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Abstract. Interoperability has been broadly conceptualized as the ability of agents
to work together. In open systems, the interoperability of agents is an important
concern. A common way of achieving interoperability is by requiring agents to
follow prescribed protocols in their interactions with others. In existing systems,
agents must follow any protocol to the letter; in other words, they should ex-
change messages exactly as prescribed by the protocol. This is an overly restric-
tive constraint; it results in rigid, fragile implementations and curbs the autonomy
of agents. For example, a customer agent may send a reminder to a merchant
agent to deliver the promised goods. However, if reminders are not supported ex-
plicitly in the protocol they are enacting, then the reminder would be considered
illegal and the transaction may potentially fail. This paper studies the interoper-
ation of agents, dealing with their autonomy and heterogeneity in computational
terms.

1 Introduction

Protocols describe the interactions among autonomous agents. Thus they are crucial
to the design and construction of multiagent systems. Previous work on protocols in
multiagent systems has dealt with high-level topics such as semantics [8, 18], compo-
sition [17], and verification [13]. However, protocols are enacted by agents in physical
systems. In particular, considerations of the underlying communication models and how
distributed agents are able to make compatible choices would greatly affect whether a
protocol may in fact be enacted successfully. The objective of this paper is to study
the computational underpinnings of protocol enactment in multiagent systems. It seeks
to characterize the operationalization of agents so as to determine whether and when
agents may be interoperable.

The agents we consider are set in open systems, and they interact with each other
based on (typically, published) protocols. An agent may, however, deviate from the
protocol because of its internal policies. Such deviations pose certain problems: (1) the
agent might no longer be conformant with the protocol, and (2) the agent may no longer
be able to interoperate with other agents.

For an agent to be compliant with a protocol, first and foremost it must be confor-
mant with the protocol. Whereas agent compliance can only be checked by monitoring
the messages an agent exchanges with its peers at runtime, conformance can be verified
from the agent’s design. An agent’s design is conformant with a protocol if it respects
the semantics of the protocol; a useful semantics is obtained when considering the satis-
faction of commitments [12]. The distinction between conformance and compliance is



important: an agent’s design may conform, but its behavior may not comply. This may
be because an agent’s design may preclude successful interoperation with its peers.
In other words, even though an agent is individually conformant, it may not be able to
generate compliant computations because of the other agents with whom it interacts, ap-
parently according to the same protocol. Interoperability is distinct from conformance;
interoperability is strictly with respect to other agents, whereas conformance is with
respect to a protocol.

Protocols provide a way of structuring interactions; however, interoperability is not
just a test on agents that adopt roles in the same protocol, and then deviate from their
roles. Interoperability is a property of a set of agents. The proposed definition of inter-
operability declares two agents to be interoperable provided from each joint state that
they can enter, they can reach a final state. The essential idea is of determining the states
that can be entered. In our approach, these are specified based upon the highly realis-
tic constraint that only messages that have been sent (by an agent) can be received (by
another agent). Based on this constraint, some transitions cannot in fact be performed:
these transitions correspond to an agent receiving a message before the message has
been sent. The transitions that can be performed are termed causally enabled.

A communication model sets the physical environment for communication between
agents. The parameters of this model include whether communication is synchronous
or asynchronous, the number of channels to use, the size of the buffers, and the buffer
access mechanism. One cannot simply examine a pair of agents in isolation and decide
whether they are interoperable; the agents must be analyzed in light of the communica-
tion model in force. Agents that are interoperable in one model may be noninteropera-
ble in another. To analyze interoperability, we capture communication models in terms
of causal enablement. Causal enablement is a basic building block that identifies the
possible nonblocking actions given the current global state of the interaction. Different
models of causal enablement correspond to different communication models.

Our contribution in this work is that we present a formal test for interoperability of
agents. The rest of the paper is organized as follows. Section 2 presents agents as tran-
sition systems. Section 3 formalizes a test for the interoperability of agents. Section 4
concludes with a discussion of the relevant literature.

2 Agents

We represent agents as transition systems. Informally, a transition system is a graph
with states as vertices and actions as edges. A state s is labeled with the propositions
that hold in that state; a transition is a triple 〈s, e, s′〉 where s and s′ are states, and the
edge e is labeled with the actions that occur in the transition. In addition, the initial and
final states are marked. Further, the initial state has no incoming transitions.

Definition 1. A transition system is a tuple 〈σfl, σact, η, S, s0, F, ρ, δ〉 where

– σfl is a finite set of propositions
– σact is a finite set of actions
– η : σact 7→ σfl is a bijective function
– S is a finite set of states



– s0 ∈ S is the initial state
– F ⊆ S is the set of final states
– ρ : S 7→ P(σfl) is an injective labeling function with the requirement that ρ(s0) =
{}

– δ ⊆ S × E × S is the set of transitions where E ⊆ P(σact) such that
• ∀s ∈ S : 〈s, ε, s〉 ∈ δ where ε is the empty set of actions
• ∀s, s′ ∈ S : 〈s, ε, s′〉 ∈ δ ⇒ s = s′

• 〈s, {a0, a1, . . . , an}, s
′〉 ∈ δ ⇒ ρ(s′) = ρ(s) ∪

⋃n

i=0
η(ai)

The following description explains the elements of Definition 1. The empty set of
actions ε corresponds to inaction. For each state s, the set of transitions δ contains
the transition 〈s, ε, s〉 to capture the transition where no action happens. Further, as
would be expected, inaction cannot cause a transition in a new state. To capture the
occurrence of any action a in the transition, the resulting state is labeled with a unique
proposition η(a) corresponding to the action. We restrict the transition systems such
that the only cycles allowed are those because of inaction. This restriction is placed
because η returns the same proposition no matter how many times an action happens,
and thus is insufficient to model repeated actions. The propositions a state is labeled
with serve as a history of all the actions that have occurred previously.

Fig. 1. A customer agent

State Fluents

s0 {}

s1 req
s2 req , offer
s3 req ,offer ,accept
s4 req , offer , accept , goods
s5 req , offer , accept , pay
s6 req , offer ,accept , goods , pay
s7 req , offer ,reject
s8 req , none

Table 1. States in Figure 1

We model two types of actions in agents: sends and receives. Let p be a message. A
send is indicated by !p, whereas a receive is indicated by a ?p. The sender and receiver
of the message are implicit as the agents under consideration can interact only with one
agent at a time. Figure 1 shows the transition system of a customer agent. State s0 is the
start state of this agent; the final states are indicated by concentric circles—in this case
they are s6, s7, and s8. This agent can interact with a merchant agent to buy goods. The
customer’s interactions are described below. Further, we assume that the names of the
messages that can be sent by any agent are disjoint from those that any other agent can
send.

1. The customer starts the interaction by sending a request for quotes to the merchant.
2. The merchant can respond either by sending an offer, or by indicating that there are

no offers in which case the customer terminates.



3. If the merchant sends an offer, the customer can respond to the offer by either
sending an accept, or a reject in which case, the customer terminates.

4. After the customer accepts, either the customer may send payment or the merchant
may send goods.

5. If the merchant sends goods then the customer sends payment; if the customer
sends payment, then the merchant sends goods. In either case, after the exchange
the customer terminates.

Table 1 shows the labels of states in the transition system.

3 Interoperability

This section formalizes interoperability, and provides a computational method of veri-
fying the interoperability of two agents.

Interoperability depends crucially on the communication model in force. Commu-
nication models may differ along the following dimensions.

Synchrony The communication mode is synchronous if an agent can send a message
only when another is ready is receive it; equivalently, the send of each message
coincides with its receipt. The result is that the agents execute in lock-step fash-
ion. The mode is asynchronous if an agent can send a message regardless of the
recipient’s availability. The mode of communication has important implications for
buffer design, as we shall see.

Channels Channels represent the logical communication medium between agents along
which messages are exchanged. A channel can be unidirectional or bidirectional. If
it is unidirectional, then it is modeled with a single buffer; if it is bidirectional, then
it is modeled with two buffers, one for each direction. A unidirectional channel has
two endpoints: one for the sending agent, and another for the receiving agent. A
bidirectional channel has four endpoints: two for each agent—one to send, another
to receive. Further, the number of channels may vary. For instance, all messages
can be exchanged along a single channel, or each message can be exchanged along
its own channel. More channels allows for greater concurrency.

Buffers Synchronous communication corresponds to zero-length buffers, whereas asyn-
chronous communication implies nonzero-length buffers. Further, in the asynchro-
nous model buffers may be finite-length or unbounded. Buffers may also differ in
how they are accessed. A buffer may be modeled as a FIFO queue, in which case
messages are appended to the end of a queue when doing a send, and read from
its head when doing a receive. Alternatively, buffers may be modeled as random
access memory (RAM), in which case sent messages can be inserted into and read
from any location. The sizes of buffers impacts the ways in which an agents can
block. If the buffers are unbounded, an attempt to send always succeeds whereas
if they are of finite length, then even an attempt to send may block. An attempt to
receive, on other hand, may block regardless of buffer size—for an agent to receive
a message, another agent must have sent it first.

The proposed definition of interoperability declares two agents to be interoperable
provided from each joint state (in the product) that they can enter, they can reach a



final state. The essential idea is of determining the states that can be entered. In our ap-
proach, these are specified based upon the highly realistic constraint that only messages
that have been sent (by an agent) can be received (by another agent). Based on this
constraint, some transitions cannot in fact be performed: these transitions correspond
to an agent receiving a message before the message has been sent. The transitions that
can be performed are termed causally enabled. Further, for progress to take place, our
definition assumes that if an enabled transition is available then that or another enabled
transition is taken.

Operationally, these assumptions can be readily realized in agents that function as
follows:

– The agents can perform nonblocking reads on the channels. Thus no agent is stuck
attempting to make a transition that is not and will not be enabled.

– The agents try actions corresponding to their various transitions with some sort of a
fairness regime. Thus if an agent can perform a send operation in a state, it will not
forever stay in that state without performing the send. It may perform some other
action to exit that state. Likewise, if an agent can read from a particular channel, it
will not forever stay in that state without performing the read.

Although this paper is limited to systems consisting of two agents, it can be expanded
to larger systems. For such systems, we would assume the following in addition to the
above: the agents have unique incoming channels. That is, the agents do not compete
for the messages arriving on their incoming channels.

3.1 Formalization

The interoperability of two agents depends upon the computations that they can jointly
generate. The agents may act one by one or in true concurrency (agents can be globally
concurrent even if each agent itself is single-threaded). Definition 2 captures the above
intuitions for a product transition system of a pair of agents. For any two agents, we
assume that their sets of actions as well as their sets of propositions are disjoint.

Definition 2. Given two agents α := 〈σfl
α , σact

α , ηα, Sα, s0α
, Fα, ρα, δα〉 and β :=

〈σfl
β , σact

β , ηβ , Sβ , s0β
, Fβ , ρβ , δβ〉, their product is ×α,β := 〈σfl

×
, σact

×
, η×, S×, s0×

, F×,

ρ×, δ×〉 where,

– σ
fl
×

= σfl
α ∪ σ

fl
β

– σact
×

= σact
α ∪ σact

β

– η× = ηα ∪ ηβ

– S× = Sα × Sβ

– s0×
= (s0α

, s0β
)

– F× = Fα × Fβ

– the labels on a state (sα, sβ) is given by ρ×(sα, sβ) = ρα(sα) ∪ ρβ(sβ)
– δ× ⊆ S× × E× × S× such that 〈s, e, s′〉 ∈ δ× if and only if 〈sα, eα, s′α〉 ∈ δα,
〈sβ , eβ , s′β〉 ∈ δβ and s = (sα, sβ), s′ = (s′α, s′β), e = eα ∪ eβ



The technical motivation behind Definition 2 is that it accommodates the transitions
that would globally result as the agents enact the given protocol. When the agents act
one by one, the transitions are labeled with an action from their respective sets of ac-
tions. When the agents act concurrently, the transitions are labeled by a pair of actions,
one from each agent. Figure 2 shows two agents—one does !x, and the other ?x—and
their product. In this product, 00′ is the initial state and 11′ is a final state.

Fig. 2. Simple agents and their causal product (interoperable)

Fig. 3. Simple blocking agents and their causal product. Agents are noninteroperable because no
causal final state is reachable from state 01’

Figures 2–8 each contains three transition systems: one for agent α (identified by
states labeled with one digit), one for agent β (identified by states labeled with one digit
followed by an apostrophe as in 0′), and their product (identified by states that contain
states labeled with two digits—the second with an apostrophe). The start states of the
two agents are indicated by 0 and 0′ respectively. The final states are represented by
concentric circles.

Our communication model is one in which agents communicate asynchronously
over a bidirectional channel and each agent’s buffer is bounded RAM. As explained
earlier, the state of an agent serves to capture the history of actions, and since each
action can only occur once, the size of an agent’s buffer is bounded by the size of its set
of actions. For the same reason, an attempt to send a message never blocks. A joint state
in a product represents the union of both agents’ buffers. The receipt of a message fails
if it is attempted before the message is sent. Definition 3 captures these observations
formally in terms of causal enablement. Specifically, a state enables a transition if all



Fig. 4. Agents with a symmetric choice and their product (interoperable)

the actions listed in the transition succeed. Because there is only one channel, it is left
implicit in the definition.

Definition 3. Given a transition 〈si, ei, si+1〉 ∈ δ× in a product ×α,β := 〈σfl
×

, σact
×

, η×,

S×, s0×
, F×,ρ×, δ×〉, si causally enables ei, denoted by si |=ce ei if and only if

ei = ε or,

∀?p ∈ ei(η(!p) ∈ si or !p ∈ ei)

.

Definition 3 means that a transition is enabled if for each receive attempted in it, a
corresponding send has been performed previously or is being performed concurrently.
For example, in Figure 2

01′ |=ce {?x}

00′ 6|=ce {?x}.

In Figures 2–8, the solid transitions are causally enabled whereas the dotted ones are
not causally enabled. Definition 4 says that if a state is reachable from the initial state
by causally enabled transitions, then it is causal.

Definition 4. The set of causal states in a product is defined as follows:

(i) s0 is causal,



Fig. 5. Agents with limited send choice and their product (interoperable)

(ii) s′ is causal if ∃〈s, e, s′〉 ∈ δ×: s is causal and s |=ce e,
(iii) all states that are not causal according to the above are noncausal.

In Figures 2–8, causal states are indicated with solid circles, whereas the noncausal
states are indicated with dashed circles.

Definition 5 say that two agents α and β are interoperable if and only if for each
causal state s, there exists a final state that is reachable from s through causally enabled
transitions. Note that the definition does not simply state that there must exists some
causally enabled path from the start state to some final state in the product for two
agents to be interoperable. It is stronger than that. The definition reflects the fact there
might be no causally enabled transition in the middle of an interaction, in which case the
agents are determined noninteroperable. We introduce a function causal which takes a
product state and returns true if and only if the state is causal.

Definition 5. Let ×α,β := 〈σfl
×

, σact
×

, η×, S×, s0×
, F×, ρ×, δ×〉 be the product of two

agents α and β. Agents α and β are interoperable if and only if

∀si : causal(si)(∃〈si, ei, si+1〉, 〈si+1, ei+1, si+2〉, . . . , 〈sn−1, en−1, sn〉 :

∀j : (i ≤ j ≤ n)(causal(sj) and sn ∈ F×))

.

Each pair of agents in the Figures 2–8 is labeled interoperable or noninteroperable
based upon the test in Definition 5. The agents in Figure 2 are interoperable as one
agent sends x and the other receives x. The agents in Figure 3 are noninteroperable as
one agent can only send y, whereas the other may only receive x. Computationally, the



Fig. 6. Agents with no receive choice and their product. Agents are noninteroperable because no
final state is reachable from state 10’ which itself is causal

problem state is 01’, which is a causal state, but no causal final state is reachable from
it. The agents in Figure 4 are interoperable—realistic as given the nonblocking receive
semantics outlined earlier, eventually some message will be received. In Figure 5, one
agent can receive x or y, but the other can only send y. These agents are interopera-
ble and again, realistically so—because of the nonblocking semantics, eventually the
receipt of y will succeed. Figure 6 shows two agents, one of which can send either x

or y, and the other may only receive y. These agents are noninteroperable because the
sending agent may choose to send x, in which case the other agent will never progress
to a final state. Computationally, the problem state is 10’, a causal state from which
no causal final state is reachable. Figure 7 shows two agents, one of which sends x

followed by y, whereas the other attempts to receive them in the opposite order, that

Fig. 7. Agents with out-of-order receives and their product (interoperable)



Fig. 8. Agents making nonlocal choice and their causal product (interoperable)

is y followed by x. Since our definition of causal enablement models a random access
buffer, the agents turn out to be interoperable. Finally, Figure 8 shows two agents, one of
which may either receive x or send y, whereas the other may send x or receive y. These
agents turn out to be interoperable, which is supported by our operational assumptions.

4 Discussion

Interoperability is a crucial aspect of compliance; however, it is not the only one. Con-
formance is another aspect of compliance. For an agent to produce only compliant exe-
cutions, it has to be both conformant with some stated protocol, and interoperable with
the agent it is interacting with. Conformance has been formalized in previous work [4].
In this paper, we have devised a formal interoperability test for agents. The interoper-
ability test is essentially a reachability test for final states in an appropriately marked
product transition system.



Fig. 9. Variations of customer and merchant agents and their interoperability



4.1 Temporal Logic

We assume the standard branching time temporal logic. Given the product of two
agents, computed as above, the agents are interoperable if and if the following formula
is true.

AG(causal → E(causal U (final ∧ causal)))

The proposition causal is true if and only if a state in the model is causal, and final

is true if and only if a state belongs to the set of final states.

4.2 Blocking Receives

It is interesting to consider what happens when we drop the assumption that receives
are nonblocking, and instead assume that they are blocking. In that case, the above def-
inition of interoperability is optimistic: it makes sense only under the assumption of
angelic nondeterminism. That is, if there is a possibility of reaching some joint final
state, then the agents will magically take only those actions that necessarily take them
there. In essence, the choices are not made by agents, but are made automatically for
them. For instance, in Figure 5, our test for interoperability determines the agents inter-
operable. However, note they are not interoperable in case agent α decides to receive
x. They are only interoperable under the assumption that an agent reads whatever is
available in its end of the channel. For all practical purposes, at the level of abstraction
of the transition system, a “good” choice was made nondeterministically. To consider
another example, see Figure 8. If α and β choose to do ?y and ?x respectively—no mat-
ter what, they must each receive first before sending—then the agents would deadlock.
(In distributed computing, this problem is commonly referred to as the nonlocal choice
problem [14]). But again the choice to send or receive is not made by the agents; it is
simply made for them nondeterministically.

The question then is: in the operational assumption that receives are blocking, how
do we build agents in practice when angelic nondeterminism is not around to help make
choices? The answer is: by encoding additional knowledge required to make the choices
in the agent’s design. Figure 9 shows variations of the customer and merchant agents
with a focus on only the goods-payment exchange. Each row in the Figure depicts a
customer-merchant pair and states their interoperability. For each transition system, the
labels s and f indicate the start and final states respectively; other states are not made
explicit. The interesting thing is that only in case 5—when for both agents there is no
choice but to receive first and thus deadlock—are the agents determined noninteroper-
able by Definition 5. In all other cases, in all stages of the interaction, there is always a
causally enabled transition until a joint final state is reached. More importantly, in cases
1 and 4, the agents’ choices have to resolved so that they make compatible choices—
which is where angelic nondeterminism helps us. In practice, however, the agents’ de-
sign would have to be amended so that the pairs of agents in cases 1 and 4 would
resemble either the pair of case 2 or case 3. In previous work [3], we have specified
agents in C+ [10], an action description language with a transition system semantics.
C+ is elaboration-tolerant meaning that the addition of new axioms (knowledge) to a
C+ theory could possibly invalidate old conclusions; in other words, transitions may be



removed by adding new knowledge about the actions. This enables a designer to specify
agents in C+ corresponding to the pair of case 1, and then depending upon the context
in which the agents are to be deployed, the designer could add additional knowledge
to turn them into either the pair of case 2 or case 3. For example, if the customer is
not willing to pay first but the merchant is willing to send goods first, then the designer
could turn them into the agents of case 3, whereas if they both trust each other, then the
could turn them into case 2. An optimistic approach to component composability is that
two components are composable if there exists some environment under which they
can work together [6]. Under the assumption that receives are blocking, our definition
of interoperability may be seen as an optimistic one: two agents can work together in
practice, if they are interoperable by our definition, and if new axioms encoding addi-
tional knowledge may be appended to their specifications to make them work together.

4.3 Literature

Interoperability leads to a useful notion of compositionality: loosely speaking, two ar-
bitrary agents can be composed if they can interoperate. Our formalization thus tells us
which pairs of agents can be composed. We plan to extend our formalization to groups
of agents.

Dastani et al. [5] describe an approach of composing multiagent systems by com-
posing their coordination specifications, which are modeled as connectors. Omicini
et al. [15] model composition of distributed workflows through programmable tuple
spaces. However, none of these works delve into the question of which agents or work-
flows are composable.

Fu et al. [9] propose conditions for the realizability of protocols—a protocol can be
realized if a set of finite agents can generate exactly the conversations in the protocol.
Realizability of a protocol is orthogonal to interoperability between agents. A protocol
may not be realizable, however agents that follow their respective roles in the protocol
could be interoperable. On the other hand, interoperable agents could be following roles
in distinct protocols.

Kazhamiakin et al. [11] construct a hierarchy of communication models depending
on factors such as synchrony and buffers among other, and use this framework to find
the best fit communication model for a given service composition such that the cost
of further verification is cheapest. However, their method assumes that the services are
composable under some model; they present no algorithm that decides composability.

Baldoni et al. [2] and Endriss et al. [7] present alternative notions of conformance
that are closely tied to interoperability, thereby violating the orthogonality of confor-
mance and interoperability. As a result, many agents that should be considered con-
formant in a practical setting—and are determined to be conformant according to our
formalization—are rendered nonconformant in theirs. For example, they would both
determine the customer who sends a reminder to the merchant to send goods to be
nonconformant.

Approaches based on verifying compliance at runtime [1, 16] are important in the
context of open systems since agents may behave in unpredictable ways; also it is nec-
essary to have independent arbiters in case of disputes involving agents.



4.4 Directions

Our current formalization supports a useful but limited class of agents: those that in-
teract with only one other agent, and eventually terminate. Our future work involves
extending this work to more general agents: specifically, those that interact with multi-
ple other agents and have infinite runs.
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