
Rese aRch Fe aTURe

computer 46 Published by the IEEE Computer Society 0018-9162/09/$26.00 © 2009 IEEE

Existing service-oriented architectures are formulated in terms of low-
level abstractions far removed from business services. In a new SOA,
the components are business services and the connectors are pat-
terns, modeled as commitments, that support key elements of service
engagements.

T
he vision of service-oriented computing (SOC)
promises the creation of a dynamic Web of value.
According to this vision, anyone desiring to offer
something of value can create and deploy a corre-
sponding service; anyone wishing to benefit from

that value can simply select one or more services and com-
pose them into a desired application—or another service.

Current service-oriented architectures (SOAs) purport
to support the SOC vision, but what they realize is fun-
damentally more limited than the vision. The SOC vision
implies that services are business services. However, cur-
rent SOAs interpret services narrowly—as surrogates for
computational objects. Whereas business services are
engaged (often involving subtle business considerations),
objects are invoked (with business considerations hidden
within computational artifacts). More importantly, busi-
ness services are usually autonomous entities that come
together in a service engagement.

Consider the familiar purchase scenario as modeled
in leading SOA approaches. Purchasing, say, books is a
business service that combines individual services such as
placing an order, paying, and shipping. Different organiza-
tions could provide these services.

 Munindar P. Singh, North Carolina State University

 Amit K. Chopra, Università degli Studi di Trento, Italy

 Nirmit Desai, IBM India Research Labs

Business Process Modeling Notation (BPMN; http://
bpmn.org) and the Business Process Execution Language
(BPEL; http://docs.oasis-open.org/wsbpel/2.0) represent
composed services as processes specified via control
and data flows over tasks (the differences between BPMN
and BPEL are syntactic; http://bpmn.org/Documents/
Mapping%20BPMN%20to%20BPEL%20Example.pdf). For
example, BPMN would model a purchase as three tasks—
ordering, paying, shipping—where control and data (book
identifier and price) flow from ordering to both paying
and shipping.

The Choreography Description Language (WS-CDL;
www.w3.org/TR/ws-cdl-10), another leading SOA ap-
proach, specifies how services exchange messages.
Unlike procedure calls, messaging decouples the par-
ties involved and is thus better suited for distributed
systems. WS-CDL would specify how the ordering service
sends messages to the paying and shipping services,
which perform their work upon receipt of such mes-
sages. Declarative approaches for constraining task or
message order and occurrence improve modularity and
inspectability1,2 but continue to emphasize control and
data flow.

Commitment-Based
Service-Oriented
Architecture

Figure 1. Commitment-based SOA patterns. Transactional
patterns refer to the dealings among two or more participants,
structural patterns refer to how a participant is organized, and
contextual patterns refer to the organizational context in which
the service engagement takes place.

Marketplace rules

Partner organization Partner organization

Government regulations—for example,
Uniform Commercial Code (UCC)

Business transaction

Contextual
patterns

Structural
patterns

Structural
patterns

Transactional
patterns

Commitments and Csoa beneFits
In contrast to existing approaches, commitment-based

SOA (CSOA) gives primacy to service engagements’ business
meanings, which it captures through participants’ commit-
ments to one another. CSOA constrains tasks or messages
only when doing so affects the business meaning. Com-
putationally, it represents each participant as an agent;
interacting agents carry out a service engagement by creat-
ing and manipulating commitments to one another.

Commitments

A commitment relates three parties: a debtor who is
committed to a creditor, typically within the scope of an
organizational context. The context may be an institu-
tion—for example, a marketplace such as eBay or a legal
jurisdiction such as California—in which the interaction
occurs. Institution members who fail to discharge their
commitments risk sanction. The Uniform Commercial
Code (UCC; www.law.cornell.edu/ucc), which applies in
many US jurisdictions, dictates conditions such as when a
customer need not pay for purchased goods—for instance,
if the goods arrive damaged and the customer returns
them immediately. In general, the context is crucial in
handling exceptions, which are rife in business settings.
For modeling purposes, CSOA treats the context as an
agent in its own right.

Importantly, commitments can be manipulated, which
supports flexibility. A debtor may create a commitment,
thus activating it, or discharge it, thus satisfying it. Given
a commitment, its creditor may assign it to a new creditor
and its debtor may delegate it to a new debtor. A debtor may
cancel a commitment, whereas a creditor may release the
debtor from the commitment.

Csoa benefits

CSOA thus offers the following specific benefits.
enactment and compliance. Service enactments can

be judged correct as long as the parties don’t violate their
commitments. This notion of correctness enhances flex-
ibility by expanding the operational choices for each
party.3 For example, if the customer substitutes a new
way to make a payment or elects to pay first, no harm
is done because the behavior is correct at the business
level. The seller can employ a new shipper; the buyer
can return damaged goods for credit; and so on. Con-
versely, a customer would be in violation if he keeps
the goods but fails to pay. Thus, commitments support
business-level compliance without dictating specific
operationalizations:4 Without business meaning, exer-
cising such flexibility could cause noncompliance.

specification and composition. Commitment-based
specifications explicitly reflect business requirements,
which are natural for stakeholders. For example, upon

placing an order, the customer becomes conditionally
committed to the merchant to pay for the goods if they
are delivered. The delivery of the goods unconditionally
commits the customer to paying for them. When the
customer pays, this commitment to pay is discharged.
Commitments provide clear conceptual boundaries at
which to compose service engagements. For example,
we can specify an alternative service engagement that
employs independent delivery and payment services.
Without business meaning, there would be no basis for
establishing that this alternative engagement was valid.

Csoa Patterns

As Figure 1 shows, CSOA is characterized by a family
of reusable patterns that form the elements of a service
engagement: Transactional patterns refer to the dealings
among two or more participants; structural patterns refer
to how a participant, including subcontractors, is orga-
nized; and contextual patterns refer to the organizational
context in which the engagement takes place.

Key CSOA patterns are induced from existing ap-
proaches, including UCC, RosettaNet (www.rosettanet.
org), the Transaction Workflow Innovation Standards
Team (TWIST; www.twiststandards.org), the MIT Process
Handbook (MITPH; http://ccs.mit.edu/ph), and extended
transaction models.5 These approaches are not commit-
ment based, but we analyze them via commitments and
include the induced patterns within CSOA.

Commitment life cycle

CSOA pattern implementations are expressed as state-
charts6 as shown in Figure 2. Labeled rectangles denote
states. A state that refines another state is contained within

47NoVemBer 2009

it. For example, null and active (containing conditional
and base) are states. An arrow denotes a transition wherein
the labeled event, if any, occurs. A transition takes the
system from one state to the next. When the source state
has substates, the transition occurs from each of them—for
example, discharge.

Figure 2 captures a commitment’s life cycle: null means
it does not exist, active means it is fully in force, satis-
fied means it has been discharged, and violated means it
cannot be discharged. A commitment in base may become
violated; a commitment in conditional cannot directly
become violated but transitions to null upon expiration.
For example, a customer may offer to buy some goods
by creating the commitment “If you ship I will pay.” The
commitment may expire or the customer may pay. If the
merchant delivers, that would detach the commitment,
unconditionally committing the customer to pay.

Each commitment has an antecedent and a consequent.
The expression C (debtor, creditor, context, antecedent,
consequent) means that the debtor commits to the credi-
tor in the context that if the antecedent becomes true,
the debtor would bring about the consequent. When the
antecedent holds, the commitment undergoes a detach,
meaning that the debtor becomes unconditionally com-
mitted to bringing about the consequent. When the
consequent holds, the commitment undergoes a discharge.
Figure 2 shows detach and discharge as transitions. An
active commitment must be in either conditional or base,
and this depends solely on whether its antecedent holds
(base) or not (conditional).

Importantly, an agent explicitly performs create whereas
detach and discharge occur automatically when antecedent
and consequent, respectively, hold; expire occurs implicitly
upon timeout, but an agent may perform cancel explicitly
or it may occur via timeout.

Pattern language

Of the 13 attributes in the classical template for design
patterns,7 the following are relevant for CSOA: classifica-

tion (according to Figure 1), intent, motivation, applicability,
consequences, implementation, and known uses. A common
consequence for CSOA patterns is that the parties involved
be proactive and able to communicate flexibly—this is
why they are modeled as agents.

The implementation, specified via a statechart, in-
corporates the participants and structure. To make the
patterns modular, each statechart includes only the
relevant states and transitions. (In this sense, our stat-
echarts are not individually complete, and rely upon
other patterns to have brought about the states from
which they begin.) The commitment operations corre-
sponding to a transition would be realized via business
actions such as sending purchase orders, delivering
goods, and so on, thereby enacting the corresponding
business scenarios.

transaCtional Patterns

The core of a service engagement is the business trans-
action that it seeks to accomplish. Transactional patterns
describe the corresponding interactions in terms of how
the associated commitments are created and manipulated.
These patterns deal with common transactional primitives
such as initiating a business transaction, formally creating
suitable commitments, satisfying the commitments, and
possibly updating, retrying, or compensating actions in
light of the stated gating conditions. Each transactional
pattern involves the same two participants.

We define the commitment life cycle in Figure 2 as
the transactional pattern Commit, with the following
attributes:

•	 Intent: Expressing an offer.
•	 Applicability: When an offer is made as part of setting

up a service engagement.
•	 Consequences: For progress, the creditor should be

ready to bring about the antecedent.
•	 Known uses: Purchase, MITPH’s Purchase, Rosetta-

Net’s Purchase Order (PIP3A4).

Another important transactional pattern is Compensate,
which has the following attributes:

•	 Intent: Some business action needs to be undone.
•	 Motivation: A customer sends payment, which com-

mits the merchant to sending the goods; later, if the
merchant fails to deliver the goods on time, thus vio-
lating its commitment, it must make amends by, for
example, refunding the payment.

•	 Applicability: Supporting an extended form of trans-
actional rollback to maintain an all-or-none effect
despite exceptions.5

•	 Consequences: Typical usage is when the debtor is
unable to discharge the original commitment.

Rese aRch Fe aTURe

computer 48

null

conditional

satis�ed violated

base

create

detach

expire

discharge cancel

Commitment

active

Figure 2. CSOA patterns are expressed in statecharts like this one,
which captures a commitment’s life cycle.

•	 Implementation: Upon violation of the original
commitment, the transaction requires creating a
compensating commitment.

•	 Known uses: RosettaNet’s Return Product (PIP3C1).

In the same vein, we can define transactional patterns
for real-life cases such as Relieve based on RosettaNet’s
Purchase Order Cancel (PIP3A9) and the MITPH’s Notify,
Update based on MITPH’s Update and RosettaNet’s Pur-
chase Order Change (PIP3A8), and Retry based on MITPH
Rework to retry a failed task.

struCtural Patterns

Service engagements involve subtle relationships among
the parties involved in a transaction. Structural patterns
capture constraints on which party can play which role,
or whether a party can delegate or assign certain commit-
ments to another party. Each of these patterns involves
two or more participants.

The simplest illustration of a structural pattern is a ser-
vice engagement involving an organization with an internal
structure. A participating organization may delegate its
commitments under the engagement to appropriate mem-
bers that could themselves be organizations. For example,
auto insurance companies often delegate their customer
service commitments to a regional branch, which might
further delegate the commitments to a specific agency.

Composite states help describe patterns involving more
than one commitment. For example, in Figure 3, a dotted
vertical line separates Original and Delegated. Thus, if
Original is in pending and Delegated is in active, the
composite state is given by Original being in pending and
Delegated being in active.

The structural pattern Delegate, Retaining Responsibil-
ity, shown in Figure 3a, has the following attributes:

•	 Intent: A debtor delegates its commitment but remains
responsible for its satisfaction.

•	 Motivation: The merchant delegates its commitment to
ship goods to a shipping service but remains commit-
ted to deliver the goods to the customer; discharging
the delegated commitment discharges the original
pending commitment.

•	 Applicability: When the delegatee and creditor don’t
have a strong business relationship.

•	 Consequences: The creditor is safe because the del-
egator remains responsible; this pattern enables and
coheres with Escalate and Withdraw.

•	 Implementation: Original becomes pending and Del-
egated becomes active.

•	 Known uses: When an insurance company delegates a
claimant’s auto repair work to a mechanic, it remains
responsible if the mechanic fails to make adequate
repairs.

A related structural pattern is Escalate (Delegated Com-
mitment), shown in Figure 3b, which has the following
attributes:

•	 Intent: The failure of a delegatee reactivates the origi-
nal commitment.

•	 Motivation: If a shipper fails to deliver the goods, the
merchant is held responsible.

•	 Applicability: When the delegatee does not provide
guaranteed service.

•	 Consequences: The creditor would be the instigator.
•	 Implementation: Delegated goes to null and Origi-
nal goes to active, thus reactivating the original
commitment.

•	 Known uses: A customer who pays with a check
delegates to the bank his commitment to pay the
merchant; if the bank fails to pay—say, because of
insufficient funds—the escalation reactivates the cus-
tomer’s original commitment to pay.

Sometimes the delegation transfers responsibility.
This corresponds to a variation of the delegation pattern
wherein the original commitment simply ends instead of
becoming pending. Its becoming null forecloses the pos-
sibility of escalation.

49NoVemBer 2009

(a)

(b)

discharge

delegate

delegate

active

active

active

active

pending

pending

null

satis�ed satis�ed

Original DelegatedDebtor is
delegator

Debtor is
delegatee

Original DelegatedDebtor is
delegator

Debtor is
delegatee

escalate

Figure 3. Structural patterns: (a) Delegate, Retaining
Responsibility; (b) Escalate (Delegated Commitment). A solid bar
with incoming and outgoing arrows is a synchronization primitive:
When all events corresponding to the incoming arrows occur, the
transitions corresponding to each outgoing arrow also execute.

The structural pattern Transfer Responsibility has the
following attributes:

•	 Intent: A debtor nullifies its original commitment by
delegating it to another party and is no longer con-
cerned with the delegated commitment’s satisfaction
or violation.

•	 Motivation: If the customer delegates to his credit card
company the payment to the merchant, the subse-
quent interactions for the payment occur between
the company and the merchant; the customer need
no longer be involved.

•	 Applicability: When the delegatee and creditor have a
strong business relationship.

•	 Consequences: The creditor must accept the delegation
and perhaps seek proof that the delegatee accepts it;
the delegation may be risky for the creditor.

•	 Implementation: Original becomes null and Delegated
becomes active.

•	 Known uses: When an airline “endorses” a ticket over
to another airline based on a passenger’s request, the
second airline becomes responsible for transporting
the ticketed passenger.

In addition, the structural pattern Withdraw Delegation
applies when a delegated commitment is not yet satisfied.
It nullifies the delegated commitment and restores the
original commitment to active. An example is when an air-
line with an overbooked flight delegates its commitment to
transport a passenger to another airline. If the second air-
line’s flight is excessively delayed due to weather, the first

airline may reactivate its commit-
ment to transport the passenger.

Yet another structural pattern is
Division of Labor, where a service
subcontracts a task to two or more
other services. This pattern has nu-
merous uses, including RosettaNet’s
Distribute Work (PIP7B1).

Contextual Patterns

A service engagement’s business
context dictates the rules of en-
counter to which it is subject. For
example, eBay users are subject
to the online marketplace’s terms
and conditions, such as that they
may not attempt to place false bids.
More pertinently, the rules for dis-
pute resolution are also contextual
in nature. Each of these patterns
involves the three participants—
debtor, creditor, and context—with
the context explicitly acting as a

debtor of a metacommitment whose antecedent and con-
sequent involve commitments. The context has the power
to create and manipulate commitments among the agents
in its scope. Metacommitments provide guarantees to the
participants.

In contextual patterns, the context agent itself features
as a debtor or creditor. Often in such patterns the context
commits to another party such that if some conditions pre-
vail it will cause a specified commitment to transition to a
suitable state.

Figure 4 shows the contextual pattern Revert Offer,
which has the following attributes:

•	 Intent: To enable a party to back out of a transaction.
•	 Motivation: A customer commits to paying for some

goods, which the merchant delivers. If the customer
returns the goods before paying, the merchant re-
leases him from paying; if the customer has paid, the
merchant refunds the payment.

•	 Applicability: When an agency regulates the service
engagement.

•	 Consequences: The context has the means to deter-
mine that the requisite conditions hold; it has power
over the debtor such as removing it from a market-
place or voiding its license to operate.

•	 Implementation: An undo(antecedent) undoes the of-
fer’s antecedent. If Progress is in base, the system
releases the debtor—Progress becomes null—and
no further action is needed; if Progress is satisfied,
undo(antecedent) cause the creation of Revert.

•	 Known uses: UCC.

Rese aRch Fe aTURe

computer 50

satis�ed

satis�ed

base

base

base

discharge

null

Context:
C (context, debtor,
context, undo (antecedent),
released (Progress) or
active (revert))

Revert:
C (creditor, debtor, context,
true, undo (consequent))

Progress:
C (debtor, creditor, context,
antecedent, consequent)

undo (antecedent)

Figure 4. Contextual pattern Revert Offer. To understand this pattern, imagine a
commitment Progress whose debtor is a customer who has received some goods
(the antecedent) from a merchant and is therefore committed to paying for them (the
consequent). The context is an agency that regulates this service engagement; it commits
to the debtor that if the debtor undoes the antecedent (returns the goods) and hasn’t
already discharged Progress, it is released from Progress (need not pay). Conversely, if the
debtor has discharged Progress, then the context activates a commitment Revert that
reverses the debtor and creditor roles of Progress: Its debtor is the original creditor who
must now undo the original consequent (return the payment).

An alternative contextual
pattern is Penalize, which seeks
to punish a party that violates
a commitment. For example,
if the debtor fails to pay $10 by
Monday, the new commitment
could be to pay $11 by Tuesday.
If the original means commit-
ment delivering the goods, the
penalty could mean refunding
the deposit and an additional
10 percent—this can be imple-
mented by making a penalty
commitment active.

aPPlying the
Patterns

Designing a service engage-
ment using the CSOA patterns
requires three steps:

•	 identify the commitments regarding the services
involved,

•	 apply selected patterns to appropriate commitments,
and

•	 map the operations occurring in the patterns to the
engagement’s business actions.

Let’s revisit our purchase example. We begin with the
main partner roles, buyer and seller, and their commit-
ments: The buyer offers to pay if the seller ships him the
goods; the seller offers to ship the goods if the buyer pays.
Next, we introduce a bank and a shipper: The buyer dele-
gates the payment commitment to the bank, and the seller
delegates the shipping commitment to the shipper; the
two apply different structural patterns. Last, we apply a
contextual pattern enabling refunds upon return.

Figure 5 shows the resulting model, which captures the
essential business meaning of the service agreement. Note
that additional business requirements are accommodated
simply by applying additional patterns, while the existing
patterns remain as they are. In some cases, a service en-
gagement may require additional operational constraints,
such as that payments should precede shipping.

In contrast, traditional approaches such as BPMN are
based solely on operational constraints. The control and
data flows to capture the meaning of Figure 5 could be
quite complex. Not only do the flows hide the business
meaning, they also complicate accommodating additional
business requirements: Even a simple change can lead to
many additional intricate changes in the existing flows.
Further, traditional models lack a formal representation
of business meaning, instead relegating meaning to doc-
umentation. Modelers need the operationalizations, of

course, but should be concerned with business meanings,
not low-level operationalizations.

To instantiate an engagement, business partners would
adopt the specified roles and perform the services and
other business actions specified. The patterns refer to
several explicit actions, including create, delegate, assign,
release, and update. Each such action is governed by the
corresponding partner’s policy; at enactment, such policies
determine what computations occur. Our prototype tools
map commitment patterns to computations3 and produce
role skeletons, which can be used to implement agents that
can participate in an engagement.4

CSOA patterns describe abstract possibilities. How-
ever, applying the patterns involves matching them to
the concrete business realities of a service engagement.
For example, a transactional pattern allowing cancel-
lation would make sense only if a commitment can be
reasonably canceled. Further, it may not be possible to
delegate a commitment if the intended delegatee would
not accept the delegation. Finally, the context may not be
able to ensure that an agent will discharge any commit-
ments created by the context. In general, CSOA patterns
work best when there is a suitable prior business or legal
relationship among the parties involved. The patterns can
guide the specification of the appropriate relationships or
constraints to realize desired service engagements.

arChiteCtural styles

An architectural style specifies a family of configu-
rations of components and connectors subject to stated
constraints.8

In these terms, existing SOAs are an architectural style
in which the major components are service provider and
consumer, and an invocation protocol serves as connec-

51NoVemBer 2009

Bank

Buyer

Shipper

Marketplace

Seller

Transfer
responsibility

Retain
responsibility

Revert
o�er

pay,
ship

ship,
pay

delegatee

delegator

creditor
debtor

debtor

creditor

delegatee

delegator

context

reverted commitment
delegated commitment

delegated commitment

Figure 5. CSOA model of a purchase service engagement. Additional business requirements
are accommodated simply by applying additional patterns, while the existing patterns remain
as they are.

Rese aRch Fe aTURe

computer 52

tor. (For simplicity, we ignore registries as well as service
publication and discovery.) A practical SOA includes spe-
cialized components and connectors, such as for resource
management and other enterprise functions (identity, bill-
ing, and such), and imposes additional constraints so that
appropriate components interoperate with each other.

Boualem Benatallah and colleagues proposed patterns
called business-level interfaces and protocols.9 However, like
WS-CDL and BPEL, their patterns ignore business mean-
ings and thereby lead to rigid interoperation. For example,
if a message interface specifies that a customer should
make a payment subsequent to the receipt of goods, then
a service realizing such an interface must behave accord-
ingly. It ought not to take any liberties such as reversing
the messages’ order, interposing other messages, or intro-
ducing another party such as a payment agency. However,
real-life service engagements typically presume such flex-
ibility—thus traditional approaches subvert the SOC vision
by creating avoidable friction in the web of value.

The motivation for considering business meaning is to
improve the naturalness, maintainability, and reusability
of service specifications and the flexibility of enactments.
As Table 1, which contrasts commitment-based SOA with
existing SOAs,8 shows, CSOA is not a unique style but has
many flavors depending on the patterns selected. Such
flexibility is necessary to support the nuances of service
engagements. The primary constraint on a sound imple-
mentation of CSOA is that at runtime all commitments
eventually become null or satisfied.

The reader may reasonably wonder why, given these
differences, CSOA is still a SOA. The answer is twofold.
First, CSOA is centered on services and is, arguably, more
true to the SOC vision than existing SOAs. Second, CSOA
doesn’t seek to replace existing SOAs and their implemen-
tations. Specifically, the service engagements modeled in
CSOA could translate into business processes expressed
in BPMN.

A model-driven architecture (MDA; www.omg.org/mda)
provides a useful way to think of the relationship between
CSOA and existing SOAs. In MDA terms, CSOA is a com-
putation-independent model whereas existing SOAs are
platform-independent models. In other words, the move to
CSOA would represent the step—often repeated in com-
puter science—of moving from lower to higher abstractions.
Because commitments are computation independent, yet
lend themselves to rigorous operationalization, CSOA can
help bridge the well-recognized gap between business and
IT.10 Others have begun to recognize the importance of
high-level abstractions, but their work still employs opera-
tional abstractions (www.ip-super.org).

Santhosh Kumaran11 presented four abstraction layers
for enterprise modeling: strategy (business considerations),
operation (business functions conceptualized via tasks
and artifacts), execution (analogous to existing SOAs),
and implementation. CSOA would help extend Kumaran’s
operation layer to multienterprise service engagements,
and commitment patterns would provide richer repre-
sentations that facilitate modeling enterprise operations
perspicuously and reusably.

B
ecause of the subtleties of real-life service
engagements, no small set of patterns would be
provably complete. This is analogous to object-
oriented design patterns, which are numerous
and varied even though the underlying pro-

gramming languages need only a few primitives.
However, despite their subtlety, service engagements

for the most part exhibit regularities in how their transac-
tions, structures, and contexts are applied. Consequently,
a reasonably small set of patterns can help describe a large
number of practical engagements. Thus, our main con-
tributions are introducing a SOA that gives primacy to
business interactions and showing how to formalize the
concomitant patterns that provide an expressive vocabu-
lary for modeling service engagements.

Typical service engagement models would include sev-
eral CSOA patterns applied in routine ways. Thus, aggregate
service patterns, which capture best practices in designing
service engagement, can potentially be abstracted and ap-
plied in designing new engagements using CSOA.

references
 1. M.P. Singh, “Distributed Enactment of Multiagent Work-

flows: Temporal Logic for Service Composition,” Proc. 2nd
Int’l Joint Conf. Autonomous Agents and Multiagent Systems
(AAMAS 03), ACM Press, 2003, pp. 907-914.

 2. W.M.P. van der Aalst and M. Pesic, “DecSerFlow: Towards
a Truly Declarative Service Flow Language,” Proc. 3rd Int’l
Workshop Web Services and Formal Methods (WS-FM 06),
LNCS 4184, Springer, 2006, pp. 1-23.

Table 1. architectural styles of commitment-based
sOa versus existing sOas.

elements existing soas
Commitment-based

soa

Components Service provider and
consumer

Business service provider and
consumer agents

Connectors Operations and
message patterns
(in, out, in-out,
out-in)

Commitment patterns

Invariants Match operation
and message
signatures

Debtor ≠ creditor; delegator ≠
delegatee

Model Control and data
flow

Operations on commitments

 3. A.K. Chopra and M.P. Singh, “Contextualizing Commit-
ment Protocols,” Proc. 5th Int’l Joint Conf. Autonomous
Agents and Multiagent Systems (AAMAS 06), ACM Press,
2006, pp. 1345-1352.

 4. N. Desai et al., “Interaction Protocols as Design Abstrac-
tions for Business Processes,” IEEE Trans. Software Eng.,
Dec. 2005, pp. 1015-1027.

 5. A.K. Elmagarmid, ed., Database Transaction Models for
Advanced Applications, Morgan Kaufmann, 1992.

 6. D. Harel, “Statecharts: A Visual Formalism for Complex
Systems,” Science of Computer Programming, June 1987,
pp. 231-274.

 7. E. Gamma et al., Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, 1995.

 8. M. Shaw and D. Garlan, Software Architecture: Perspectives
on an Emerging Discipline, Prentice Hall, 1996.

 9. B. Benatallah et al., “Service Mosaic: A Model-Driven
Framework for Web Services Life-Cycle Management,”
IEEE Internet Computing, July 2006, pp. 55-63.

 10. H. Smith and P. Fingar, Business Process Management: The
Third Wave, Meghan-Kiffer Press, 2002.

 11. S. Kumaran, “Model-Driven Enterprise,” Proc. Global Enter-
prise Application Integration Summit (GIS 04), Integration
Consortium, 2004, pp. 166-180.

Munindar P. Singh is a professor in the Department of
Computer Science at North Carolina State University. His
research interests include multiagent systems and service-
oriented computing. Singh received a PhD in computer
science from the University of Texas at Austin. He is a
Fellow of the IEEE. Contact him at singh@ncsu.edu.

Amit K. Chopra is a postdoctoral fellow at the Università
degli Studi di Trento, Italy. His research interests include
service-oriented architectures and multiagent systems.
Chopra received a PhD in computer science from North
Carolina State University. Contact him at akchopra.mail@
gmail.com.

Nirmit Desai is a research staff member at IBM India
Research Labs, Bangalore. His research interests include
cross-organizational business processes. Desai received a
PhD in computer science from North Carolina State Univer-
sity. Contact him at nirmitv@gmail.com.

53NoVemBer 2009

