
Nonmonotonic Commitment Machines
�

Amit Chopra and Munindar Singh

Department of Computer Science, North Carolina State University, Raleigh, NC 27695-7535,
USA�

akchopra, mpsingh � @ncsu.edu

Abstract. Protocols for multiagent interaction need to be flexible because of
the open and dynamic nature of multiagent systems. Such protocols cannot be
modeled adequately via finite state machines (FSMs) as FSM representations
lead to rigid protocols. We propose a commitment-based formalism called Non-
monotonic Commitment Machines (NCMs) for representing multiagent interac-
tion protocols. In this approach, we give semantics to states and actions in a
protocol in terms of commitments. Protocols represented as NCMs afford the
agent flexibility in interactions with other agents. In particular, situations in pro-
tocols when nonmonotonic reasoning is required can be efficiently represented in
NCMs.

1 Introduction

A protocol is a means of achieving meaningful interaction. Agents that constitute a
multiagent system use protocols to guide their interactions with each other. Protocols
have traditionally been specified as FSMs that specify sequences of states. The protocol
designers have certain scenarios in mind that they directly incorporate in an FSM. As a
result, agents using a protocol specified as FSMs are limited to behaving in a rigid man-
ner. Such agents cannot handle exceptions or take advantage of opportunities that might
arise during interactions with other agents. In this paper, we present an alternative way
of specifying protocols that is based on commitments which we formalize below. Our
approach is based on the general notion that an agent does not violate a given protocol
as long the agent does not violate the commitments prescribed by the protocol. Using
commitments makes the protocol flexible and enables the agent to handle exceptions
and opportunities without violating the given protocol.

Protocols for interaction in multiagent systems often resemble protocols routinely
used by humans in their social interactions. The Contract Net [1] and NetBill [2] are ex-
amples of such protocols. Such protocols have traditionally been represented by FSMs
that represent sequences of states and transitions. Since FSMs are a low level represen-
tation, it becomes cumbersome to capture multiple scenarios in an FSM. Thus FSMs
designed by hand tend to be rigid and do not allow scenarios other than the specified
“normal” ones. A protocol transitions from state to state as a result of the actions of

�
We are grateful to the anonymous referees for their useful comments. We would like to thank
Ashok Mallya and Pinar Yolum for the helpful discussions. This work is supported by the
National Science Foundation under grant DST-0139037.

2

3

4

5

6

C: Send Accept

C: Send Payment

M: Send Offer

M: Send Goods

C: Send Request

M:Send Receipt

1

7

Fig. 1. FSM representation of the simplified NetBill protocol

the interacting agents. A transition is usually labeled with the actions that cause it. In
an FSM, the states and the actions in the protocol are meaningless tokens. The agent is
limited to executing one of the sequences of actions hard-coded by its designer. These
sequences represent the only legal behaviors of the agent. Anything the agent does out-
side of this protocol is considered a violation. This makes the protocol inflexible and,
therefore, undesirable in open multiagent systems where agents are autonomous and
heterogeneous, and opportunities and exceptions need to be handled appropriately.

Acting flexibly presupposes reasoning about the protocols. Reasoning formally pre-
supposes that the protocols have a formal semantics. We base our semantics on the
notion of commitments. Protocols can naturally be seen as an exchange and manipula-
tion of commitments. A commitment is a directed obligation from one agent to another
for achieving or maintaining a state of affairs. A commitment is social because it in-
volves two parties and is publicly observable by all the agents in the agent society.
Since a commitment is public, it is also possible to verify whether an agent has ful-
filled its commitment, thereby making it possible to check an agent’s compliance with
a protocol.

This paper uses the NetBill e-commerce protocol [2] as a running example through-
out the paper. Figure 1 shows an FSM representation of a NetBill simplified to focus on
the core part. The customer, represented by c, sends a request for offers to the merchant,
represented by m. The merchant sends an offer in response. If the customer accepts the
offer, the merchant sends the goods. The customer then sends the payment for the goods
in return for which the merchant sends a receipt. The only execution scenario possible
in the protocol starts with the customer sending a request and ends with the merchant
sending a receipt. The FSM in Figure 1 does not accommodate scenarios that would

arise naturally in open and dynamic multiagent systems and is, therefore, unnecessarily
rigid. Protocols for multiagent interaction should be flexible in the following ways:

– Autonomy: A protocol specification should not impinge on the autonomy of an
agent beyond the essential nature of the interaction it describes. Consider a scenario
where a customer wants to buy goods from a merchant. A desirable specification
should not limit the autonomy of an merchant by preventing him from advertising
his wares by sending an offer message prior to receiving a request for offers.

– Opportunities: A protocol should enable an agent to take advantage of opportuni-
ties that may arise. For example, if a merchant advertises an attractive deal to a
customer, the customer should be able to entertain this offer.

– Exceptions: A protocol should enable an agent to deal with exceptions instead
of aborting the interaction altogether. For example, a customer who doesn’t have
enough money might delegate a commitment to pay the merchant to some other
agent. This is not allowed in the NetBill protocol as specified above.

The above forms of flexibility can be achieved only if we are able to reason about the
content of the states and actions in a protocol. Often, the essential element of content in
many protocols is the commitments of the different parties in a protocol. Specifically,
we claim that if the protocol representation uses commitments and the criterion for
protocol compliance is the satisfaction of commitments, then the above scenarios would
be valid behaviors in the protocol.

We propose a formalism for specifying protocols called Nonmonotonic Commit-
ment Machines (NCMs) that uses commitments for representing states and actions.
The meaning of a state is given by the commitments that hold in that state; a state is
a description of the world. The meaning of an action is given by how it manipulates
commitments. An NCM does not directly specify sequences of states and transitions.
Instead, it specifies rules in Nonmonotonic Causal Logic (NCL) [3]. These rules model
the changes in the state of a protocol as a result of execution of actions. The inference
mechanism of NCL computes new states at runtime. Yolum and Singh [4] first studied
commitment machines. They did not consider situations during the execution of a pro-
tocol when agents must act with incomplete information. In such situations, the agent
would need nonmonotonic or defeasible reasoning. Since NCL supports nonmonotonic
reasoning, NCMs can express defaults in a protocol in a natural manner. Protocols rep-
resented as NCMs are more elaboration tolerant [5] than those represented using clas-
sical logic or FSMs. We develop a causal theory of commitments and represent the
NetBill protocol as an NCM using that theory.

The rest of the paper is organized as follows. Section 2 motivates the need for non-
monotonic logic for protocol representation and describes the NCL that we employ for
this purpose. Section 3 provides a description of commitments. Section 4 formalizes
commitments and NetBill in this logic. Section 5 discusses the relevant literature and
section 6 discusses future directions.

2 Nonmonotonic Causal Logic

In logic, the consequence relation � is a relation between sets of propositions and in-
dividual propositions. ����� , where A is a set of propositions and x is a proposition,

means that x is a logical consequence of A. Classical logic is monotonic meaning that
if ����� , where � � � and B is a set of propositions, then � � � . Informally, mono-
tonicity means that the addition of new information does not invalidate old information.
Therefore, making rules defeasible in the face of change poses difficulties. Consider
Example 1.

Example 1. A customer may not return goods received and should pay for them. How-
ever, if the goods are damaged, then the customer may return the goods and then cancel
his commitment to pay.

Example 1 involves defeasible reasoning. The default rule is that the commitment to
pay cannot be canceled. (A more accurate rule is that the debtor of a commitment can-
not cancel his commitment. However, the above simplified version is adequate for this
example.) The general rule is defeasible, i.e., if a special condition applies, like when
the goods are damaged and they are returned, the commitment can be canceled. The
default rule should be applicable when no information about the condition is available.
This is the essence of nonmonotonic reasoning. Such defeasible reasoning is beyond
the realm of classical logic.

2.1 Introduction

To overcome the aforementioned difficulties in specifying protocols, we use NCL. We
choose NCL because it has an intuitive syntax and semantics. The language C+ [3],
which is based on NCL, has a semantics based on state transition systems which agrees
with our intuition about protocols. Further, it has been shown to be elaboration tolerant
[6]. NCL is a logic of universal causation meaning that every fact that is caused holds
and every fact that holds is caused. Universal causation is not so much a philosophical
stance as a practical one, as universal causation yields a uniform semantics for causal
theories. Taking this stance makes NCL suitable for simulation and planning since ev-
erything can be explained. Also, in our domain, a commitment holds or does not hold
only because there is a reason for it to hold or not hold. Moreover, as we show below,
universal causation can be disabled for selected formulas.

The signature of a causal theory is the set � of symbols called constants. Each
constant c is assigned a nonempty finite domain Dom(c) of symbols. An atom is of the
form c = v where v � Dom(c). An interpretation of � is an assignment c = v for each
c ��� where v � Dom(c). Since we consider only boolean atoms, either c = true or c
= false. A formula in NCL is a combination of atoms using the connectives of classical
logic. A causal rule is of the form F � G, where F and G are formulas of classical logic
and are called the head and the body of the rule, respectively. This means that there is
cause for F to be true if G is true. It does not say that G is the cause for F. This reflects
the intuition that it is sufficient to know the conditions under which a fact is caused.
As an example, consider a switch S that, when closed, lights two bulbs A and B. Even
though A being lit is not the cause for B being lit, it is correct to say that there is a cause
for B to be lit when A is lit. A theory in NCL consists of a set of causal rules.

Constants in causal theories are either fluents or actions. A causal theory describes
histories of length m+1, (m � 0), by creating for all i, (i �
	 0, ����� , m), a copy of every

fluent and, for all i, (i � 	 0, � ��� , �����), a copy of every action. The interpretation of
fluents for a particular i represents state ��� and the interpretation of actions in state �	�
represent the transition to state ��
��� .

2.2 NCL Semantics

Models for formulas in NCL are defined in the same way as classical logic. An inter-
pretation is a model of a set X of formulas iff it satisfies all the formulas in X. If every
model of X satisfies a formula F, then X entails F, or symbolically X � � F. We can now
define models of a causal theory. Let I be an interpretation of the signature � of a theory
T. The reduct ��� is the set of all heads whose bodies are satisfied by the interpretation
I. If I is also a unique model of ��� , then I is a model of T. If I is not a unique model
of the reduct, then some constant is missing from the reduct, and therefore there is no
explanation for that constant. But NCL is a logic of universal causation, therefore, no
constant should be unexplained.

As an example, consider the following theory � � consisting of rules R1 and R2.

R1. p � q
R2. q � q

R1 says that there is a cause for p if q is true. R2 says that there is a cause for q.
Reasoning informally using the principle of universal causation, we see that there is no
cause for � p to be true. Therefore, p has to be true. Therefore, p must be caused. The
only way p can be caused is if q is true. And, q is caused by R2. Therefore, the only
possible interpretation for this theory is I = 	 p = true, q = true .

Intuitively, ��� represents facts that are caused, according to theory T under inter-
pretation I. If a causal theory T has a model I, we say that it is consistent or satisfiable.
If all models of T satisfy a formula F, that means T entails F or T � � F.

Coming back to our example theory ��� with rules R1 and R2, we consider all the
possible interpretations to see which, if any, is a model of ��� :
1. � � = 	 p = true, q = true : � ���� = 	 p, q . � � is a unique model of � ���� . Therefore, � �

is a model of � � .
2. ��� = 	 p = false, q = true : � ���� = 	 p, q . � � is not a model of � ���� . Therefore, � � is

not a model of � � .
3. ��� = 	 p = true, q = false : � �� � = 	 . � �� � has no models. Therefore, � � is not a

model of � � .
4. �"! = 	 p = false, q = false : � �$#� = 	 . � �$#� has no models. Therefore, � ! is not a

model of �%� .
Note that � � = 	 p = true, q = true is the only model of this theory that matches the

result of our informal reasoning.
To see how NCL is nonmonotonic, consider a theory � � consisting of the rule &'�� �(&)� � . This rule is like a default rule. The only model of � � is I(c) = 1. Now

consider a theory � � such that it had two rules, &*� � �+&,� � and &*�.- �0/21	354 .
Note that � � �6� � . However, the only model of � � is I(c) = 2.

2.3 Action Descriptions in C+

Recall that C+ is a high level action description language based on NCL. It is easier
to specify theories in C+ than directly in NCL because of it’s concise notation. Before
we describe the syntax and semantics of NCL and C+ formally, we describe informally
the meanings of some of C+ rules that we use later. A formula in C+ is a propositional
combination of constants which could either be action constants or fluent constants.
Actions in NCL are interpreted to be unit-length. This paper is restricted to boolean
constants. An action constant being true represents the execution of the action. The
meanings of the rules we use follow.

– a causes b, where a and b are actions.
This means that action a causes action b and both happen concurrently.

– a causes f, where a is an action and f is a fluent.
This means that action a causes f to hold in the next state.

– A � F causes b, where A is a conjunction of actions, b is an action and F is a
conjunction of fluents.
This means that in a state where F is true and actions in A happen, then action b
happens concurrently.

– a causes a, together with the rule � a causes � a, where a is an action.
These two rules mean that there is a cause for a and there is a cause for � a respec-
tively. In other words the a is exogenous, it simply happens or does not happen.
Without these rules, the action is not exogenous. Universal causation is disabled
for these rules.

– a may cause f, where a is an action and f is a fluent.
This means that f may hold after a’s execution if it does not already hold. Thus, this
rule expresses nondeterminism.

– caused a after f, where a is an action and f is a fluent.
This means that f causes a in the same state. Notice that this rule uses the caused
form and not the causes form because no suitable formulation in terms of causes
exists. This rule expresses the causation of an action and differs from the rule a
causes f above which expresses the causation of a fluent.

– Fluents are declared as inertialFluents meaning that their assignment persists from
one state to the next unless changed by some other rule.

2.4 Translating C+ to NCL

Let’s describe C+ formally and show the translation from rules in C+ to rules in NCL.
C+ includes three kinds of rules, namely, static rules, fluent dynamic rules and action
dynamic rules. A fluent can be either a statically determined fluent or a simple (dynamic)
fluent. Static fluents can appear in the heads of only static rules. A fluent formula con-
sists only of fluents. An action formula consists only of actions. A static rule is an
expression of the form

R3. caused F if G

where F and G are fluent formulas. Static rules express indirect effects of actions
that are instantaneous with respect to the causal fluent formula. A dynamic rule is an
expression of the form

R4. caused F if G after H

It is called an action dynamic rule if F and G are both action formulas. It is called a
fluent dynamic rule if F and G are both fluent formulas. Action dynamic rules express
the causation of an action and fluent dynamic rules the causation of a fluent.

An action description � consisting of such rules is turned into a causal theory ���
where m is the length of the history. The signature � of ��� then consists of

1. i � c for every fluent c � � for every i �
	 0, � ��� , m
2. i � c for every action c � � for every i �
	 0, � ��� , m-1

The domain of i � c is the same as Dom(c) and i � F means i is inserted in front of every
occurrence of every constant in F. The rules of ��� are then:

R5. i � F � i �G, for every static rule R3 in D and every i �
	 0, � ��� , m ;

R6. i � F � i �G � i �H, for every action dynamic rule R4 in D and every i ��	 0, � ��� ,
m-1 ;

R7. i+1 � F � i+1 �G � i �H, for every fluent dynamic rule R4 in D and every i � 	 0,
��� � , m-1 ;

R8. 0 � c = v � 0 � c = v, for every simple fluent constant c � � and every v � Dom(c).
(Notice that every simple fluent has all possible values in the initial state and
therefore, they are exogenous in the initial state. Thus, universal causation is
disabled for them.)

All examples that follow are in the abbreviated C+ notation. We list the relevant C+
abbreviations below, extracted from [3].

A1. A dynamic rule of the form caused F if true after H abbreviates to H causes F.
A2. An action dynamic rules of the form caused F if G after H abbreviates to G � H

causes F
A3. The action dynamic rules caused a if a and caused � a if � a where a is an action,

together abbreviate to exogenous a. In C+ such an action is called an exogenous-
Action.

A4. The fluent dynamic rules caused p if p after p and caused � p if � p after � p
where p is a fluent together abbreviate to inertial p

A5. The fluent dynamic rule caused F if F after H abbreviates to H may cause F.

3 Commitments

Commitments among agents have been recognized as a fundamental notion in cooper-
ative problem solving [7–9]. Castelfranchi [10] and Krogh [11] present, respectively, a
social and logical perspective on commitments. In our work, we do not reason about
the commitments from the point of view of cooperation among agents. We use com-
mitments to specify protocols. As agents interact with each other using some protocol,
they create and manipulate commitments. The breach of a commitment represents a
violation of a protocol. The agent that is bound to fulfill the commitment is called the
debtor of the commitment. The agent that is the beneficiary of the commitment is called
the creditor.

Definition 1. A base-level commitment C(x,y,G,p) binds a debtor x to a creditor y for
fulfilling the condition p in context G.

Definition 2. A conditional commitment CC(x,y,G,p,q) denotes that if a condition p is
brought about, then the commitment C(x,y,G,q) will hold.

Both commitments and conditional commitments are created in a context G, which
can be thought of as an institution or society whose rules are binding on the agents
that join it. The context also defines the meanings of the terms used in the context.
Henceforth, we omit G to reduce clutter.

Singh[12] lists operations for the creation and manipulation of commitments. These
operations cannot be arbitrarily carried out. They are subject to metacommitments that
are rules that govern the commitment operations and are part of the context G. The
operations are listed below.

– Create(x,y,p) creates a new commitment C(x,y,p).
– Discharge(x,y,p) discharges the existing commitment C(x,y,p) so that it no longer

holds.
– Cancel(x,y,p) cancels the existing commitment C(x,y,p) so that it no longer holds.
– Delegate(x,y,p,z) delegates the commitment C(x,y,p) to a new debtor z. More specif-

ically, the original commitment C(x,y,p) no longer holds and a new commitment
C(z,y,p) is created in its place.

– Assign(x,y,p,z) assigns the commitment C(x,y,p) to a new creditor z. More specif-
ically, the original commitment C(x,y,p) no longer holds and a new commitment
C(x,z,p) is created in its place.

– Release(x,y,p) releases the debtor x from the commitment C(x,y,p) so that the com-
mitment no longer holds.

4 NCM Representation of Protocols

In our approach, we represent protocols as NCMs. An NCM is a causal theory in C+
that consists of two parts. The first part is a protocol-independent causal theory of com-
mitments in which we capture the representation of commitments and the operations on
them. The second part is protocol specific and includes constants and rules describing

the given protocol’s domain. The distinction between the two parts is only to separate
out the domain independent part, logically they form a complete causal theory as we
shall see later. We first present the theory of commitments and then model the NetBill
protocol in causal logic. Together they represent the NetBill NCM.

4.1 Commitments in Causal Logic

We represent commitments and operations on them in the causal logic. Commitments
in causal logic are declared to be constants of the type inertial fluents.

– C(x,y,p), CC(x,y,p,q) :: inertialFluents

where x and y are variables of the sort agent and p and q are variables of the sort
condition. By declaring commitments to be inertialFluents, we include rules of the
kind A4 for each commitment. Conditional commitments are declared as CC(x,y,p,q)
where q is also a variable of sort condition. Conditional commitments are also declared
as inertialFluents. For each of the operations on commitments listed in Section 3, there
is a declaration of the form

– � Operation � :: action

Constants of type action are not exogenous, that is, rules of the form A3 are not included
in the theory. Their execution, therefore, has to be caused by other actions or fluents.
We add two more operations for handling conditional commitments.

– CDischarge(x,y,p,q), CCreate(x,y,p,q) :: action

The following rules capture the meaning of the operations:

R9. Create(x,y,p) causes C(x,y,p)
R10. Discharge(x,y,p) causes � C(x,y,p)
R11. Cancel(x,y,p) causes � C(x,y,p)
R12. Delegate(x,y,p,z) causes � C(x,y,p) & C(z,y,p)
R13. Release(x,y,p) causes � C(x,y,p)
R14. Assign(x,y,p,z) causes � C(x,y,p) & C(x,z,p)
R15. CCreate(x,y,p,q) causes CC(x,y,p,q)
R16. CDischarge(x,y,p,q) causes � CC(x,y,p,q) & C(x,y,q)

All the variables are grounded such that x �� y and p �� q. We omit the rules specifying
the grounding of the variables. Since we want the operations to be caused by other
things, then in those states where an operation is not caused, there must be a reason for
it to be not caused. In other words, we want the operations to be partially exogenous.
So for each of the commitment operations, we include rules of the form

R17. ��� Operation � causes ��� Operation �
An example is the rule � Create(x,y,p) causes � Create(x,y,p). The specification also

includes rules to capture the restriction that no two commitment operations are concur-
rent.

4.2 NetBill Specification in Causal Logic

We now represent the NetBill protocol in causal logic. The following rules together with
the theory of commitments given above represent the specification of NetBill NCM. We
declare

– m, c to be of the sort agent
– goodsc, payc, acceptc, receiptc to be of the sort condition
– request, offer, accept, goods, pay, receipt to be inertialFluents
– SendRequest, SendOffer, SendAccept, SendGoods, SendPayment, SendReceipt to be

exogenousActions.

The meanings of the above constants are as their name indicates. Conditions are an
artifact of conditional commitments. We assume that all fluents and actions have unique
identifiers. We have the following rules.

R18. SendRequest causes request
R19. SendOffer causes offer
R20. SendOffer causes CCreate(m, c, acceptc, goodsc)
R21. SendAccept causes accept
R22. SendAccept & CC(m,c,acceptc,goodsc)

causes CDischarge(m,c,acceptc,goodsc)
R23. SendAccept causes CCreate(c,m,goodsc,payc)
R24. SendGoods causes goods
R25. SendGoods causes CCreate(m, c, payc, receiptc)
R26. SendGoods & CC(c,m,goodsc,payc) causes CDischarge(c,m,goodsc,payc)
R27. SendGoods & C(m,c,goodsc) causes Discharge(m,c,goodsc)
R28. SendPayment causes pay
R29. SendPayment & CC(m,c,payc,receiptc) causes CDischarge(m,c,payc,receiptc)
R30. SendPayment & C(c,m,payc) causes CDischarge(c,m,payc)
R31. SendReceipt causes receipt
R32. SendReceipt & C(m,c,receiptc) causes Discharge(m,c,receiptc)

In our representation no two commitment operations are concurrent. Also, no two
protocol actions are concurrent. However, when a protocol action causes a commitment
operation, they are concurrent. By rule R6, the interpretation of ActionA causes ActionB
is such that ActionA and ActionB are concurrent. This ensures that the protocol action
is concurrent with the commitment operation it causes is satisfied. There could be other
concurrency models possible for NetBill. We choose this one because of its simplicity.

We now add rules for our motivating example, Example 1, to this protocol specifi-
cation. We introduce SendReturn and SendGoods as exogenous actions. We introduce a
new action Ab and a new fluent damagedGoods to indicate that the goods are damaged.
We also include the nondeterministic rule R34 to say that as a result of the SendGoods
action, the goods may be damaged. Rule R33 captures the condition that the cancel op-
eration is not allowed for any commitment. Rule R35 however says that a commitment
can be canceled under abnormal conditions. Rules R36 and R37 ensure that Ab is false,
except when damagedGoods is true. We add the Rules R35 � R37 to accommodate
Example 1. Rules R33 and R34 are already in the theory. Ab is an action because it has
no meaning in the states. It acts as a qualifier for the exogenous action SendReturn.

R33. � Cancel(x,y,p) causes � Cancel(x,y,p)
R34. SendGoods may cause damagedGoods
R35. SendReturn � C(c,m,pay) � Ab causes Cancel(c,m,pay)
R36. caused Ab if damagedGoods
R37. � Ab causes � Ab

The theory also contains rules that place constraints on the actions so that the ex-
ecution of actions makes sense. For example, we specify that the SendRequest action
cannot happen after the payment has been made. Rules

4.3 Executing NetBill in CCalc

CCalc (Causal Calculator) is a reasoning tool that implements causal logic. Given a
causal theory and a goal in the form of a query, CCalc finds paths to the goal. We load
the NetBill NCM into CCalc and pose queries one after the other. CCalc then finds
paths to satisfy each query.

:- query
label::0;
maxstep:: 3;
0: -offer,

-accept,
-returned,
-goods,
-C(x,y,p),
-CC(x,y,p,q),
-pay,
-request,
-receipt,
-damagedGoods;

maxstep: returned.

Fig. 2. Example Query

Figure 2 shows an example query. This query asks for an execution sequence of
three of fewer steps, beginning from a state in which all fluents are false, in which the
goods have been returned. Running this query in CCalc produces the output as shown
in Figure 3 (formatted for readability).

The action SendAccept is caused which in turn causes the CCreate which creates
the conditional commitment that if the goods are sent then the customer will pay. The
result of these actions is reflected in state 1. SendGoods is then caused which reflects
the fact that the merchant has sent the goods. SendGoods causes the discharge of the
conditional commitment created by the customer resulting in the customer’s commit-
ment to pay. SendGoods also creates a new conditional commitment that if the customer

Solution:

State 0:

ACTIONS: CCreate(c,m,goodsc,payc)
SendAccept

State 1: CC(c,m,goodsc,payc) accept

ACTIONS: CCreate(m,c,payc,receiptc)
CDischarge(c,m,goodsc,payc)
SendGoods

State 2: C(c,m,payc) CC(m,c,payc,receiptc)
accept goods damagedGoods

ACTIONS: Cancel(c,m,payc) Ab Return

State 3: CC(m,c,payc,receiptc) accept
goods returned damagedGoods

Fig. 3. Answer

pays then the merchant will send the receipt. This example is interesting as SendGoods
also causes damagedGoods, resulting in state 2. damagedGoods causes Ab in state 2.
So the SendReturn action is successful, which in turn causes the cancellation of the
commitment to pay. State 3 is the resulting state which also satisfies the goal state of
our query.

5 Discussion

Our focus in this work is to develop meaningful representations of agent communication
protocols. We do so by using commitments to declaratively represent states and actions.
This gives our representation a verifiable semantics [13]. By using commitments to
model protocols, we constrain protocols no more than is necessary. We have highlighted
the need for a nonmonotonic logic for commonsense reasoning in protocols. We used
NCL towards this end and showed how a protocol can be represented in NCL. Like
the NCL, there are a few other noteworthy formalisms for reasoning about action and
change. Dynamic Logic [14] is a modal logic augmented with an algebra of regular
events. However, it is monotonic and therefore not suitable for our purposes. Event
Calculus [15] and situation calculus [16] have been extended with circumscription to
enable nonmonotonic reasoning.

Both FSMs and NCMs are formal representations of protocols. Both approaches are
verifiable and in the case of an FSM, trivially so. An NCM, though, represents meaning.

Agents that can reason about commitments take actions accordingly. For example, if,
as part of a particular protocol, an agent enters into a commitment, then the agent can
plan its actions, even those not directly related to the protocol, so that the commitment
is never violated. Alternate paths through the protocol may be selected based on criteria
like safety or number of messages exchanged. For example, an agent can adopt an ap-
proach where it does not commit unless another agent also commits for some desirable
condition. Also it is not convenient to express defaults in FSMs. In fact, the defaults
wouldn’t be obvious at all in an FSM. FSMs are also not as elaboration tolerant as
NCMs.

5.1 Conventional Protocols and Protocol Modeling

Conventional protocols like TCP/IP, RPC, HTTP, and so on have a well-defined envi-
ronment and scope. Their focus is on the correct delivery of data and they are therefore
strict in the sense that they prescribe all paths for correct execution as well as for er-
ror recovery. Modeling such protocols as FSMs is usually sufficient. Notable among
other formalisms for modeling protocols are Petri Nets [17] and statecharts [18]. Petri
Nets have proven to be especially useful in modeling concurrency. Petri nets specify
transitions (T-elements) between places (P-elements) which are sets of conditions. Stat-
echarts is a visual formalism that extends state machines by adding support for hier-
archy, concurrency and communication. Statecharts provide the designer the power to
cluster states into super-states as well as refine states, thereby leading to compact rep-
resentations for complex behavior. Statecharts can also represent defaults. However,
statecharts also specify the transitions between states. As such, neither petri nets nor
statecharts afford much flexibility. Statecharts though, are easier to comprehend be-
cause of the ability to cluster and refine states unlike NCMs where the specification
may become difficult to manage as the number of rules increase.

5.2 Commitments

Commitments have been studied in the context of distributed problem solving and co-
ordination. Bratman [7] argues that for shared cooperative activity, among other things,
commitment to joint activity and commitment to mutual support are required. Grosz
and Kraus [9] investigate the formulation of shared plans for coordinating group action.
In their framework, an agent can adopt two types on intentions, intend-to and intend-
that, that commit the agent to an action and state of affairs respectively. Jennings [19]
presents commitments as a fundamental notion for efficient coordination in distributed
systems. Jennings also mentions conventions which monitor the commitments and state
when a commitment may be reassessed. Jennings further reformulates different models
of coordination in terms of commitments. A distinguishing feature of all of the above
work is that they present commitments as a mentalistic notion, assuming a system of
cooperative agents. Shoham’s agent oriented computing paradigm [8] introduces obli-
gation as a modality required to describe the mental state of an agent. Sandholm and
Lesser [20] study automated negotiation among self-interested agents whose computa-
tions are resource bounded. They argue that protocols that have leveled commitments,

that is, when commitments vary from breakable to unbreakable in a continuum by as-
signing a function to evaluate the cost of breach of each commitment, are more suitable
for contracts than full commitment protocols. Krogh [11] examines the possibility of
using of deontic logic for analyzing multiagent systems. Castelfranchi [10] presents
an ontology of commitments with the aim of understanding organizational activity. He
defines social commitment as a relation between two or more agents and discusses its
various aspects. Singh [13] defends a commitment-based social semantics for agent
communication.

We do not study commitments from the point of view of coordination. However
as we pointed out earlier in this section, an agent can reason about its future actions
depending upon the commitments it already has or ones that the agent might have to
make in the future. Also, we do not specify that commitments necessarily have to be
represented in an agent’s state. We are exploring the possibility of compiling NCMs
into FSMs that have no representations of commitments (see section 6 for details). We
are also not concerned directly with the economic impact of the breach of a commit-
ment. Though we specify protocols in a logical language using commitments, we do
not present a deontic logic. Social commitments, that is, directed obligation from one
agent to another, represent the cornerstone of our research. Our scope is limited to the
flexible specification of protocols and their verification.

5.3 Protocols

Yolum and Singh [4] proposed commitment machines and also showed how event cal-
culus can be used to represent protocols and generate new paths in the protocols [21].
They do not consider commonsense reasoning situations. Koning and Huget [22] de-
scribe a methodology for designing interaction protocols for multiagent systems. In
their work, the focus is on reusability and modularity of protocols. They achieve this
by composing protocols out of microprotocols using a formal language called Commu-
nication Protocol Description Language (CPDL). A formula in CPDL corresponds to
an edge going from an initial state to a final state. The edge is labeled with a sequence
of microprotocols which makes the protocol quite rigid. Koning and Huget also do not
consider which microprotocols can be composed. This job is presumably left to the de-
signer. With our commitment-based approach, it is possible for the agent to determine
which protocols can be composed by looking at the states in the protocol.

5.4 Agent Communication Languages

An agent communication language (ACL) allows agents of heterogeneous designs to
interact. Developing a semantics for agent communication languages (ACLs) that is ex-
pressive and verifiable has been a long standing goal of the agent community. To be
verifiable, an ACL should have social semantics [23]. Earlier efforts at standardization
of ACLs like Arcol [24] and KQML [25] promoted mental agency, that is, they were
based on mental concepts like beliefs and intentions, and were therefore, not verifiable.
The ongoing efforts at standardizing ACLs are based on communicative acts. The prob-
lem with giving a communicative acts based semantics is that it is not clear what the

meanings of the communicative acts should be. Also it is not clear how many commu-
nicative acts are needed. Another challenge is relating the communicative acts to the
conversation in which they occur. By giving semantics to protocols directly we are able
to give a simple, operational characterization of protocols without getting bogged down
with the above issues.

Dignum and van Linder [26], and Guerin and Pitt [27] define ACLs in term of
communicative acts. Dignum and van Linder’s framework considers four components,
the information component, the action component, the motivational component and
the social component as constituting an agent framework and formally describes and
relates them. The framework is developed in dynamic logic which is monotonic. They
postulate a COMMIT communicative act, but other communicative acts have mentalistic
preconditions which makes the framework suitable only for a system of cooperative
agents.

Guerin and Pitt propose an ACL specification in which declarative ACL specifi-
cations are given procedural interpretations. An ACL specification in their approach,
consists of three parts: a Converse Function that specifies permissions and obligations
for subsequent speech acts based on the conversation state, a Protocol Semantics that
captures protocol dependent meanings of speech acts, and a Speech-Act Semantics that
give the protocol independent part of the meaning. It is not clear how useful it is to
model the protocol-independent part of the meaning, since most meaning comes from
the protocol.

6 Future Directions

Our main aim in this work is to come up with protocols that have verifiable semantics
and constrain the agent no more than to the extent necessary to carry out legal interac-
tions. To carry our work further, we have identified the following future directions.

Compiling NCMs into FSMs: The preceding sections present commitment-based se-
mantics for interaction protocols and show how an agent can reason with commitments.
However, it is not necessary that agents be able to reason about commitments to exe-
cute a protocol. For some applications efficient execution might be important. It may
also be the case that an agent designer wants to exclude certain risky or lengthy paths
(behaviors) in the protocol. For such agents, it would be useful if we could compile an
NCM into an FSM. The complete NCM need not be compiled into an FSM. A designer
could selectively compile behaviors (sequences of transitions) from an NCM into an
FSM. The FSM can then be executed without an inference engine. Another advantage
of compilation instead of directly designing or extending an FSM is that it is not al-
ways clear how to add states and transitions to an FSM. Compilation from an NCM
makes this process automatic. Figure 4 shows an example FSM for NetBill, that may
be compiled from the action description presented in Section 4.2.

Since C+ action descriptions have a transition system semantics, it should be rela-
tively straightforward to compile NCMs into FSMs. An important future direction is to
formally define NCMs in terms of C+ action descriptions and present a procedure for
compiling NCMs into FSMs. It is equally important to prove that the generated FSM

2

3

4

5

6

8

9

m: Send Goods

7

c: Send Accept

c: Send Payment

m: Send Offer

m: Send Goods

c: Send Request

m:Send Receipt

m: Send Goods

c:
Send Paym

ent

m: Send Goods

c: Send Accept

m: Send Offer

1

c: Send Accept

Fig. 4. FSM representation of the extended NetBill protocol

is sound and complete with respect to the NCM it was compiled from. We are also in-
vestigating ways to automatically compile FSMs from NCMs. Selective compilation is
also a subject of future research.

Protocol Specification: While our formulation of NCM has some desirable proper-
ties like declarative rules and elaboration tolerance, it lacks other properties desirable
in protocols such as a comprehensible graphical representation, role bindings for agents
and temporal model checking [28]. For example, we cannot prove satisfactorily if the
NetBill NCM is correct and complete. A related piece of work is to compare NCMs
with other formalism like statecharts and Petri Nets in more depth. Another interesting
avenue to explore is the compilation of NCMs into more expressive graphical formal-
ism like statecharts.

Protocol Distribution: In the NCM representation of NetBill, we did not specify roles
in the protocol. However, an agent will be executing the role that it adopts in the pro-
tocol. We want to formulate procedures based on symbol manipulation to distribute a
centralized protocol among the various roles in the protocol. The result will be roles
skeletons that are also NCMs. It is not clear what the specification of a role itself should
be. Is a role just a label, or does it specify the required capability of an agent to adopt a

role along with normative rules and authorizations that come along with the role? An-
other technical challenge is proving that a distributed protocol is sound and complete
with respect to the centralized protocol.

Creating Role Skeletons from BPEL Flows: BPEL [29], the Business Process Exe-
cution Language is a draft standard for specifying and coordinating business processes.
Intuitively, it is a process flow graph with nodes as tasks and edges as messages. Busi-
ness flows, as they are currently specified, are like FSMs in the sense that they have
been designed with certain scenarios in mind. As such, they are quite rigid. To make
business processes more flexible, we envisage the following design-time methodology.

1. The designers start with an interaction diagram or state machine or some other
graphical representation for the protocol that is to be modeled as a BPEL flow.

2. The designers build NCM representation of the protocol with enhancements to
make it more flexible and then partition the NCM into the role skeletons.

3. The role skeletons are compiled into FSMs
4. Compile FSMs into a BPEL flow. This should be easier than compiling an NCM

into a BPEL flow.

We plan to build a tool which incorporates this methodology. The tool would sug-
gest enhancements to the designer for a given protocol, build an NCM based on the
choices of the designer and compile it into an FSM and then, perhaps with annotations
from the user, compile it into a BPEL flow.

Verifying Strategies: It will often be the case that an agent is confronted with the
problem of selecting between multiple paths that it can take to reach a goal. The agent
selects a path based on some strategy. For example, if the customer does not trust a
merchant, the customer might adopt a strategy where it never pays before receiving
the goods. On the other hand, if it does, it could adopt a strategy where it accepts to
buy goods for a certain price without even asking the merchant for offers or pays be-
fore getting the goods. It is possible to imagine more complex strategies. An interesting
problem is the specification of strategies with respect to commitments and determining
which protocols (more specifically, paths in the protocol) satisfy a given strategy. An
agent can then inspect a role to check whether it satisfies its strategy.

We conclude by saying that this work represents the first step in the development
of a comprehensive methodology for designing flexible multiagent interaction proto-
cols. Development of the protocol design tool that incorporates this methodology is the
primary objective of this research.

References

1. Smith, R.G.: The contract net protocol: High-level communication and control in a dis-
tributed problem solver. IEEE Transactions on Computers 29 (1980) 1104–1113

2. Cox, B., Tygar, J., Sirbu, M.: Netbill security and transaction protocol. In: Proceedings of
the First USENIX Workshop on Electronic Commerce. (1995) 77–88

3. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theories.
Artificial Intelligence (2003) To appear.

4. Yolum, P., Singh, M.P.: Commitment machines. In: Proceedings of the 8th International
Workshop on Agent Theories, Architectures, and Languages (ATAL-01), Springer-Verlag
(2002) 235–247

5. McCarthy, J.: Elaboration tolerance. In progress (1999) http://www-
formal.stanford.edu/jmc/elaboration.html.

6. Lifschitz, V.: Missionaries and cannibals in the causal calculator. In: Proceedings of the 7th
International Conference on Principles of Knowledge Representation and Reasoning. (2000)
85–96

7. Bratman, M.E.: Shared cooperative activity. The Philosophical Review 101 (1992) 327–341
8. Shoham, Y.: Agent-oriented programming. Artificial Intelligence 60 (1993) 51–92
9. Grosz, B.J., Kraus, S.: Collaborative plans for complex group action. Artificial Intelligence

86 (1996) 269–357
10. Castelfranchi, C.: Commitments: From individual intentions to groups and organizations. In:

Proceedings of the AAAI-93 Workshop on AI and Theories of Groups and Organizations:
Conceptual and Empirical Research. (1993)

11. Krogh, C.: Obligations in multiagent systems. In Åmodt, A., Komorowski, J., eds.: Scandi-
navian Artificial Intelligence Conference 1995 (SCAI’95), Trondheim (1995) 19–30

12. Singh, M.P.: An ontology for commitments in multiagent systems: Toward a unification of
normative concepts. Artificial Intelligence and Law 7 (1999) 97–113

13. Singh, M.P.: A social semantics for agent communication languages. In: Proceedings of the
1999 IJCAI Workshop on Agent Communication Languages, Springer-Verlag (2000)

14. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge, MA (2000)
15. Kowalski, R., Sergot, M.: Logic-based calculus of events. New Generation Computing 4

(1986) 67–95
16. McCarthy, J.: Situations, actions and causal laws. TR, Stanford University (1963)
17. Girault, C., Valk, R.: Petri Nets for System Engineering. (2003)
18. Harel, D.: Statecharts: A visual formalism for complex systems. Science of Computer

Programming 8 (1987) 231–274
19. Jennings, N.R.: Commitments and conventions: The foundation of coordination in multi-

agent systems. Knowledge Engineering Review 2 (1993) 223–250
20. Sandholm, T., Lesser, V.: Issues in automated negotiation and electronic commerce: Extend-

ing the contract net framework. In: [30]. (1998) 66–73 (Reprinted from Proceedings of the
International Conference on Multiagent Systems, 1995).

21. Yolum, P., Singh, M.P.: Flexible protocol specification and execution: Applying event calcu-
lus planning using commitments. In: Proceedings of the 1st International Joint Conference
on Autonomous Agents and MultiAgent Systems (AAMAS), ACM Press (2002) 527–534

22. Koning, J.L., Huget, M.P.: A semi-formal specification language dedicated to interaction
protocols. In Kangassalo, H., Jaakkola, H., Kawaguchi, E., eds.: Information Modeling and
Knowledge Bases XII, Frontiers in Artificial Intelligence and Applications. IOS Press (2001)

23. Singh, M.P.: Agent communication languages: Rethinking the principles. IEEE Computer
31 (1998) 40–47

24. Sadek, D.: Compliance in Arcol (1997) Personal communication.
25. Finin, T., Fritzson, R., McKay, D., McEntire, R.: KQML as an agent communication lan-

guage. In: Proceedings of the International Conference on Information and Knowledge Man-
agement, ACM Press (1994) 456–463

26. Dignum, F., van Linder, B.: Modelling social agents: Towards deliberate communication. In:
Handbook of Defeasible Reasoning and Uncertainty Management Systems, Kluwer (2002)
357–380

27. Guerin, F., Pitt, J.: Denotational semantics for agent communication languages. In: Pro-
ceedings of the Fifth International Conference on Autonomous Agents, ACM Press (2001)
497–504

28. Holzmann, G.J.: Design and Validation of Computer Protocols. Prentice-Hall, London
(1991)

29. W3C: Business process execution language for web services, version 1.1. (2003) URL:
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/.

30. Huhns, M.N., Singh, M.P., eds.: Readings in Agents. Morgan Kaufmann, San Francisco
(1998)

