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ABSTRACT
Norms provide a way to model the social architecture of a so-
ciotechnical system (STS) and are thus crucial for understanding
how such a system supports secure collaboration between princi-
pals, that is, autonomous parties such as humans and organizations.
Accordingly, an important challenge is to compute the state of a
norm instance at runtime in a sociotechnical system.

Custard addresses this challenge by providing a relational syn-
tax for schemas of important norm types along with their canonical
lifecycles and providing a mapping from each schema to queries
that compute instances of the schema in different lifecycle stages.
In essence, Custard supports a norm-based abstraction layer over
underlying information stores such as databases and event logs.
Specifically, it supports deadlines; complex events, including those
based on aggregation; and norms that reference other norms.

We prove important correctness properties for Custard, includ-
ing stability (once an event has occurred, it has occurred forever)
and safety (a query returns a finite set of tuples). Our compiler gen-
erates SQL queries from Custard specifications. Writing out such
SQL queries by hand is tedious and error-prone even for simple
norms, thus demonstrating Custard’s practical benefits.

1. INTRODUCTION
A sociotechnical system (STS) involves social elements or prin-

cipals, such as autonomous humans or organizations, and technical
elements such as IT resources. We understand an agent as a soft-
ware entity that acts on behalf of a principal in an STS.

Norms provide a standard of correctness for interactions among
the principals, thereby capturing the social architecture of an STS
[37]. Specifically, a norm captures how the principals ought to in-
teract: it provides a social-level, yet computational, encoding of an
integrity or security (for simplicity, including privacy) requirement
regarding their collaboration. An example norm would be that a
physician is prohibited by the hospital from disclosing identifying
information about a patient. Such a norm helps characterize secu-
rity at the social level independently of the implementation. There-
fore, representing norms is crucial for an agent to determine how to
act; and how to evaluate compliance and accountability of others.

We distinguish norm schemas from instances. A norm schema
or specification describes a norm in general terms, such as a pro-
hibition against disclosing information about a patient. A norm
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instance would specify the specific patient whose information has
been received. Some instances of a norm may be violated and
some satisfied. We consider important norm types from the liter-
ature, namely, commitment, authorization, prohibition, and power
[4, 22, 26, 36]. Each of these norm types involves a canonical life-
cycle [36], discussed in Figure 3, in which a norm instance may be
created, expired, detached, discharged, or violated.

Norms as institutional facts are elements of social reality in the
sense of Searle [31] and as such are realized through and reflected
in brute facts [3], that is, low-level information. In our setting, brute
facts are recorded in databases and event logs; often, these events
correspond to messages sent and received. However, Searle’s claims
about mental representation are inapplicable here [7, 16, 30, 32].

An important challenge in realizing norms, therefore, is how to
compute norm instances from brute facts. To this end, we treat (1)
norms on par with information schemas and (2) database relations
as stores of norm instances in various lifecycle stages. For example,
an information store may indicate which instances of a prohibition
are expired and which are violated. In general, we would like to
specify nested norms—for example, a commitment to inform pa-
tients of the violation of a prohibition on disclosing their private
information. Figure 1 illustrates our approach in conceptual terms.

Norm-Aware Agent

Norm Store
(virtualized as Custard queries)

Traditional Information Store
(event log, relational database)

Figure 1: Custard real-
izes norms over information
stores. An agent can query
a virtual norm store for norm
instances; Custard computes
and retrieves such instances
based on events in the under-
lying information store.

Our contributions are as below. First, we propose Custard, a lan-
guage for specifying information-based norms, including commit-
ments, authorizations, prohibitions, and powers. Custard is event-
based: important stages in the lifecycle of a norm instance, specifi-
cally, its creation, detachment, expiration, discharge, and violation,
are event instances and inferred from event instances recorded in
the underlying information store. Custard supports complex event
expressions involving logic operators, aggregation operators, rel-
ative time intervals within which events should occur, and nested
norms. We give the semantics of Custard via queries in the tuple
relational calculus (TRC) [15]. Effectively, for every norm speci-
fied in Custard, we define a query (expression) for each stage in the
norm’s canonical lifecycle, which yields all instances of the norm
in that stage. The benefit of using the TRC is that it maps well to
underlying representations and paves the way for easy implemen-
tation in widely used query languages such as SQL.



Second, we formulate and prove two desirable properties for
Custard. Stability is monotonicity over time: once an event in-
stance has occurred, it stays occurred forever. For example, a pro-
hibition instance violated at one moment remains violated at all
future moments. Ensuring stability requires a correct treatment of
time. Safety captures the idea that queries map to finite sets.

Third, because of Custard’s support for specifying the nonoccur-
rence of an event, aggregation, and expressive time intervals, the
TRC queries for a norm turn out to be nontrivial. As Section 4
shows, even a simple Custard specification yields SQL queries that
are complex and an order of magnitude longer. Writing such queries
by hand would be highly tedious, time-consuming, and error-prone.
To demonstrate the practical benefits of Custard, we implemented
a compiler that generates SQL queries from Custard specifications.

2. SAMPLING CUSTARD IN PRIVACY
We demonstrate the effectiveness of Custard by modeling a real-

world privacy consent scenario being considered by Health Level
Seven (HL7) [18], which is a leading standardization body for health
information systems. A patient signs up with a cloud-based health
vault provider to store and manage access to its private health infor-
mation (PHI). This information may include records of the patient’s
vital signs such as blood pressure and blood sugar, for example, as
monitored by wearable devices and uploaded to the vault. The pa-
tient may authorize third parties, such as a health coach, to receive
the PHI from the vault by indicating consent. A patient may revoke
an authorization. The overseeing jurisdictional authority empow-
ers the patient to grant or revoke such authorizations. In general,
third parties authorized by the patient to access information are pro-
hibited from forwarding the information they receive to yet other
parties. Parties may be sanctioned for violating this prohibition.

Listing 1 shows an information schema for this healthcare set-
ting. It describes a number of event specifications as relations, each
annotated with its key and timestamp attributes. No two instances
of an event (specification) may have identical bindings for the key;
for every instance, the timestamp attribute records the time of oc-
currence of the instance. The key of one event may occur in an-
other. For example, accID occurs in Allowed. Such foreign keys
enable correlation: every Allowed instance can be correlated by a
Signedup instance via the binding for accID in the former. In gen-
eral, correlations may be effected via chaining of foreign keys. For
example, a Revoked instance is correlated with an Allowed instance
by discID, and, therefore, with Signedup via accID.

Notice that there can be at most one SentCred instance for an
Allowed instance as their keys are identical. For every disclosure
to a third party, there can be zero or more requests for data from
that party to the vault provider (ReqData). For every request, there
can be at most one access (Accessed). A third party may forward
data that it has accessed via a request to other parties zero or more
times (Forwarded). Every Forwarded instance is correlated with
a Signedup instance via a chain of correlations (forID to reqID to
discID to accID).

We exclude methodologies for designing the appropriate infor-
mation schemas from our present scope and expect such method-
ologies can build on known data and ontology modeling techniques.

Listing 1: Example schema for the healthcare scenario.
schema

/ / P a t i e n t pID r e g i s t e r s i n j u r i s d i c t i o n j ID
R e g i s t e r e d ( pID , jID , res ID , c o u n c i l )
key r e s I D time t

/ / pID s i g n s up wi th h e a l t h v a u l t p r o v i d e r hID
Signedup ( pID , hID , accID )

key accID time t

/ / pID a l l o w s d i s c l o s u r e t o t h i r d p a r t y tp ID
Allowed ( pID , hID , d i sc ID , accID , tpID , i n f o )
key d i s c I D time t

/ / pID r e v o k e s d i s c l o s u r e f o r tp ID
Revoked ( pID , hID , d i s c I D )
key d i s c I D time t

/ / hID s e n d s c r e d s t o tp ID i f d i s c l o s u r e a l l o w e d
Sen tCred ( hID , tpID , d i sc ID , c r e d e n t i a l s )
key d i s c I D time t

/ / tp ID r e q u e s t s p a t i e n t d a t a from hID
ReqData ( tpID , hID , reqID , d i sc ID , r e q u e s t )
key reqID time t

/ / tp ID g e t s a c c e s s t o t h e r e q u e s t e d d a t a
Accessed ( tpID , hID , reqID , r e s p o n s e )
key reqID time t

/ / tp ID f o r w a r d s d a t a t o p a r t y o t h e r I D
Forwarded ( tpID , o the r ID , for ID , reqID , r e s p o n s e )
key f o r I D time t

/ / hID s a n c t i o n s tp ID f o r m i s h a n d l i n g i n f o r m a t i o n
S a n c t i o n ( hID , tpID , d i sc ID , d e t a i l s )
key d i s c I D time t

We build on recent work that understands norm types such as
commitment, authorization, prohibition, and power as directed so-
cial expectations between agents [36,37]. Figure 2 shows important
elements of our conceptual model.

Agent Norm
(Instance) Antecedent

Consequent

Commit Authorize Prohibit Empower

expectee

expecter

Figure 2: Simplified metamodel for norms (based on [36]).

In Figure 2, each (created) norm instance is a conditional ex-
pectation, whose antecedent states the condition under which the
force of the norm, given by the consequent, applies. The expec-
tor and expectee represent the privileged and liable parties, respec-
tively. Crucially, this formulation yields a basis for accountability
in STSs: the expectee is accountable to the expector for the satis-
faction of the expectation. Conversely, the expector has standing
and may legitimately demand that the expectee give an account of
the status of the expectation. As Example 1 illustrates, doing so
helps understand accountability independently of implementation.

EXAMPLE 1. A commitment from a hospital to encrypt sensi-
tive private health information (PHI) represents the patient’s expec-
tation that the hospital will do just that—and that the patient has a
basis for demanding an account from the hospital about whether
his or her PHI has been encrypted. A failure to encrypt PHI would
be a violation, for which the hospital may be sanctioned.

Viewing norms as expectations leads to interesting questions that
have not received adequate attention in the literature. For exam-
ple, when is an authorization violated? And, who is accountable to
whom for the violation? We now discuss possible lifecycles for the
norm types, as in Figure 3, and conventions about accountability.
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Figure 3: Lifecycles for the various norms. For each norm type, each box refers to a lifecycle event (not a state). The transitions refer to
events as well—the occurrence or the impossibility of occurrence of the antecedent and consequent events.

2.1 Commitment
Our notion of commitment corresponds to the standard one in the

literature [33]: the debtor commits to the creditor to bring about
a condition (the consequent) if some condition (the antecedent)
holds. We give an example from the foregoing scenario.

EXAMPLE 2. When a patient signs up, the health vault provider
commits to the patient that if the patient grants access to a third
party, the vault provider will authorize that party within a day.

Listing 2 shows a commitment listing in Custard. Disclosure-
Com is a name for the schema. The commitment is from hID to
pID; it is created upon the occurrence of a Signedup instance; de-
tached upon the occurrence of a correlated Allowed disclosure in-
stance, provided that disclosure has not been Revoked (this allows
modeling situations where patients may change their minds); it is
discharged when a correlated instance of DisclosureAuth (an au-
thorization, see Listing 3) is created. The detach and discharge
clauses represent the antecedent and the consequent, respectively.
In an expression of the form E[l, r], [l, r] is a time interval; the
expression says that E should occur within this interval. To reduce
clutter, we often omit l and r when they are 0 and∞, respectively.

Listing 2: Captures Example 2.
commitment Disc losureCom hID to pID
create Signedup
detach Allowed except Revoked
discharge created D i s c l o s u r e A u t h [ 0 , Allowed +1]

Figure 3a shows the lifecycle of a created commitment instance.
The instance is violated if the antecedent occurs but the conse-
quent cannot; it expires if the antecedent cannot occur; and it is
discharged if the consequent occurs. For simplicity, a commitment
instance may be both expired and discharged: when its antecedent
can no longer occur (as after a time out) but the consequent occurs.

2.2 Authorization
An agent authorizes another to bring about its consequent pro-

vided its antecedent holds.

EXAMPLE 3. The health vault provider authorizes a party by
sending it credentials assuring it that patient data will be available
for access any time between one and ten days after its request.

Listing 3: An authorization in Custard.
authorization D i s c l o s u r e A u t h tpID by hID
create Sen tCred
detach ReqData
discharge Accessed [ ReqData +1 , ReqData +10]

In authorizations, we treat the authorizing party as the expectee
and the authorized party as the expector. Thus, in Listing 3, the
expector is tpID and the expectee is the vault. Specifically, tpID
expects access to patient information if it has been authorized to
obtain it. This agrees with the intuition that an authorization is
the authorized party’s privilege, not a liability. The authorization
instance would be violated if the patient had authorized disclosure
to a specific party, but the vault provider blocks that party from
accessing the patient’s information.

Although, in principle, an authorization may be violated as above,
we make an architectural assumption and adopt a convention that
the violation of an authorization is impossible [36]. Specifically,
we assume that authorizations are regimented [20] by the agent, for
example, via authentication and access control mechanisms. That
is, access to a patient’s record is controlled via a mechanism that
allows access by all who are authorized. Figure 3b captures the
authorization lifecycle. It makes the violated event unreachable to
capture the doctrine that authorizations cannot be violated.

2.3 Prohibition
An agent prohibits another from bringing about the consequent

if its antecedent has occurred. In contrast with authorizations, we
apply prohibitions to cases where events are either not easily regi-
mented or not desired to be regimented. For example, it is in gen-
eral impossible to regiment a system to make disclosure of con-
fidential information impossible. We capture the undesirability of
such behaviors by placing prohibitions on them. Example 4 demon-
strates a prohibition followed by its formal encoding in Listing 4.

EXAMPLE 4. The health vault provider prohibits any party who
accesses patient information from forwarding that information to
other parties.

Listing 4: A prohibition in Custard.
prohibition D i s c l o s u r e P r o h tpID by hID
create d i s c h a r g e d D i s c l o s u r e A u t h
violate Forwarded

Figure 3c captures the prohibition lifecycle. A prohibition is vi-
olated if the antecedent and the consequent have both occurred. In
a prohibition, the expectee and expector are the prohibited and pro-
hibiting parties, respectively.

2.4 Power
An agent empowers another to bring about certain states of af-

fairs by simply “saying so” provided some conditions hold [5, 19].
We adopt Jones and Sergot’s distinction between power and au-
thorization [20]. In our setting, power is the ability of an agent
to modify norms among other agents whereas authorization is the
ability to access resources [36]. In addition, as discussed above, we
treat authorizations as regimented via technical mechanisms.



EXAMPLE 5. The jurisdictional authority empowers the patient
to authorize any party to receive the patient’s information from the
vault provider by simply filling out the appropriate form.

Listing 5 captures Example 5. It says that a patient who is regis-
tered in a jurisdiction and who has signed up with a vault provider
after becoming a resident has the power to authorize disclosure to
other parties—and to revoke such authorizations.

Listing 5: A power in Custard.
power ConsentPower pID by j ID
create R e g i s t e r e d
detach Signedup [ R e g i s t e r e d , ]
discharge Allowed [ Signedup , ] and Revoke [ Signedup , ]

In a power instance, the empowered agent is the privileged party,
that is, the expector. The empowering agent is the liable party, that
is, the expectee. For simplicity, we adopt the view that a power
cannot be violated for the simple reason that “saying so” under the
right conditions is enough to fully exercise the power. The effects
of a power may be realized through other norms. In Example 5, the
effect of the power is realized through the vault provider becoming
committed to authorizing parties who are allowed by the patient
to receive information. Of course, the vault provider may refuse
to comply, thus violating the above-mentioned commitment. If the
antecedent would never not hold, then the power expires. Figure 3d
captures the lifecycle of power.

2.5 Aggregation
Norms can naturally involve aggregation, as Example 6 illus-

trates. Such norms capture key performance indicators in business
settings as well as levels of infraction by various agents.

EXAMPLE 6. The vault provider commits to the patient to de-
clare a third party as “out of compliance” if in the year following
the patient authorizing the party to receive information, it violates
the prohibition to forward information to others more than twice.

Listing 6 captures Example 6. The aggregation syntax is based
on the standard one in databases: specify the attribute to aggregate
over (forID), the expression in which the attribute appears (violated
DisclosureProh), how to group the tuples of the expression (by dis-
cID), and the attribute that holds the aggregated value (numViol).
The aggregate event occurs when the count of forID over the spec-
ified interval is greater than two.

Listing 6: A norm involving aggregation in Custard.
commitment SanctionCom hID to pID
create Signedup
detach count f o r I D of violated D i s c l o s u r e P r o h as

numViol group by d i s c I D > 2
[ Signedup , S ignedup +365]

discharge S a n c t i o n [ , d e t a c h e d SanctionCom +10] where
d e t a i l s =" Out o f c o m p l i a n c e "

3. TECHNICAL FRAMEWORK
Let D = {D1 . . .Dn} be a set of domains where T ∈ D is

the domain of time instants; in particular, T = N ∪ {∞}, where
N is the set of natural numbers and∞ is an infinitely distant time
instant. Below, A and R are the sets of agent names and the real
numbers, respectively. Table 1 defines the syntax of Custard.

Expr yields complex events. The foregoing Custard listings use
a surface syntax in which we (1) write and, or, and except for u,
t, and 	 respectively; (2) omit lower and upper instants in time
intervals when they are, respectively, 0 and∞; (3) omit the detach
clause for unconditional norms; and (4) label norms to simplify

Spec −→ Norm(A, A, Expr, Expr, Expr)
Norm −→ commitment | prohibition | authorization | power
Expr −→ Event[Time, Time] | Expr where ϕ |

Expr EvOp Expr
Event −→ Base | Life | Aggr
Life −→ created Spec | detached Spec | discharged Spec

expired Spec | violated Spec
EvOp −→ u | t | 	
Aggr −→ Func D of Event as D group by GSpec Comp R
GSpec −→ D | GSpec,D
Time −→ Event–T | Event + T | T
Func −→ sum | count | min | max | avg
Comp −→ > | >= | < | <= | = | !=

Table 1: Syntax of Custard. Spec is the start symbol.

writing nested commitments. For instance, Listing 2 equals the fol-
lowing Spec expression: commitment(hID, pID, SignedUp[0,∞],
Allowed[0,∞]	Revoked[0,∞], created authorization(tpID, hID,
SentCred[0,∞], ReqData[0,∞], Accessed[ReqData+1, ReqData+
10])[0,Allowed+1]).

3.1 Semantics
As Definition 1 describes, an information schema is a nonempty

set of event schemas, each modeled as a relation with a key and a
distinguished timestamp column. Informally, these correspond to
Base events in our syntax (Table 1). The relation for each event
schema records (positive) events. That is, no event that has oc-
curred ever goes away.

Below, we assume that the timestamp does not feature in a key
since it has no semantic force as such. N is a set of event names.

DEFINITION 1. For convenience, we identify a domain with its
set of possible values. (Treating each attribute as unique with its
own domain simplifies the notation without loss of generality.)

An information schema I overD is a partial mapping from event
names to attributes and keys; it includes precisely the events of
interest. That is, I : N → D × D. Specifically, I(E) = 〈A,K〉,
where A ⊆ D, T ∈ A \ K, and K ⊆ A. For brevity, we write
E = 〈A,K〉 below.

Definition 2 gives the intension, the set of possible extensions,
of an event schema with respect to a universe. A universe captures
the possible combinations of attribute values under consideration.

DEFINITION 2. LetE = 〈{A1 . . . Am},K〉. The universe over
E, UE = A1 × . . .×Am.

The intension of E is the powerset of UE restricted to sets that
satisfy the key constraint of the event schema. That is, any two
E instances that agree on the key attributes must agree on every
attribute (that is, they are the same instance). That is, 〈[E]〉 =
{Y |Y ⊆ UE and (∀ui, uj ∈ Y : if ui||K = uj ||K, then ui =
uj)}, where || indicates projection to the specified set of attributes.

An extension of E is any member of its intension.

Let IE be the set of event schemas defined in an information
schema I . Definition 3 states that a model of an information schema
determines an extension for each of its event schemas.

DEFINITION 3. A model M of an information schema, I , maps
each of I’s event schemas to its extension. Let E = 〈A,K〉 ∈ IE .
Then the extension of E inM is any member of E’s intension: that
is, [[E]]M ∈ 〈[E]〉. (We omit M when it is understood.)



The model defines [[Ev]] for Base event Ev. The semantic pos-
tulates below lift [[ ]] to all expressions in Custard via the TRC. In
the TRC, quantification is over tuples; for a tuple τ , τ.a gives the
value of attribute a of τ . Below, t is the distinguished timestamp at-
tribute of all event schemas; {c, d} ⊆ T ; E,F, . . . are expressions
of type Event; X,Y, . . . are expressions of type Expr; l and r are
Time expressions; ⊕ is either ‘+’ or ‘–’; � is any Comp operator;
N is a Norm expression; g is a GSpec expression.

We use the following auxiliary definitions. The function att pro-
duces the nontimestamp attributes of an event schema; and cmn the
common nontimestamp attributes of two event schemas. The predi-
cate eq takes two tuples and a set of attributes and returns true if and
only if the tuples are equal for each of those attributes; nul takes
a tuple and a set of attributes and returns true if and only if each
attribute’s value is null in that tuple; and holds takes a constraint
and a tuple and returns true iff the tuple satisfies the constraint.
The function sumf works like the conventional sum operator in
database theory: it takes four inputs, a relation S, an attribute col
(in S) which needs to be summed, a set of columns g to group S
by, and an attribute colsum whose value will be the sum and pro-
duces a set of tuples with the attributes g and colsum. That is, it
produces a relation whose attributes are g and colsum and whose
values are what it computes. We would need analogous functions
maxf , minf , countf , and avgf for tackling the corresponding con-
structs in Custard. The functions maxt and mint compute max and
min of timestamps.

D1. [[E[c, d]]] = {τ |τ ∈ [[E]]∧ c 6 τ.t < d}. Select all events in
E that occur after (including at) c but before d.

D2. [[E[F ⊕ c, d]]] = {τ |∃τ ′ τ ∈ [[E]] ∧ τ ′ ∈ [[F ]]∧
eq(τ, τ ′, cmn(E,F ))∧ τ ′.t⊕ c 6 τ.t < d}. Select E if F
occurs and E occurs after (or before, depending upon what
⊕ is) c moments of F ’s occurrence but before d.

D3. [[E[c, F ⊕ d]]] = {τ |∃τ ′ τ ∈ [[E]] ∧ τ ′ ∈ [[F ]]∧
eq(τ, τ ′, cmn(E,F )) ∧ c 6 τ.t < τ ′.t ⊕ d}. Select E if
F occurs and E occurs after c but before d moments have
passed since F ’s occurrence (or at least d moments before
F ’s occurrence, depending upon what ⊕ is).

D4. [[E[F ⊕ c,G⊕ d]]] = {τ |τ ∈ [[E[F ⊕ c,∞]]]∧
τ ∈ [[E[0, G⊕ d]]]}. Combines D2 and D3.

We give definitions for aggregate events involving sum. We skip
the analogous definitions for the other Func expressions (min, max,
count, avg) for brevity.

D5. [[sum col of E as colsum group by g � n [l, d]]] =
{τ |∃τ ′ ∈ sumf ([[E[l, d]]], col , colsum, g) ∧ τ ′.colsum �

n ∧ eq(τ, τ ′, g ∪ {colsum}) ∧ τ.t = d}. Compute all E
instances between l and d and sum them up grouped by g
over column col . If the sum for some g is � n, then the
event has occurred with a timestamp of d.

D6. [[sum col of E as colsum group by g � n [l, F ⊕ d]]] =
{τ |∃τ ′ ∈ sumf ([[E[l, F ⊕ d]]], col , colsum, g)∧τ ′.colsum
�n ∧ eq(τ, τ ′, g ∪ {colsum}) ∧ (∃τ ′′ ∈ [[F ]] ∧ eq(τ ′, τ ′′,
att(F ))∧ τ.t = τ ′′⊕d)}. Analogous to D5 except that the
timestamp of the sum event is relative to a corresponding F
event.

D7. [[X u Y ]] = {τ |∃τ ′ ∈ [[X]]∧(∃τ ′′ ∈ [[Y ]]∧eq(τ, τ ′, att(X))
∧eq(τ, τ ′′, att(Y ))∧ τ.t = maxt(τ ′.t, τ ′′.t))}. Select (X,
Y ) pairs where both have occurred; the timestamp of this
composite event is the greater of the two.

D8. [[X t Y ]] = {τ |(∃τ ′ ∈ [[X]]∧(∃τ ′′ ∈ [[Y ]]∧eq(τ, τ ′, att(X))
∧eq(τ, τ ′′, att(Y )) ∧ τ.t = mint(τ ′.t, τ ′′.t)))∨
(∃τ ′ ∈ [[X]] ∧ eq(τ, τ ′, att(X)) ∧ τ.t = τ ′.t ∧
nul(τ, att(Y )) ∧ (∀τ ′′ ∈ [[Y ]]→ ¬eq(τ, τ ′′, att(Y ))))∨
(∃τ ′ ∈ [[Y ]] ∧ eq(τ, τ ′, att(Y )) ∧ τ.t = τ ′.t ∧
nul(τ, att(X)) ∧ (∀τ ′′ ∈ [[X]]→ ¬eq(τ, τ ′′, att(X))))}.
Select (X,Y ) pairs where at least one has occurred. The
timestamp of this composite event is the smaller of the two,
if both have occurred, or equal to the timestamp of the one
that has occurred.

The interpretation of X 	 Y is that X should have occurred but
the (corresponding) Y should not have occurred. But what is the
time of nonoccurrence of an event? Consider X 	 E[l, d]. Here,
E[l, d] (corresponding to X) has not occurred if E (corresponding
to X) has not occurred between l and d. Thus if E occurs before
l, say at b, then the time of the nonoccurrence of E[l, d] is b; if E
does not occur before d, then the time of nonoccurrence of E[l, d]
is d, which could be∞. The time of occurrence of the X 	E[l, d]
is the maximum of the timestamps of X and E[l, d].

D9. [[X 	 E[l, d]]] = {τ |(∃τ ′ ∈ [[X]]∧eq(τ, τ ′, att(X))∧τ.t =
maxt(τ ′.t, d) ∧ (∀τ ′′ ∈ [[E[0, d]]]→
¬eq(τ ′, τ ′′, cmn(X,E)))) ∨
(∃τ ′ ∈ [[X]] ∧ eq(τ, τ ′, att(X)) ∧ (∃τ ′′ ∈ [[E[0, l]]] ∧
eq(τ ′, τ ′′, cmn(X,E)) ∧ τ.t = maxt(τ ′.t, τ ′′.t)))}.

The definition of [[X 	 E[c, F ⊕ d]]] follows along the same lines
except to account for the difference that the right timepoint refers
to an event (F ) instead of being a constant. As before, we want
X if E occurs too soon (before c). In addition, we want X if E
occurs too late, in this case, after f ⊕d, where f is the value of F ’s
timestamp. We will give this nonoccurrence of E the timestamp
f ⊕ d. But what if F itself has not occurred? Then, we would not
have a value for f . But in this case, we would not want X anyway
because without the occurrence of F , it is not possible to determine
the appropriateness of the occurrence of E.

D10. [[X 	 E[l, F ⊕ d]]] = {τ |(∃τ ′ ∈ [[X]] ∧ (∃τ ′′ ∈ [[F ]] ∧
eq(τ, τ ′, att(X)) ∧ eq(τ ′, τ ′′, cmn(X,F )) ∧ τ.t =
maxt(τ ′.t, τ ′′.t⊕ d) ∧ (∀τ ′′′ ∈ [[E[0, F ⊕ d]]]→
¬eq(τ, τ ′′′, cmn(X,E))))) ∨
(∃τ ′ ∈ [[X]] ∧ eq(τ, τ ′, att(X)) ∧ (∃τ ′′ ∈ [[E[0, l]]] ∧
eq(τ ′, τ ′′, cmn(X,E)) ∧ τ.t = maxt(τ ′.t, τ ′′.t)))}.

D11. [[X where ϕ]] = {τ |τ ∈ [[X]] ∧ holds(τ, ϕ)}.

D12–D15 transform complex expressions involving 	 to those
where 	 has an event of the form E[l, r] as its right hand side
operand.

D12. [[X 	 (Y u Z)]] = [[(X 	 Y ) t (X 	 Z)]].

D13. [[X 	 (Y t Z)]] = [[(X 	 Y ) u (X 	 Z)]].

D14. [[X 	 (Y 	 Z)]] = [[(X 	 Y ) t (X u Z)]].

D15. [[X 	 (Y where ϕ)]] = [[(X 	 Y ) t T ]], where T = {τ |∃τ ′
∈ [[X u Y where ¬ϕ]] ∧ eq(τ, τ ′, att(X)) ∧ τ.t = τ ′.t}.

Below, we write N (c, r, u) where the definition applies uniformly
to all kinds of norms. For brevity, we omit the expectee and ex-
pecter agents.



D16. [[createdN(c, r, u)]] = [[c]]. An norm instance is created
when its create event occurs.

D17. [[detachedN(c, r, u)]] = [[c u r]]. A norm instance is de-
tached when its create and detach events both occur.

D18. [[expiredN(c, r, u)]] = [[c	 r]]. A norm instance is expired
when its create event has occurred but its detach fails to oc-
cur within the specified interval.

D19. [[discharged commitment(c, r, u)]] = [[(c u u) t (r u u)]].
A commitment is discharged when its discharge event has
occurred along with either its create or detach event.

D20. [[discharged authorization(c, r, u)]] = [[c u r u u]]. An au-
thorization is discharged when its discharge event has oc-
curred along with its create and detach event.

D21. [[discharged power(c, r, u)]] = [[c u r u u]]. A power is dis-
charged when its discharge event has occurred along with its
create and detach event.

D22. [[discharged prohibition(c, r, u)]] = [[(c u r)	 u]]. A pro-
hibition is discharged when its create and detach events oc-
cur but the violate event fails to occur.

D23. [[violated commitment(c, r, u)]] = [[(c u r)	 u]]. A com-
mitment is violated when its create and detach events occur
but the discharge event fails to occur.

D24. [[violated authorization(c, r, u)]] = ∅ (the empty set). No
authorization can be violated.

D25. [[violated power(c, r, u)]] = ∅. No power can be violated.

D26. [[violated prohibition(c, r, u)]] = [[c u r u u]]. A prohibi-
tion is violated when its create, detach, and violate events
all occur.

3.2 Properties
Stability is the idea that once an event is determined to have oc-

curred, then at all future time instants, it should continue to be de-
termined to have occurred. In other words, an event that has oc-
curred cannot later unoccur. For example, a message that been sent
cannot be unsent. Stability of events is a fundamental assumption
in reasoning about distributed systems.

We would like to extend this notion of stability to norm lifecy-
cle event instances. Thus, for example, if a prohibition instance is
determined to have been violated at a time instant, then at all fu-
ture instants, it should be determined violated. Stability would be
highly desirable in business settings as it would give stakeholders
confidence in the status of things.

A Base event is by definition stable, since the model defines its
extension. However, stability for complex events, including lifecy-
cle events, does not automatically follow from the stability of Base
events. Two features, in particular, demand careful consideration.

First, let us consider 	, the except operator. Imagine an event
specification of the form X 	 E[0, 100]. Let us say an expres-
sion is evaluated at time 50, before which some X instance has
occurred but the corresponding E instance has not occurred. Then
one may assume that the correspondingX	E[0, 100] instance has
occurred. However, doing so would be premature: the E instance
could yet occur, say at time 55, and a later query would determine
the X 	 E[0, 100] instance to have not occurred. In essence, we
would have switched the status of the event from occurred to not
occurred.

Second, let us consider aggregation operators. A sum event de-
termined to have occurred at an instant may at future instants be
determined to have not occurred as additional events occur. For
example, if the sum over a number of events was required to be
greater than some value, it may hit that value after observing, say,
five events. However, future events may lower the sum (if the at-
tribute which is being summed can take negative values) and cause
it to dip below the required value.

We have built the semantics so that stability is guaranteed for
all events and the above-described scenarios do not occur. We can
treat all observations up to a time as forming a model. Thus as a
computation progresses and additional events occur, a model cor-
responding to additional observations would extend a prior model.

DEFINITION 4. Let L and M be two models for information
schema I . Then M expands on L if and only if for each event in
IE , [[E]]L ⊆ [[E]]M .

Theorem 1 states that the result obtained by evaluating an expres-
sion would persist through expansions of models, thereby ensuring
stability of Custard.

THEOREM 1. Let L and M be models where M expands on L.
Let X be any Expr expression. Then, [[X]]L ⊆ [[X]]M .

Proof Sketch. The proof is by induction on the syntax. Specif-
ically, an expression X maps to a tree of height h where the leaf
nodes are Base events and the root is the expression itself.

The expressions at the leaves represent the base case for the in-
duction. The model defines [[Ev]] if Ev is a Base event. We ob-
tain [[Ev]]L ⊆ [[Ev]]M immediately from our assumption regarding
Base events. Consider an expression at height k (0 < k 6 h). As-
sume that the property holds for its children. The expression must
correspond to one of the postulates inD1–D26. We must show that
the stability property holds for them.

D1. From the inductive hypothesis, we know that [[E]]L ⊆ [[E]]M .
It follows fromD1 that [[E[c, d]]]L ⊆ [[E[c, d]]]M . Reasoning for
D2–D4 is analogous.

D5. If τ ∈ [[sum col of E as colsum group by γ � n[l, d]]]L, then
from the fact that τ.t = d, we know all relevantE instances, that
is, those that happen in [[E[l, d]]] have been considered. Further,
[[E[l, d]]]L = [[E[l, d]]]M . Therefore, stability holds. D6 is anal-
ogous.

D7. Follows from [[X]]L ⊆ [[X]]M and [[Y ]]L ⊆ [[Y ]]M . D8 is
analogous.

D9. Two subcases. One, τ ∈ [[X 	 E[l, d]]]L and τ occurs at
some time k but E does not occur in [0, d]. In this case, sta-
bility of the sum event follows from the fact that [[E[0, d]]]L =
[[E[0, d]]]M and [[X]]L ⊆ [[X]]M . Two, τ ∈ [[X 	 E[l, d]]]L be-
cause X and E[0, l] have both occurred. In this case, stability of
the sum event follows from the fact that [[E[0, l]]]L = [[E[0, l]]]M

and [[X]]L ⊆ [[X]]M . D10 is analogous.
D11. Follows from the fact that [[X]] is stable.
D12–D15. An expression of these forms reduces to an expression

where the right hand side of every 	 operand is a base event,
lifecycle event, or aggregation event qualified by a time inter-
val. Such expressions are stable. Their combinations with other
expressions is also stable.

D16 Follows from the fact that [[c]] is stable. D17–D26 are analo-
gous.

Safety is a well-known correctness criterion for database queries
[15]. Definition 6 describes safety as the idea that the result of any
query evaluated over a finite database is finite. Here, a query is an
expression that we evaluate using a database.



DEFINITION 5. Let M be a model over information schema I .
Then M is a finite model if and only if for each event E occurring
in IE , [[E]]M , is finite.

DEFINITION 6. Let Q be an Expr expression. Then, Q is safe
if and only if given any finite model M of I , the extension of Q
relative to M , [[Q]]M , is finite.

Negation-like operators such as 	 have the potential to compro-
mise safety if their usage is not restricted adequately. For example,
imagine that we had a unary negation operator 	u and the cre-
ate clause for some commitment were simply 	uE (assume E is
Base). This would amount to considering created infinitely many
commitment instances, one for each E instance that is not present
in [[E]]. A technique that is commonly employed to avoid such con-
clusions is to guard such negation-like operators, as we do in Cus-
tard: 	 is a binary operator, the extension of whose left operand
circumscribes the extension of its right operand. Theorem 2 and its
proof sketch below capture the foregoing discussion.

THEOREM 2. Let Q be any Expr expression in Custard. Then
Q is safe.

Proof sketch. The proof is by induction on the height of the syn-
tax tree. The expressions at the leaves represent the base case. We
know that they have finite extensions because a finite model de-
fines finite extensions for Base events. Assume finiteness for every
expression at height k and show finiteness for every expression at
height k+1. For brevity, we illustrate only the crucial cases, which
involve 	, as motivated above. Suppose an expression at k + 1
is X 	 E[l, d]. By the inductive hypothesis, we know that both
X and E[l, d] have finite extensions. According to the definition
of [[X 	 E[l, d]]] (D9), there are two subcases to consider, corre-
sponding to the disjunction. In both cases, though, we are selecting
tuples from finite extensions ofX andE (specifically, fromE[0, d]
andE[0, l]). Hence, [[X 	 E[l, d]]] is finite. The other cases involv-
ing 	 are analogous.

4. IMPLEMENTATION
We implemented a Custard compiler in Java using the Eclipse

XText language definition and parsing library (version 2.8.3). The
compiler reads in one or norm schemas along with an information
schema, such as the one in Listing 1, and outputs (1) SQL table
creation statements corresponding to the information schema and
(2) SQL queries, one for each lifecycle event for each specified
norm schema. We adopt the widely used MySQL dialect of SQL.
Listing 7 shows some of the table creation statements generated for
the information schema in Listing 1.

Listing 7: Generated SQL Create Table statements.
CREATE TABLE Sen tCred (

hID VARCHAR( 1 0 ) , tp ID VARCHAR( 1 0 ) , d i s c I D
VARCHAR( 1 0 ) , c r e d e n t i a l s VARCHAR( 1 0 ) ,

t DATETIME,
PRIMARY KEY( d i s c I D )

) ;

CREATE TABLE ReqData (
hID VARCHAR( 1 0 ) , tp ID VARCHAR( 1 0 ) , d i s c I D

VARCHAR( 1 0 ) , reqID VARCHAR( 1 0 ) , r e q u e s t
VARCHAR( 1 0 ) ,

t DATETIME,
PRIMARY KEY( reqID )

) ;

CREATE TABLE Accessed (

hID VARCHAR( 1 0 ) , tp ID VARCHAR( 1 0 ) , reqID
VARCHAR( 1 0 ) , r e s p o n s e VARCHAR( 1 0 ) ,

t DATETIME,
PRIMARY KEY( reqID )

) ;

For the authorization specification in Listing 3, the compiler gen-
erates four SQL queries corresponding to the created, expired, de-
tached, and discharged instances (recall that in our model, autho-
rizations cannot be violated). Listing 8 shows the SQL query that
returns the created instances of the authorization at time NOW (the
current time). That is, it shows [[created DisclosureAuth]]NOW —
rendered into SQL. Although, in the current implementation all
queries are automatically evaluated for NOW, we are working on
an extension where the user could input a time value. This would
allow the user to run retrospective queries such as How many in-
stances of this authorization were created two months ago? and
hypothetical queries such as Given the current state of the database,
augmented with some hypothetical events, how many instances of
DisclosureCom commitments will be violated?

Listing 8: Generated SQL for created instances of DisclosureAuth.
SELECT hID , tpID , d i sc ID , c r e d e n t i a l s , t
FROM (SELECT hID , tpID , d i sc ID , c r e d e n t i a l s , t

FROM SentCred ) AS Query0
WHERE t < NOW( ) ;

Listing 8 contains a nested SQL query. The query is simple and
could be easily rewritten without nesting. Listing 9, which shows
the SQL query for the discharged instances of the authorization,
is far more complex, and contains several levels of unavoidable
nesting. Such a query would be practically impossible to write by
hand—which demonstrates the significant practical benefits of Cus-
tard.
Listing 9: Generated SQL for the discharged instances. The
SQL DATETIME values ‘1000-01-01 00:00:00’ and ‘9999-12-31
23:59:59’ correspond to the 0th and the infinitely distant time in-
stants, respectively, in our implementation. The unit of time is day.
SELECT

hID , tpID , d i sc ID , c r e d e n t i a l s , reqID ,
r e s p o n s e , t

FROM
(SELECT

hID , tpID , d i sc ID , c r e d e n t i a l s , reqID ,
r e s p o n s e ,

GREATEST( Query21 . t , Query28 . t 3 ) AS t
FROM

(SELECT
hID , tpID , d i sc ID , c r e d e n t i a l s , t

FROM
SentCred ) AS Query21

NATURAL JOIN (SELECT
hID , tpID , reqID , r e s p o n s e , t AS t 3

FROM
(SELECT
hID , tpID , reqID , r e s p o n s e ,

GREATEST( Query30 . t , Query32 . t 4 ) AS t
FROM

(SELECT
hID , tpID , reqID , r e s p o n s e , d i sc ID ,

r e q u e s t ,
GREATEST( Query22 . t , Query34 . t 5 ) AS t

FROM
(SELECT
hID , tpID , reqID , r e s p o n s e , t

FROM
Accessed ) AS Query22

NATURAL JOIN (SELECT
hID , tpID , d i sc ID , reqID , r e q u e s t , t AS t 5

FROM



(SELECT
hID , tpID , d i sc ID , reqID , r e q u e s t , t

FROM
ReqData ) AS Query23 ) AS Query34

WHERE
Query34 . t 5 + INTERVAL 0 DAY <= Query22 . t

AND Query22 . t < ’9999−12−31 2 3 : 5 9 : 5 9 ’ )
AS Query30

NATURAL JOIN (SELECT
hID , tpID , reqID , r e s p o n s e , t AS t 4

FROM
(SELECT
hID , tpID , reqID , r e s p o n s e , d i sc ID ,

r e q u e s t ,
GREATEST( Query22 . t , Query36 . t 6 ) AS t

FROM
(SELECT
hID , tpID , reqID , r e s p o n s e , t

FROM
Accessed ) AS Query22

NATURAL JOIN (SELECT
hID , tpID , d i sc ID , reqID , r e q u e s t , t AS t 6

FROM
(SELECT
hID , tpID , d i sc ID , reqID , r e q u e s t , t

FROM
ReqData ) AS Query24 ) AS Query36

WHERE
’1000−01−01 0 0 : 0 0 : 0 0 ’ <= Query22 . t

AND Query22 . t < Query36 . t 6 + INTERVAL
10 DAY) AS Query31 ) AS Query32 ) AS
Query25 ) AS Query28 ) AS Query26

WHERE
t < NOW( ) ;

5. DISCUSSION
Custard is a language for specifying norms over low-level infor-

mation schemas and evaluating norm instances over information
stores. Custard supports subtle features that are important in real-
world settings, such as nonoccurrence of events, nesting, and aggre-
gation. Custard’s novelty lies not only in that it raises norm speci-
fications to the level of information schemas but also in how it de-
scribes a general approach to formalizing norm lifecycles. Specif-
ically, our formalization can readily support alternative semantics
for norm lifecycles—for example, considering an authorization as
violated when its consequent occurs without the antecedent having
occurred. The implementation of Custard to generate SQL queries
is evidence of its practical value in combating complexity. SQL
queries corresponding to even a simple norm turn out to complex,
running in tens of lines. Thus Custard offer benefits in dealing with
complexity by saving a modeler significant effort.

Custard follows a recent trend toward increasingly explicit in-
formation modeling in commitments [10, 27]. It is specifically
informed by advances reported in Cupid [10], which presents an
information-based language for commitments. Whereas Custard
adopts Cupid’s basic style and approach, it goes significantly be-
yond Cupid in expressiveness. Cupid supports only commitments
and does not support aggregation. Cupid formulates the query
extensions in terms of relational algebra whereas Custard defines
them in terms of the TRC, which yields cleaner and more direct set-
based formulations. The formulation and proof of stability (over
model expansions) is novel to Custard.

Norms are widely studied in multiagent systems from different
perspectives. Custard leverages work on first-order event-based
representations of commitments and, more generally, norms [4,25,
39,40,43]. These representations often emphasize different aspects,
for example, reasoning about operations on norms, richer content,

and deadlines. Through being first order, these approaches natu-
rally support distinguishing norm schemas and instances. Where
Custard goes beyond existing languages is in bringing together im-
portant modeling concerns in a single expressive language with a
clear information-based semantics. Features such as nesting and
aggregation are not supported in any of the existing languages.

Custard may be applied toward specifying security policies. There
is a significant conceptual difference from traditional approaches
for specifying security policies, for instance, in languages such
as XACML [28]. In such languages, one specifies the actions to
be taken by the computer system upon a security-pertinent event
(“obligations”) or the actions that must be blocked by the system
(“prohibitions”). In other words, the policies are implemented and
executed by the computer system. These approaches are not so-
ciotechnical in that they do not represent or reason about any of
the social aspects. Specifically, they talk about computer systems
and not sociotechnical systems. By contrast, with Custard, one
may capture requirements via norms among autonomous agents.
Custard leaves it to each agent, in light of its autonomy, to de-
cide whether to satisfy or violate a norm. Singh emphasizes these
distinctions, crucial for achieving secure collaboration, in greater
depth in recent work on norms and cybersecurity [36, 37].

In the literature on normative multiagent system, important over-
lapping themes relevant to Custard concern (1) modeling institu-
tions and contracts [4, 22, 24]; (2) how to develop sociotechnical
system specifications given stakeholder requirements [8, 12] and a
low-level information schema; (3) protocol specifications specified
in information-based languages such as BSPL [34, 35]; (4) formu-
lating alignment of commitment states across asynchronously com-
municating autonomous agents [9,11]; (5) norm reasoning and con-
flicts [17,29,42]; (6) monitoring and reasoning about agent compli-
ance with norms [1, 26, 41]; and (7) programming norm-aware in-
telligent agents that reason about norms in deciding upon a course
of action [2, 6, 13, 21, 23, 25, 41].

Future Work. Custard represents an initial effort to represent
norms in an information-oriented framework. It opens up many in-
teresting directions of work. These include improvements to Cus-
tard to accommodate valuable ideas from the literature as well as
enhancements to address particular needs of real-life problems, such
as in healthcare or business.

The following are some particularly important and interesting di-
rections for future research. One, formalizing norms in higher-level
database logics, such as 4QL, which are beginning to be applied in
settings of collaborative agents [14] as well as defeasible reason-
ing. Two, extending Custard to enable capturing settings where
there is uncertainty associated with the occurrence of events [38]
and therefore the states of the norm instances. Three, developing
an enhanced agent-oriented API to support runtime monitoring of
norms and their incorporation in the agent deliberation cycle. Four,
creating a catalog of norm patterns that arise in real-life settings and
attempting to encode them in Custard. This exercise would point to
directions in which Custard would need to be extended. Five, de-
veloping a tool-supported methodology for writing Custard speci-
fications, including well-formedness criteria for specifications, for
example, relating to the specification of time intervals and keys.
Six, relating Custard specifications to alignment for ensuring that
multiple Custard stores remain adequately synchronized.
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