 
x either reduces the

sequence length or the depth of the formula being considered.

3. CONSTITUTIVE INTEROPERABILITY
First we present the definition of constitutive interoperability and

then a decision procedure for determining it from agents’ specifica-

tions. We present numerous examples along the way to illuminate

the concepts involved.

3.1 Definition
Interoperability considers the prospect of interoperation. For this

reason, it considers all possible enactments in which the agents

may participate. Constitutive interoperability means that the agents

would agree about whatever commitments as might result from any

messages they might exchange. Thus it considers all potential ob-

servations of all agents, and fails if even one set of potential ob-

servations would cause failure of interoperation. Definition 4 con-

siders only observations of creditors and debtors from the same

quiescent vectors.

DEFINITION 4. A is C-interoperable (written [〈A〉]) iff

∀OQ ∈ OA : (∀x, y : [Ox, Oy ] = OQ :

(Oy 
y C(x, y, p, q)) → (Ox 
x C(x, y, p, q)))

The idea is that if y’s observations model, under its constitutive

specification, that y is the creditor of commitment c, then any ob-

servations made by the debtor x must model, under its constitutive

specification, that x is the debtor of c.

The above definition considers only quiescent vectors. The mo-

tivation for doing so is to provide an opportunity for the agents to

“sync” up. In a distributed systems, the agents would in general

observe different messages. Requiring that they agree upon their

commitments without observing the same messages would in gen-

eral lead to such a strong definition that would fail even when our

intuition would be that the agents interoperate.

For example, say a merchant sends an offer to a customer that

states: if you send me the payment, I will send you the goods. Say

the customer receives this offer and sends the payment to the mer-

chant. At this point, the customer has no knowledge of when the

payment will arrive at the merchant; the merchant has no knowl-

edge that the payment has been sent. The customer’s observations

legitimize the unconditional commitment on part of the merchant to

send it the goods. The merchant’s observations do not. The above

definition is not affected by this apparent discrepancy because it is

only a transient discrepancy. When the payment arrives at the mer-

chant, the commitment as expected by the customer will be covered

by the merchant.

3.2 Decision Procedure
We introduce unique labels for the rules in a constitutive specifi-

cation for easy reference in the text. For example, in A =
m meansp, the label of the rule m meansp is A, and we say that A

is the rule mmeansp). Even though two rules in different constitu-

tive specifications may have the same label, we use different labels

throughout to avoid confusion.

Let A be a constitutive rule. Â and Ă denote the head and body

of A, respectively. Given a set of rules A, bA =
V

A∈A
Â. To sim-

plify the presentation, we introduce the empty rule ǫ as a member

of every constitutive specification and its head as ⊤.

The intuition behind our decision procedure is to verify that each

rule in the constitutive specification of an agent that would cause

an agent to have a credit (a commitment in which the agent is the

creditor) should be covered by a rule in the debtor’s constitutive

specification.

EXAMPLE 1. In Table 2, rule Cus1 which encodes the cus-

tomer’s assumption about an offer is supported by Mer1 in the

merchant’s specification, that is, Mer1 ⊢ Cus1. In fact, the mer-

chant’s commitment to send a receipt is not an assumption of the

customer.

EXAMPLE 2. With reference to Table 2, if the merchant’s spec-

ification had Mer2 = Offer means C(m, c, pay , receipt) instead

of Mer1, then Mer2 6⊢ Cus1 and when the Offer message is ex-

changed, it will cause a commitment misalignment.



Table 2: Offer
customer (c)
Cus1 = Offer means C(m, c,pay , goods)
merchant (m)

Mer1 = Offer means C(m, c, pay , goods ∧ receipt)

There is an additional caveat though: the agents must also agree

on the messages that affect a commitment. This means that the

decision procedure must check the agents’ specifications for the re-

spective compatibility of the rules that bring about the precondition

and condition of a commitment. Specifically, the debtor should

cover the ways in which the creditor may bring about the precondi-

tion, and the creditor should cover all the ways in which the debtor

may bring about the condition. In Table 2 there are no such rules,

hence the agents vacuously agree.

EXAMPLE 3. Let’s consider the agents in Table 3. Clearly,

Mer3 ⊢ Cus2. In addition, the merchant covers all the ways in

which a customer expects to make a payment (Cus3 is covered by

Mer4) therefore ensuring that when the customer pays, the mer-

chant understands that. Similarly, the customer understands all the

ways the merchant can cause the goods condition to hold (Mer6 is

covered by Cus4).

Table 3: Offer with precondition and condition rules
customer (c)
Cus2 = Offer means C(m, c, pay , goods)
Cus3 = PayCash means pay
Cus4 = GoodsShip means goods
Cus5 = GoodsExpedited means goods

merchant (m)
Mer3 = Offer means C(m, c, pay , goods)
Mer4 = PayCash means pay
Mer5 = PayCredit means pay
Mer6 = GoodsShip means goods

EXAMPLE 4. Referring to Table 3, suppose that the merchant

did not have the rule Mer4 meaning she only accepts credit cards.

Then upon doing PayCash, the customer’s state would model

the commitment C(m, c,⊤, goods) (because of DETACH); how-

ever the merchant’s state would not model C(m, c,⊤, goods) upon

receiving PayCash. Hence, interoperability fails.

Definitions 5 and 6 introduce the machinery necessary to formal-

ize this caveat. Definition 5 introduces the notion of a precondition

predecessor. Let A = m means C(x , y , p, q) ∈ C . A precon-

dition predecessor of A is a subset of C such that the rules in the

predecessor explain the causation of each propositional letter in p.

The set of all precondition predecessors of an rule A is denoted by

PA.

EXAMPLE 5. In Table 3, the commitment in Cus2 has only one

propositional letter pay. A precondition predecessor of Cus2 is

{Cus3}. Mer3 has two precondition predecessors: {Mer4} and

{Mer5}. Thus, PCus2 = {{Cus3}} and PMer3
= {{Mer 4},

{Mer5}}.

EXAMPLE 6. In Table 2, PCus1 = {}, PMer1
= {}.

No subset of a precondition predecessor of a rule A should itself

be a precondition predecessor of A because that means the former

contains rules not relevant to the precondition. What is not relevant

to a commitment will necessarily have no effect on commitment-

level interoperability.

DEFINITION 5. Let A = m means C(x , y , p, q) be a rule in

C. Then the precondition predecessors of A in C denoted by PA is

defined as

{∆|∆ ⊆ C : (b∆ ≡ p and ¬(∃∆′ : b∆′ ≡ p and ∆′ ⊂ ∆))}

Recall that the condition of a commitment is a disjunction of

propositional literals. Bringing any one of those about satisfies the

commitment. Unlike the precondition predecessor which is a set of

rules, a condition predecessor is a single rule whose head derives at

least one propositional literal in the condition.

DEFINITION 6. Let A = m means C(x , y , p, q) be a rule in C

where q is the disjunction q0∨ . . .∨qn of propositional letters. The

condition predecessors of A in C denoted by CA is defined as

{R|R ∈ C and ∃qi (0 ≤ i ≤ n) : R̂ ⊢ qi}

EXAMPLE 7. In Table 2, CCus1 = {}, CMer1
= {}.

EXAMPLE 8. Referring to Table 3, CCus2 = {Cus4,Cus5},

CMer3
= {Mer6}.

Definition 7 finally puts together all the elements discussed above

in defining the complete coverage of a rule that causes a commit-

ment credit. For such a rule to be completely covered, the following

conditions must be satisfied:

1. Rule coverage: The debtor must cover the rule: a credit rep-

resents an assumption of the creditor.

2. Precondition coverage: The debtor must cover all the ways

in which the creditor may bring about the precondition of the

commitment—these represent the assumptions of the credi-

tor. Additionally, it means that if the creditor expects to deal

in n distinct messages to bring about the precondition of a

commitment, then the debtor’s cover cannot involve more

than those n messages.

3. Condition coverage: The creditor must cover all the ways

in which the debtor may bring about the condition of the

commitment—these represent the assumptions of the debtor.

This ensures that any message that can discharge a commit-

ment on the debtor’s side will also discharge the commitment

on the creditor’s side.

DEFINITION 7. Let Cx and Cy be the constitutive specifica-

tions of agents x and y, respectively. Let E ∈ Cy be

m means C(x , y , p, q). E is completely covered, denoted by ⌊E⌋
iff E is covered, that is, ∃M ∈ Cx : (M ⊢ E) and the following

hold:

• Precondition coverage: ∀S ∈ PE : ∃V ∈ PM : (
S

A∈V
Ă) ⊆

(
S

A∈S
Ă)

• Condition coverage: ∀S ∈ CM : ∃V ∈ CE : S̆ ≡ V̆

In Definition 7 above, each S referred to in the precondition cov-

erage clause represents a “way” (assumption) of the creditor that

must be covered by the debtor. Similarly, each S in the condition

coverage clause represents a “way” of the debtor that must be cov-

ered by the creditor.

DEFINITION 8. Let A be a two agent system. A is compatible,

denoted by [[A]], iff

∀y ∈ A : ∀E = m means C(x , y , p, q) ∈ Cy : ⌊E⌋



Algorithm 1: Algorithm for determining [[A]]

foreach (agent y in a two agent system) do1

foreach (E in y’s specification which means a credit2

C(x, y, p, q) for y) do

if (there exists an M in x’s specification such that3

M covers E) then

foreach (way in which y assumes p can hold)4

do

if (x covers that way) then5

continue;6

else7

return false;8

foreach (way in which x assumes q can hold )9

do

if (y covers that way) then10

continue;11

else12

return false;13

else14

return false;15

return true;16

Algorithm 1 is pseudo code for Definition 8.

Figure 1 and 2 show the program analysis graphs for the agents

in Table 2 and 3, respectively. A program analysis graph is con-

structed as follows. For each agent, for each rule E in which a

credit is created, create a circle labeled with E. Denote each of its

precondition predecessors by a dotted box connected to the circle

by an arrow labeled P. Label the box with the rules in that precon-

dition predecessor. Denote each of its condition predecessors by a

dotted box connected to the circle by an arrow labeled with C. If a

rule M in the other agent covers E (M ⊢ E), then create a circle

labeled M and connect M to E with an arrow directed towards E.

Indicate M ’s precondition and condition predecessors as described

for E. If there exists a precondition predecessor of M that covers

one of E, draw a directed arrow from the former to the latter. Sim-

ilarly, if there exists a condition predecessor of E that covers one

of M , draw a directed arrow from the former to the latter. If at the

end of this graph construction, E is not connected to some M , or if

one of E’s precondition predecessors is not connected to some of

M ’s, or if one of M ’s condition predecessors is not connected to

some of E′s, then the agents are not compatible.

Figure 1: Program analysis graph for agents in Table 2

EXAMPLE 9. Consider the agents in Table 4. Here the mer-

chant ships goods to customers of legal age only. However, she

accepts payment by credit card to be proof of legal age. The cus-

tomer, however, provides her birth date as proof of legal age. First,

Mer7 ⊢ Cus6. PCus6 = {{Cus7,Cus8}}, PMer7
= {{Mer8}},

and the set of messages involved in {Mer8} is a subset of the mes-

sages involved in {Cus7,Cus8} ({PayCredit} ⊆

{PayCredit, P rovideBirthDate}). Therefore, ⌊Cus6⌋.

Figure 2: Program analysis graph for agents in Table 3

Table 4: Precondition coverage: merchant uses fewer messages
customer (c)

Cus6 = Offer means C(m, c, pay ∧ legalAge, goods)
Cus7 = PayCredit means pay
Cus8 = ProvideBirthDate means legalAge

merchant (m)

Mer7 = Offer means C(m, c, pay ∧ legalAge, goods)
Mer8 = PayCredit means pay ∧ legalAge

Figure 3 shows the program analysis graph for the agents in Ta-

ble 4.

Figure 3: Program analysis graph for agents in Table 4

EXAMPLE 10. Referring to Table 5, PCus9 = {{Cus10}} and

PMer9
= {{Mer 10,Mer11}}. The messages involved in

{Mer10,Mer11} are not a subset of {Cus10}. Therefore, when

customer does PayCredit (after Offer ), she assumes the commit-

ment C(m, c,⊤, goods) whereas the merchant does not because it

does not see PayCredit to mean legalAge: it also expects to ob-

serve ProvideBirthDate. Therefore, precondition coverage for

{Cus10} does not hold. Therefore, ⌊Cus9⌋ does not hold.

Figure 4 shows the program analysis graph for the agents in Ta-

ble 5.

EXAMPLE 11. Referring to Table 6, ⌊Cus11⌋ holds in spite of

the fact that between the two agents the meanings of PayCredit

and ProvideBirthDate are interchanged.

EXAMPLE 12. A merchant may unconditionally commit to send-

ing the goods. Referring to Table 7, Mer15 ⊢ Cus14, PCus14 =
{{Cus15}}, PMer15

= {ǫ} and since causing ǫ requires no mes-

sages, we obtain ⌊Cus14⌋.

EXAMPLE 13. For the sake of completeness, let’s consider an

example that bring condition coverage into focus. Referring to



Table 5: No precondition coverage: customer uses fewer mes-

sages
customer (c)

Cus9 = Offer means C(m, c, pay ∧ legalAge, goods)
Cus10 = PayCredit means pay ∧ legalAge

merchant (m)
Mer9 = Offer means C(m, c, pay ∧ legalAge, goods)
Mer10 = PayCredit means pay
Mer11 = ProvideBirthDate means legalAge

Figure 4: Program analysis graph for agents in Table 5

Table 8, Mer16 ⊢ Cus16, and CCus16 = {Cus17, Cus18} and

CMer16
= {Mer17}. When the merchant sends GoodsShip and

discharges her commitment, the customer also understands its re-

ceipt to mean discharge of the merchant’s commitment. Thus, ⌊Cus16⌋

holds.

Figure 5 shows the program analysis graph for the agents in Ta-

ble 8.

EXAMPLE 14. Also, it is worth considering the agents in Ta-

ble 9. Even though GoodsShip means different things to the cus-

tomer and merchant, when they observe the message, it discharges

the merchant’s commitment in both the customer and merchant’s

model. Here too, we have ⌊Cus19⌋.

Figure 6 shows the program analysis graph for the agents in Ta-

ble 9.

THEOREM 1. [〈{x, y}〉] if and only if [[{x, y}]].

PROOF. (Sketch) The proof is by induction on the length of qui-

escent vectors. For quiescent observation vectors of length 1, any

commitment that exists must be caused by rules (in the creditor’s

theory) pertaining to a single message. As a result, our decision

procedure would find the rules (in the debtor’s theory) that cover

such creditor rules. Conversely, for any pair of covering rules the

message mentioned in their bodies could be observed to be sent and

received. Thus if the decision procedure finds a cover, there would

be an observation vector where that is realized.

Now assume that the theorem holds for quiescent observation

vectors of length up to k. Consider any quiescent observation vec-

tor of length k +1. Any commitment that holds after a sequence of

length k + 1 either held at the end of the first k observations in that

Table 6: Offer with jumbled but adequate meanings
customer (c)

Cus11 = Offer means C(m, c,pay ∧ legalAge, goods)
Cus12 = PayCredit means legalAge
Cus13 = ProvideBirthDate means pay

merchant (m)
Mer12 = Offer means C(m, c,pay ∧ legalAge, goods)
Mer13 = PayCredit means pay
Mer14 = ProvideBirthDate means legalAge

Table 7: Making an unconditional commitment
customer (c)

Cus14 = Offer means C(m, c, pay , goods)
Cus15 = PayCash means pay

merchant (m)

Mer15 = Offer means C(m, c,⊤, goods)

Table 8: Condition coverage
customer (c)

Cus16 = Offer means C(m, c, pay , goods ∨ refund)
Cus17 = GoodsShip means goods
Cus18 = RefundMoney means refund

merchant (m)

Mer16 = Offer means C(m, c,pay , goods)
Mer17 = GoodsShip means goods

sequence, or is caused by the (k + 1)st observation. In the former

case, the inductive hypothesis applies. In the latter, the rules for the

last message apply. The precondition and condition supports for

these rules must have already have been accounted for in the first k

observations. Hence, by induction, the result holds.

4. DISCUSSION
Researchers in software components have long addressed the

problem of component interoperability. They have approached this

problem from the point of view of coordination: the definitions of

interoperability are couched in terms of process-algebraic notions

of liveness, fairness, choice, and deadlock-freedom of the com-

ponents [3, 9, 18, 8]. Such formalizations are no doubt relevant

and essential; however, they do not capture the business meaning

of business processes. Our commitment-based approach addresses

this shortcoming. It abstracts away from the process-algebraic no-

tions of interoperability, and makes commitment alignment the sole

criterion. Our vision is that designers first specify agents in terms

of commitments, check for commitment alignment, and then suc-

cessively refine the specifications in a model-driven manner so as

to obtain implementations that also meet the process-algebraic no-

tions of interoperability.

Approaches based on verifying compliance at runtime [2, 15]

are important in the context of open systems since agents may be-

have in unpredictable ways; also it is necessary to have independent

arbiters in cases of dispute. Alberti et al. [1] present SCIFF, an ab-

ductive reasoning framework for reasoning about the policies of

services with the purpose of verifying if a goal might be reached.

In that sense, SCIFF is similar to specifying agents in C+ [10], and

running queries in CCalc, which is the reasoning tool that imple-

ments C+.

Our work falls within the broader context of normative multia-

gent systems (for example, [4]). Our use of constitutive rules to

means counts as is decidedly narrow in that a message only counts

Figure 5: Program analysis graph for agents in Table 8



Table 9: Condition coverage: case of adequate meaning
customer (c)

Cus19 = Offer means C(m, c,pay , goods ∨ refund)
Cus20 = GoodsShip means refund

merchant (m)

Mer18 = Offer means C(m, c,pay , goods)
Mer19 = GoodsShip means goods

Figure 6: Program analysis graph for agents in Table 9

as meaning something for a particular agent, and not in the context

of the institution the agent acts in. In this work, we assume that

the agents act in an institution, but may have differing views on the

creation of institutional facts. Such differences in views are the ba-

sis of failure of interoperability. In future work, we will broaden

the formalization to include institutions.

Winikoff [16] studies the distributed enactment of a commit-

ment protocol amongst agents. Commitments are mapped to BDI

plans, and all possible plans are checked to see if they allow mak-

ing progress towards desirable goal states. This enables designers

to specify commitment protocols and not have to worry about low-

level messaging details, which is highly desirable. Since commit-

ments are already aligned in a commitment protocol, there is no

need to check commitment-level interoperability between the dis-

tributed commitment machines, which is the question we address

in this work.

We will extend our algorithm to handle additional commitment

operations such as delegate, cancel, assign, and release. Doing so

will enable modeling general multiparty interactions. Addressing

regulative interoperability in more depth is also an important direc-

tion.

5. REFERENCES
[1] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello,

M. Montali, and P. Torroni. Web service contracting:

Specification and reasoning with SCIFF. In Proceedings of

the 4th European Semantic Web Conference, pages 68–83,

2007.

[2] M. Alberti, D. Daolio, P. Torroni, M. Gavanelli, E. Lamma,

and P. Mello. Specification and verification of agent

interaction protocols in a logic-based system. In Proceedings

of the 19th ACM Symposium on Applied Computing, pages

72–78, 2004.

[3] M. Baldoni, C. Baroglio, A. Martelli, and V. Patti.

Verification of protocol conformance and agent

interoperability. In 6th International Workshop on

Computational Logic in Multi-Agent Systems (CLIMA 2005),

volume 3900 of LNCS, pages 265–283. Springer, 2006.

[4] G. Boella and L. W. N. van der Torre. Regulative and

constitutive norms in normative multiagent systems. In

Principles of Knowledge Representation and Reasoning:

Proceedings of the Ninth International Conference (KR),

pages 255–266. AAAI Press, 2004.

[5] A. K. Chopra and M. P. Singh. Contextualizing commitment

protocols. In Proceedings of the 5th International Joint

Conference on Autonomous Agents and Multiagent Systems,

pages 1345–1352, 2006.

[6] N. Desai, A. K. Chopra, M. Arrott, B. Specht, and M. P.

Singh. Engineering foreign exchange processes via

commitment protocols. In Proceedings of the 4th IEEE

International Conference on Services Computing (SCC),

pages 514–521, Los Alamitos, 2007. IEEE Computer

Society Press.

[7] N. Desai, A. K. Chopra, and M. P. Singh. Representing and

reasoning about commitments in business processes. In

Proceedings of the 22nd Conference on Artificial Intelligence

(AAAI), pages 1328–1333, Menlo Park, July 2007. AAAI

Press.

[8] U. Endriss, N. Maudet, F. Sadri, and F. Toni. Protocol

conformance for logic-based agents. In Proceedings of the

International Joint Conference on Artificial Intelligence

(IJCAI), pages 679–684, 2003.

[9] C. Fournet, C. A. R. Hoare, S. K. Rajamani, and J. Rehof.

Stuck-free conformance. In Proceedings of the 16th

International Conference on Computer Aided Verification

(CAV), volume 3114 of LNCS, pages 242–254. Springer,

2004.

[10] E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, and

H. Turner. Nonmonotonic causal theories. Artificial

Intelligence, 153(1-2):49–104, 2004.

[11] G. Hohpe and B. Woolf. Enterprise Integration Patterns:

Designing, Building, and Deploying Messaging Solutions.

Signature Series. Addison-Wesley, Boston, 2004.

[12] D. L. Parnas. Information distribution aspects of design

methodology. In Proceedings of the International Federation

for Information Processing Congress, volume TA-3, pages

26–30, Amsterdam, 1971. North Holland.

[13] J. R. Searle. The Construction of Social Reality. Free Press,

New York, 1995.

[14] M. P. Singh. An ontology for commitments in multiagent

systems: Toward a unification of normative concepts.

Artificial Intelligence and Law, 7:97–113, 1999.

[15] M. Venkatraman and M. P. Singh. Verifying compliance with

commitment protocols: Enabling open Web-based

multiagent systems. Autonomous Agents and Multi-Agent

Systems, 2(3):217–236, Sept. 1999.

[16] M. Winikoff. Implementing commitment-based interaction.

In Proceedings of the 6th International Joint Conference on

Autonomous Agents and MultiAgent Systems (AAMAS),

pages 868–875, Columbia, SC, May 2007. International

Foundation for Autonomous Agents and MultiAgent

Systems.

[17] WS-CDL. Web services choreography description language

version 1.0, Nov. 2005. www.w3.org/TR/ws-cdl-10/.

[18] D. M. Yellin and R. E. Strom. Protocol specifications and

component adaptors. ACM Transactions on Programming

Languages and Systems, 19(2):292–333, 1997.


