
OWL-P: A Methodology for Business Process
Development

Nirmit Desai1, Ashok U. Mallya2, Amit K. Chopra1, and Munindar P. Singh1

1 Department of Computer Science
North Carolina State University, Raleigh, NC 27695-8206, USA

{nvdesai, aumallya, akchopra, singh}@ncsu.edu
2 Veraz Networks Inc

926 Rock Avenue, Suite 20, San Jose, CA 95131, USA
amallya@veraznet.com

Abstract. Business process modelling and enactment are notoriously complex,
especially in open settings where the business partners are autonomous, require-
ments must be continually finessed, and exceptions frequently arise because of
real-world or organizational problems. Traditional approaches, which attempt
to capture processes as monolithic flows, have proved inadequate in addressing
these challenges. We propose an agent-based approach for business process mod-
elling and enactment which is centred around the concepts of commitment-based
agent interaction protocols and policies. A (business) protocol is a modular, pub-
lic specification of an interaction among different roles. Such protocols, when
integrated with the internal business policies of the participants, yield concrete
business processes. We show how this reusable, refinable and evolvable abstrac-
tion simplifies business process design and development.

1 Introduction

Unlike traditional business processes, processes in open, Web-based settings typically
involve complex interactions among autonomous, heterogeneous business partners.
Conventionally, business processes are modelled as monolithic workflows, specifying
exact steps for each participant. Because of the exceptions and opportunities that arise
in open environments, business relationships cannot be pre-configured to the full detail.
Thus, flow-based models are difficult to develop and maintain in the face of evolving
requirements. Furthermore, such conventional models do not facilitate flexible actions
by the participants.

This paper proposes an approach for business process modelling and enactment,
which is based on a combination of protocols and policies. The key idea is to capture
meaningful interactions as protocols. Protocols can involve multiple roles and address
specific purposes such as ordering, payment, shipping and so on. Protocols are given
a contractual semantics in terms of commitments among roles that capture the essence
of the relationship among roles. In order to maximize participants’ autonomy and to
be reusable, protocols emphasize the essence of the interactions and omit local details.
Such details are supplied by each participant’s policies. For example, when a protocol
allows a participant to choose from multiple actions, the participant’s policy decides

M. Kolp et al. (Eds.): AOIS 2005, LNAI 3529, pp. 79–94, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

80 N. Desai et al.

which one to perform. Typically, policies are business logic that provide and process
message contents.

This paper seeks to develop the main techniques needed to make this promising ap-
proach practical. Our contributions include a language and an ontology for protocols
called OWL-P, which is coded in the Web Ontology Language (OWL) [1]. OWL-P de-
scribes concepts such as roles, the messages exchanged between the roles, and declara-
tive protocol rules. OWL-P compiles into Jess rules which then can be integrated with
the local policies in a principled manner.

Protocols are not only reusable across business processes but also amenable to ab-
stractions such as refinement and aggregation [2]. The key benefits of this approach are
(1) a separation of concerns between protocols and policies in contrast to traditional
monolithic approaches; and (2) reusability of protocol specifications based on design
abstractions such as specialization and aggregation.

1.1 Running Example

As a running example, let’s consider a business process involving a small number of
parties. Fig. 1 depicts a purchase process where items to be purchased have already
been selected and the price has been agreed upon. Each participant is shown by a sepa-
rate shaded region, the graph made of dark edges denotes the flow of the given partic-
ipant. Circular nodes represent the participant’s internal business logic or policies, e.g.
to decide the parameters of an out-bound message. Rectangular nodes represent exter-
nal interfaces through which a participant receives messages. Thus, an ordering of dark
arrows, circles and rectangles represents the local process of the participant. When there

2.
 s

hi
p

in
fo

3. feasible ?

4. yes

5.
 p

ay
 o

pt
io

ns

6.
 p

ay
 in

fo 9.
 r

e c
ei

pt

14. status req

15. status resp

13. capture

11. track#

7. auth req

 1
2.

 s
hi

p
co

nf
irm

#

CUSTOMER

MERCHANT

S
H

IP
P

E
R

P
A

Y
M

E
N

T
 G

A
T

E
W

A
Y

1.
 s

hi
p

 o
pt

io
ns

17. delivery

10. ship it

16. captured

8. auth OK

Fig. 1. A purchasing process

OWL-P: A Methodology for Business Process Development 81

are multiple out-edges from a node, all of them are taken concurrently. The messages
are labelled with numbers to indicate a possible order in which they might occur.

1.2 Shortcomings of Traditional Approaches

The process of Fig. 1 can be captured via a traditional flow-based modelling approach.
Such a representation would be functionally correct, but inadequate from the perspec-
tives of open environments. The following are its shortcomings:

Lack of Contractual Semantics. Traditional approaches expose low-level interfaces,
e.g. via WSDL [3], but associate no contractual semantics with the participants’
actions. To control the autonomy of the participants and enforcing compliance,
such a semantics is crucial. This lack precludes flexible enactment (as needed to
handle exceptions) as well as reliable compliance checking. For this reason, we
cannot determine if a deviation from a specific sequence of steps is significant.

Lack of Reusable Components. The local processes of the partners are not reusable
even though the patterns of interaction among the participants might be. Local pro-
cesses are monolithic in nature and formed by ad hoc intertwining of internal busi-
ness logic and external interactions. Since business logic is proprietary, local pro-
cesses of one partner are not usable by another. For instance, if a new customer
were to participate in this open environment, its local process would have to be
developed from scratch.

Organization

Section 2 introduces some key concepts and terminology. Section 3 describes our pro-
tocol specification language and its semantics. Section 4 discusses composite protocols
and their construction. Section 5 shows how augmenting policies with protocols can be
used to develop processes. Section 6 compares our work with relevant research efforts
in the area and Section 7 concludes the paper.

2 Concepts and Terminology

Fig. 2 shows our conceptual model for treatment of business processes based on pro-
tocols and policies. Boxed rectangles are abstract entities (interfaces), which must be
combined with business policies to yield concrete entities that can be fielded in a run-
ning system (rounded rectangles). Abstract entities should be published, shared and
reused among the process developers. We specify a business protocol using rules termed
protocol logic that specify the interactions of the participating roles. Roles are abstract
and are adopted by agents to enable concrete computations. Whereas the protocol logic
specifies the protocol from the global perspective, a role skeleton specifies the proto-
col from the perspective of the corresponding participant role. Thus, each role skeleton
defines the behaviour of the respective role in a protocol.

When an agent needs to participate in multiple protocols, a composite skeleton can be
constructed by combining the protocols according to some composition constraints and
deriving the role skeleton. For example, in a supply chain process, a supplier would be

82 N. Desai et al.

Protocol
Logic

1
2+

1
1

specified by

involves

1
2+

derives

1
1

defines

Agent

adopts
1+

1+

Local
Process

1

1

enacts

Business
Process

aggregation
of

1

2+

1

1+

com
position of

1

1 Implementation of

1

1+

Im
plem

entation of

Business
Protocol

Role

Role
Skeleton

Abstract entity

Concrete entity

Composite
Skeleton

co
up

le
s

1

2+

Business
Logic

1
1

consults

1
1

stipulates

Composite
Protocol

1

1+

composedOf

1

1+

derives

Fig. 2. Conceptual model

a merchant when interacting with a retailer in a trading protocol and would be an item-
sender in a shipping protocol for sending goods to the retailer. A composite skeleton for
such a supplier could be composed by combining trading and shipping protocols and
then deriving the role skeleton for item-sender/merchant role. The resultant composite
skeleton could also be published and then reused for developing local processes of other
suppliers.

An agent’s private policies or business logic are described via rules. The local pro-
cess of an agent is an executable realization of a composite skeleton obtained by in-
tegration of the protocol logic of the composite skeleton and the business logic of the
agent. A business process is the aggregation of the local processes of all the agents par-
ticipating in it. Conversely, a business process is an implementation of the constituent
business protocols.

2.1 Protocols and Commitments

Commitments are used to give semantics to agent interaction. As agents interact, they
create and manipulate commitments. A commitment C(x, y, p) denotes that agent x is
obligated to agent y for bringing about condition p. Commitments can be conditional,
denoted by CC(x, y, p, q), meaning that x is committed to y to bring about q if p holds

OWL-P: A Methodology for Business Process Development 83

where p is called the precondition of the commitment. For example, the conditional
commitment CC(c, b, goods(g), pay(p)) means that the customer c is committed to pay
the bookstore b an amount p if the bookstore delivers the book g to the customer. Com-
mitments are created, satisfied and transformed in certain ways [4]. The following are
the operations defined on commitments:

Op1. CREATE(x, c) establishes the commitment c in the system.
Op2. CANCEL(x, c) cancels the commitment c.
Op3. RELEASE(y, c) releases c’s debtor from commitment c without c being fulfilled.
Op4. ASSIGN(y, z, c) replaces y with z as c’s creditor.
Op5. DELEGATE(x, z, c) replaces x with z as the c’s debtor.
Op6. DISCHARGE(x, c) c’s debtor x fulfils the commitment.

A commitment is said to be active if it has been created but not yet discharged. The
rules regarding discharge of a commitment are given below.

Dis1. C(x,y,p)∧p
discharge(x,C(x,y,p))

Dis2. CC(x,y,p,q)∧p
create(x,C(x,y,q))∧discharge(x,CC(x,y,p,q))

Dis3. CC(x,y,p,q)∧q
discharge(x,CC(x,y,p,q))

3 Protocol Specification

A business protocol is a specification of the allowed interactions between two or more
participant roles. The specification focusses on the interactions and their semantics.
What does it mean to send a certain message to a business partner? What is expected
of the participants wishing to comply to a business protocol? How are the protocols
specified? These are the questions we address in this section.

3.1 OWL-P: OWL for Protocols

OWL-P is an ontology based on OWL for specifying protocols; it functions as a schema
or language for protocols. The main computational aspects of protocols are specified
using rules. We employ the Semantic Web Rule Language (SWRL) [5] for defining
rules. SWRL allows us to specify implication rules over entities defined as OWL-P
instances. The availability of tools such as Protégé [6] is a motivation for grounding our
approach in OWL.

The important OWL-P elements and their properties are shown in Fig. 3. An entity
with a little rectangle represents the domain of the corresponding property. Many of the
properties are self-explanatory and reflect the conceptual model introduced in Section 2.

Slots are analogous to data variables. A slot is said to be defined when it is assigned a
value and it said to be used when its value is assigned to another slot. A slot in a protocol
may be assigned a value produced by another protocol and hence be represented as an
External Slot. An external slot is untyped until it is given the type of the external value
to which it is bound. By contrast, a Native Slot is typed and defined inside the protocol.

84 N. Desai et al.

ProtocolRole

2..* 1

hasRole

Message

*

1

involvesMessage

1

1

hasSender

1

1

hasReceiver

Commitment

1

1

hasCreditor

1

1

hasDebtor

Rule

*

1

dictates Knowledge Base

Proposition

1
1 consults

1
*

contains

1 1

represents

Slot
* 1

modifies
1

*

hasParameter

*
1

hasSlot

ExternalSlot NativeSlot

Fig. 3. Basic OWL-P ontology

A Protocol dictates several rules and consults a Knowledge Base. A knowledge base
consists of a set of Propositions. A proposition in a knowledge base may correspond to
a message, active commitments or other domain specific propositions.

Fig. 4 shows a protocol for ordering goods (along with others, to which we refer
later). For readability, a leading and trailing * is placed around external slot names,
as in *amount* and *itemID*. The customer requests a quote for an item, to which the
merchant responds by providing a quote. Here, a commitment is created providing se-
mantics for the message. The commitment means that the merchant guarantees receipt
of the item if the customer pays the quoted price. The customer can either accept the
quote or reject it (not shown). Again, the semantics of acceptance is given by the cre-
ation of another commitment from the customer to pay the quoted price if it receives
the requested item. Below are the rules for the Order protocol in the “antecedents ⇒
consequents” notation.

Ord1. contains(KB, startProp) ⇒ send(B, reqForQuote(?itemID))
Ord2. contains(KB, reqForQuoteProp(?itemID)) ⇒ send(S, quote(?itemID, ?item-
Price)) ∧ createCommitment(S, CC(S, B, pay(?itemPrice), goods(?itemID)))
Ord3. contains(KB, quoteProp(?itemID, ?itemPrice))⇒send(B, acceptQuote(?itemID,
?itemPrice)) ∧ createCommitment(C, CC(C, M, goods(?itemID), pay(?itemPrice)))
Ord4. contains(KB, quoteProp(?itemID, ?itemPrice))⇒send(B, acceptQuote(?itemID,
?itemPrice))

In the above rules, reqForQuote, quote, and acceptQuote are OWL-P message in-
stances (individuals in OWL terminology). Corresponding proposition instances are
reqForQuoteProp, quoteProp, and acceptQuoteProp. Propositions pay and goods are
commitment conditions, while itemID and itemPrice are native slots. Readers may no-
tice that the itemID variable in the first rule is not assigned any value by the antecedents.
It means that the rule is abstract and not executable and, as we will see in Section 5.2,
it can be augmented with business logic that produces such values. Rules having unde-

OWL-P: A Methodology for Business Process Development 85

Fig. 4. Example: Order, Shipping, and Payment protocols and their composition

86 N. Desai et al.

fined native slots must be augmented with the business logic that produces such values.
How do these rules define the protocol? The next section describes the operational se-
mantics of the protocol rules. The OWL-P ontology and protocol instance examples in
their RDF/XML serialization, and corresponding Protégé projects are available on the
Web [7].

3.2 Operational Semantics

Protocols are specified from the global perspective with an assumption of an abstract
global knowledge base and the rules are assumed to be forward-chained. OWL-P de-
fines several property predicates with operational semantics. Table 1 lists the seman-

Table 1. Operational semantics of protocol rules

Predicate Domain Range Meaning

contains KB Proposition Proposition ∈ KB ?
assert Proposition KB KB ← KB ∪ Proposition
send Role Message Asynchronous send to the receiver

assert(KB, MessageProp)
receive Role Message Asynchronous receive from the sender

assert(KB, MessageProp)
createComm Role Commitment assert(KB, CommitmentProp)

tics for such property predicates of OWL-P. A proposition cannot be retracted from a
knowledge base. In the forthcoming examples, we may omit the OWL-P properties, e.g.
contains, send, createCommitment when the meaning is clear. Fig. 5 shows an inside
view of an agent to demonstrate how the rules govern the interactions. For now, ignore
steps 3, 4, and 5 dealing with policy rules. When a message is received, it is checked
against the protocol rules to see if it may be consumed. If so, a corresponding proposi-
tion is asserted and any activated rules are executed. Doing so may activate other rules,
resulting in further propositions being asserted and messages being sent.

4 Composite Protocols

The previous section described how to specify individual protocols. To meet the require-
ments of business processes, it is necessary to compose them from simpler protocols.
Now we show how protocols can be composed.

Conceptually, each component protocol achieves a business goal. Thus, several such
protocols composed together would achieve the goals of the larger business process.
Composition also enables refinements of protocols with additional rules. The ability to
compose protocols would allow significant reuse of published protocols. How can we
construct such composite protocols? How do they facilitate reusability? How do they
allow refinements of protocols? This section answers these questions.

OWL-P: A Methodology for Business Process Development 87

Rule Base

Protocol Rules

Policy
Rules

Local domain

Public domainMessages

To and from
other participants

Knowledge Base

Messaging Interface

Business Logic
(Human Inputs)

(2)(8)proposition /
commitment

(4)invoke

(3)activate

(7
)m

e
s

s
ag

e

(6)activate

(5)policy

(1
)m

e
s

s
ag

e

Fig. 5. Agent architecture: protocol and policy interplay

4.1 Construction of Composite Protocols

Fig. 6 describes the OWL-P classes and properties that deal with the problem of protocol
composition. A Composite Protocol is an aggregation of component protocols and is
defined by a Composition Profile. A composition profile describes the combination of
two or more protocols by stipulating several Composition Axioms. Composition axioms

Protocol CompositeProtocolCompositionProfile

11
definedBy

2..* 1

combines

CompositionAxiom

RoleDefinition

DataFlow EventOrder

Implication

1

*

stipulates

Proposition

11

body

Role

1 1..*
unify1

1

head

ExternalSlot Slot Message

1

1

usage

1

1

definition
1

1

earlier

1

1

later

1

1

define

12..*
composedOf

Fig. 6. OWL-P composition classes and properties

88 N. Desai et al.

define relationships among the protocols being combined. The operational semantics
of an axiom specifies the way in which the relationships affect the composite protocol.
Fig. 4 depicts an Order protocol, a Shipping protocol, a Payment protocol and a set of
composition axiom instances stating the relationships among them.

A Role Definition axiom states which of the roles in the component protocols are to
be adopted by the same agent and defines the name of the unified (coalesced) role in the
composite protocol. In the example, the first axiom states that the roles of a customer in
Order, a payer in Payment and a receiver in Shipping protocol are played by an agent
who will play the role of a customer in the Purchase protocol.

A Data Flow axiom states a data-flow dependency among the protocols. A compo-
nent protocol might be using a slot defined by another component protocol, possibly
with a different name. Since a slot can be defined only once, and native slots must be
defined inside the protocol, they cannot use a value defined by another protocol. Hence,
the range of the usage property must be an external slot. In the example, the fourth
axiom states that the slot amount in the Payment protocol gets its value from the slot
itemPrice in the Order protocol. Such a dependency exerts an ordering among the rule
defining the slot and all the rules using it: none of the the rules using the slot can fire
before the slot is assigned a value by the defining rule.

An Implication axiom states that an assertion of proposition X in a component proto-
col implies an assertion of proposition Y in another component protocol. For example,
the sixth axiom states that an assertion of authOKProp in the Payment protocol means
an assertion of pay in the Order protocol. This can be easily achieved by adding an
implication rule to the composite rulebase.

Unlike the DataFlow axiom, an EventOrder axiom explicitly specifies an ordering
among the messages of the component protocols. For example, the seventh axiom states
that an authOK message from the payment gateway must be received before a shipOrder
message is sent to the shipper. This can be achieved by making the rule for the later
event depend on the rule for the earlier event.

Operational semantics of these axioms are given in [8]. Composition axioms have to
be specified by a designer. There might be several ways of composing the component
protocols yielding different composite protocols. As a special case, if the component
protocols are completely independent of each other, no axioms need be specified and
their OWL-P specifications can be simply aggregated yielding the OWL-P specification
of the composite protocol. If deemed necessary, more types of composition axiom can
be defined along with their properties and operational semantics. A composite protocol
exposes its compositionProfile and possesses all the properties of the component pro-
tocols. Hence, a composite protocol itself can be a component protocol in some other
composition profile instance. How can we determine whether additional component
protocols are needed? To answer this question, we define closed and open protocols.
A protocol is closed if it has no external slots, and all the commitments created in the
protocol can be discharged by the protocol. A protocol is open if it is not closed. A
designer’s goal is to obtain a closed protocol by repeated applications of composition.
Observe that, in Fig. 4, the Order protocol is open as its rules do not assert proposi-
tions pay and goods necessary for discharging the commitments created. The Payment,

OWL-P: A Methodology for Business Process Development 89

Debtor Creditor

exception(reason)

OK

C(d, c, cond)

cancel(d, C(d, c, cond)) & C(d, c, newCond)

ADJUSTMENT PROTOCOL

Fig. 7. Handling refinements by composition

Shipping and Purchase protocols are also open according to the definition. A designer
would choose protocols that assert these missing propositions and combine them with
the Purchase protocol to obtain a closed composite protocol.

4.2 Refinement by Composition

Business protocols evolve continually as new requirements and new features routinely
arise. Therefore, the ability to systematically refine protocols is valuable. In the com-
posite Purchase protocol, consider a situation in which the customer has already paid
the merchant for the goods and hence the commitment C(S,B,goods(itemID)) is active.
However, while trying to order the shipment, if a fire destroys the merchant’s ware-
house, the merchant will not be able to honor its commitment to ship the item. How
can such exceptions be handled? The protocol could detect the violation due to an un-
fulfilled commitment and the merchant could be held legally responsible. However, A
more flexible solution would be to allow the merchant to refund money and cancel its
commitment to ship, provided the customer agrees to it. We can achieve this flexibil-
ity by combining the purchase protocol with the adjustment protocol shown in Fig. 7
yielding the composite protocol Flexible with these composition axioms:

AdjAx1. roleDefinition(define: Flexible.customer, unify: Purchase.customer, unify:
Adjustment.creditor)
AdjAx2. roleDefinition(define: Flexible.merchant, unify: Purchase.merchant, unify:
Adjustment.debtor)
AdjAx3. implication(body: Purchase.C(B,S,goods(itemID)), head: Cancel.C(D,C,
cond))
AdjAx4. implication(body: Cancel.C(D,C,newCond), head: Purchase.C(S,B,refund))

Similar protocols for assigning, delegating, and releasing commitments can be de-
fined. Adding new functionalities would involve composition of a set of rules for the
new requirements with the original protocol.

90 N. Desai et al.

5 Processes

As described in Section 2, a process is an aggregation of the local processes of par-
ticipating agents. However, an OWL-P specification of a protocol is a model of the
interaction from a global perspective. To construct the local process of a participant, we
need to derive the participant’s view of the protocol, called its role skeleton. Section 5.1
describes the generation of role skeletons from an OWL-P specification.

5.1 Role Skeletons

A role skeleton is one role’s view of the protocol. Here, we provide the intuition behind
generating role skeletons from an OWL-P protocol specification. The complete algo-
rithm is given in [8]. OWL-P describes a protocol from the global perspective where
the propositions are added to the global state and there are no distributed sites. As in
all distributed systems, the state of a protocol as seen by a role is changed only when a
message is sent or received by that role. This observation forms the basis for deriving
role skeletons.

As an example, we show a rule in the Shipping protocol in Fig. 4, and the same rule
in the generated skeleton of the receiver. As the receiver would not be aware of the
previous exchanges between the sender and the shipper, the antecedent of the rule for
receiving senderOptionQuote should be adjusted as shown below.

Protocol Rule
shipperOptionQuoteProp(.,.) ⇒ senderOptionQuote(.,.) ∧
CC(Se,Re,payToSenderProp(.),shipmentProp(.))

Receiver Skeleton Rule
shipInfoProp(?shipAddress) ⇒ receive(senderOptionQuote(.,.))
∧ CC(Se,Re,payToSenderProp(.),shipmentProp(.))

5.2 Policies

Generation of a role skeleton is not enough to obtain a local process of a participant.
As we mentioned earlier, some of the rules of the protocols may be abstract, meaning
that values of some of the native slots in the rule must be produced by the role’s busi-
ness logic. Hence, a role skeleton must be augmented with the business logic to obtain
a local process. How can we determine whether an augmented role skeleton is a local
process? To answer this question, we first define concrete and abstract role skeletons,
as well as a local process. A role skeleton is concrete if all of its native slots are defined.
A role skeleton is abstract if it is not concrete. A local process is a role skeleton that is
concrete and derived from a closed protocol.

Seller skeleton rules:
startProp ⇒ receive(C, reqForQuote(?itemID))

reqForQuoteProp(?itemID) ∧ quotePolicy(?itemPrice) ⇒
quote(?itemID, ?itemPrice) ∧ CC(S, B, pay(?itemPrice), goods(?itemID))

OWL-P: A Methodology for Business Process Development 91

quoteProp(?itemID, ?itemPrice) ⇒ receive(C, acceptQuote(?itemID, ?itemPrice)) ∧
CC(C, M, goods(?itemID), pay(?itemPrice))

Seller policy rule for quote:
reqForQuoteProp(?itemID) ⇒ call(policyDecider, quotePolicy(?itemID))

We propose that the business logic be specified in terms of the local policy rules of
the agents. The skeleton of the merchant role in the Order protocol augmented with the
policy rules of the seller agent is shown above. The last rule is the policy rule that calls
a business logic operation to decide how much to quote. The operation would assert the
quotePolicy proposition and that would activate the second protocol rule. Observe that
this pattern of augmenting policy rules is general and will be applied to the rules where
the agent has to make a decision and respond. It would also assign a value to native
slots that are not defined.

5.3 Usage

Fig. 8 summarizes our methodology with a scenario involving a customer interested in
purchasing goods online. Software designers design protocols and register them with
protocol repositories. They may also construct composite protocols and reuse the exist-
ing component protocols from the repository. A merchant wishing to sell goods online
looks up the repository for a suitable Purchase protocol. It generates the skeleton for
the merchant role, augments it with its local policies and deploys the result as a service.
The service profile for this service would contain an OWL-P description of the Purchase
protocol. The service can be registered with a UDDI registry. If a customer wishes to
buy goods online, it searches the UDDI registry, finds the merchant and acquires the
OWL-P skeleton for the customer role from the merchant. The customer enacts its local
process by augmenting the skeletons with its local policies and starts interacting with
the merchant. We have developed tools to support these development scenarios and a
prototype implementation based on the agent architecture of Fig. 5 [9]. Note that we
propose only a methodology for development and there might be other issues to be
resolved for realizing an e-commerce enterprise.

6 Related Work

Several areas of research are relevant to our work. We discuss each of them briefly and
highlight the differences.

Composition. BPEL [10] is a language designed to specify the static composition
of Web services. However, it mixes the interaction activities with the business logic
making it unsuitable for reuse. OWL-S [11], which includes a process model for Web
Services, uses semantic annotations to facilitate dynamic composition. A composed
service is produced at runtime based on constraints. While dynamic service composi-
tion has some advantages, it assumes a perfect markup of the services being composed.
Dynamic composition in OWL-S involves ontological matching between inputs and
outputs. Such a matching might be difficult to obtain automatically given the hetero-
geneity of the web. For this reason, we do not emphasize dynamic service composition.

92 N. Desai et al.

Fig. 8. Usage scenario

Our goal is to provide a human designer with tools to facilitate service composition.
Unlike BPEL, which specifies the internal orchestration of services, WSCI [12] speci-
fies the conversational behaviour of a service using control flow constructs. However,
these specifications lack a semantics, which makes them difficult to compose and reuse.

Several other approaches aim to solve the service composition problem by empha-
sizing formal specifications to achieve verifiability. Solanki et al. [13] employ interval
temporal logic to specify and verify ongoing behaviour of a composed service. Their
use of “assumption” and “commitment” (different meaning than here) assertions al-
lows better compositionality. Gerede et al. [14] treat services as activity-based finite
automata to study the decidability of composability and existence of a look-ahead del-
egator given a set of existing services. However, these approaches consider neither the
autonomy of the partners, nor the flexibility of composition.

Software Engineering. Our methodology advocates and enables reuse of protocols
as building blocks of business processes. Protocols can not only be composed, they
can also be systematically refined to yield more robust protocols. Mallya and Singh
[2] treat these concepts formally. The MIT Process Handbook [15], in a similar vein,
catalogues different kinds of business processes in a hierarchy. For example, sell is a
generic business process. It can be qualified by sell what, sell to who, and so on. Our
notion of a protocol hierarchy bears some similarity to the Handbook. RosettaNet [16] is
similar to our approach in that it centres around publishing protocols and designing the
business processes around them. However, it is currently limited to two-party request-
response interactions called Partner Interface Processes (PIPs) and, more importantly,
PIPs lacks a formal semantics.

OWL-P: A Methodology for Business Process Development 93

Agent-oriented software methodologies aim to apply software engineering principles
in the agent context e.g. Gaia, KAOS, MaSE, and SADDE [17]. Tropos [18] differs
from these in that it includes an early requirements stage in the process. Gaia [19]
differs from others in that it describes roles in the software system being developed and
identifies processes in which they are involved as well as safety and liveness conditions
for the processes. It incorporates protocols under the interaction model and can be used
with commitment protocols. Baı̈na et al. [20] advocate a model-driven Web service
development approach to ensure compliance between a service’s implementation and
its external protocol specifications. Our work differs from these in that it is aimed at
achieving protocol re-usability by separation of protocols and policies and it addresses
the problem of protocol compositions.

7 Conclusions

We have presented an approach for designing processes that recognizes the fundamental
interactive nature of open environments where the autonomy of the participants must
be preserved. Commitments provide the basis for a semantics of the actions of the par-
ticipants, thereby enabling the detection of violations. The significance of this work
derives from the importance of processes in modern business practice. With over 100
limited business protocols having been defined [16], this approach will permit the devel-
opment and usage of an ever-increasing set of protocols for critical business functions.
We demonstrated the practicality of our approach by embedding it in an ontology and
language for specifying protocols. Not only is this approach conducive to reuse, refine-
ment and aggregation but it has also been implemented in a prototype tool. It would be
ineteresting to see theoretical foundations of this work in the process algebra. It would
allow one to establish properties of the protocols and relationships among them.

Acknowledgments

This research was sponsored by NSF grant DST-0139037 and a DARPA project.

References

1. OWL Web Ontology Language: Overview. www.w3.org/TR/owl-features/ (2004) W3C
Recommendation.

2. Mallya, A.U., Singh, M.P.: An algebra for commitment protocols. Autonomous Agents and
Multiagent Systems (2006) http://dx.doi.org/10.1007/s10458-006-7232-1.

3. WSDL: Web Services Description Language (2002) http://www.w3.org/TR/wsdl.
4. Singh, M.P.: An ontology for commitments in multiagent systems: Toward a unification of

normative concepts. Artificial Intelligence and Law 7 (1999) 97–113
5. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A

semantic web rule language combining OWL and RuleML (May, 2004 (W3C Submission))
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/.

6. Protégé: The Protégé ontology editor and knowledge acquisition system (2004) http://
protege.stanford.edu/.

94 N. Desai et al.

7. OWL-P Examples: (Business protocols modeled with owl-p) http://research.csc.ncsu.edu/
mas/OWL-P/.

8. Desai, N., Mallya, A.U., Chopra, A.K., Singh, M.P.: Interaction protocols as design ab-
stractions for business processes. IEEE Transactions on Software Engineering 31 (2005)
1015–1027

9. OWL-P Project: (Software, tools, and documentation) http://projects.semwebcentral.org/
projects/owlp/.

10. BPEL: Business process execution language for web services, version 1.1 (2005) www-
106.ibm.com/developerworks/webservices/library/ws-bpel.

11. DAML Services Coalition: DAML-S: Web service description for the semantic Web. In:
Proceedings of the 1st International Semantic Web Conference (ISWC). (2002)

12. WSCI: Web service choreography interface 1.0 (2002) wwws.sun.com/ software/ xml/ de-
velopers/ wsci/ wsci-spec-10.pdf.

13. Solanki, M., Cau, A., Zedan, H.: Augmenting semantic web service descriptions with com-
positional specification. In: Proceedings of the International World Wide Web Conference.
(2004) 544–552

14. Gerede, C.E., Hull, R., Ibarra, O., Su, J.: Automated composition of e-services: Lookaheads.
In: Proceedings of the International Conference on Service Oriented Computing. (2004)

15. Malone, T.W., Crowston, K., Herman, G.A., eds.: Organizing Business Knowledge: The
MIT Process Handbook. MIT Press, Cambridge, MA (2003)

16. RosettaNet: Home page (1998) www.rosettanet.org.
17. Bergenti, F., Gleizes, M.P., Zambonelli, F., eds.: Methodologies and Software Engineering

for Agent Systems. Kluwer (2004)
18. Bresciani, P., Perini, A., Giorgini, P., Guinchiglia, F., Mylopolous, J.: Tropos: An agent-

oriented software development methodology. Autonomous Agents and Multi-Agent Systems
8 (2004) 203–236

19. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems: The Gaia
methodology. ACM Transactions on Software Engineering Methodology 12 (2003) 317–370

20. Baı̈na, K., Benatallah, B., Casati, F., Toumani, F.: Model-driven web service development. In:
Proceedings of Advanced Information Systems Engineering: 16th International Conference,
CAiSE. (June 2004)

	Introduction
	Running Example
	Shortcomings of Traditional Approaches

	Concepts and Terminology
	Protocols and Commitments

	Protocol Specification
	OWL-P: OWL for Protocols
	Operational Semantics

	Composite Protocols
	Construction of Composite Protocols
	Refinement by Composition

	Processes
	Role Skeletons
	Policies
	Usage

	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

