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Abstract—Business process modeling and enactment are notoriously complex, especially in open settings, where business partners

are autonomous, requirements must be continually finessed, and exceptions frequently arise because of real-world or organizational

problems. Traditional approaches, which attempt to capture processes as monolithic flows, have proven inadequate in addressing

these challenges. We propose (business) protocols as components for developing business processes. A protocol is an abstract,

modular, publishable specification of an interaction among different roles to be played by different participants. When instantiated with

the participants’ internal policies, protocols yield concrete business processes. Protocols are reusable and refinable, thus simplifying

business process design. We show how protocols and their composition are theoretically founded in the �-calculus.

Index Terms—Multiagent systems, software reuse, interaction-based modeling, software design methodologies, rule-based

processing, �-calculus.
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1 INTRODUCTION

BUSINESS processes in open settings typically involve
complex interactions among autonomous and hetero-

geneous business partners. Conventionally, business processes
are modeled as centralized flows, specifying exact steps for
each participant. However, because of the exceptions and
opportunities that arise in open environments, business
relationships cannot be preconfigured to full detail. Flow-
based models are inherently ill-suited to development and
maintenance in the face of evolving requirements. Also, flows
are not amenable to reuse via refinement or aggregation.
Further, instead of treating all participants equally, conven-
tional models classify the participants as clients and servers,
thereby compromising their autonomy.

We apply multiagent systems to model business inter-

actions. Agents mirror the autonomy and heterogeneity of

real-world businesses and support rich interaction models.

This paper describes a novel, agent-based approach for

business process modeling and enactment. The key idea is

to capture meaningful interactions as protocols. Protocols

involve two or more roles and address specific purposes

such as ordering, payment, shipping, etc. Protocols empha-

size the essence of the interactions and omit local details.

Such abstract protocol specifications are publishable as

components and reusable in different settings.
Crucially, we give protocols a semantics in terms of

commitments. Commitments among roles provide a basis for

modeling the state of the interaction, thus allowing a variety

of possible executions depending on the specific circum-

stances of the parties involved. Thus, commitments help
capture the essence of the interaction supported by a protocol.

A business process reflects a composition of a set of
protocols, to be enacted by agents representing real-world
partners. Whereas protocols specify the interaction from a
global perspective, (role) skeletons specify the interaction
from the perspective of a particular role. During the
enactment of a process, each agent adopts a role in the
corresponding composite protocol, setting its role skeleton
accordingly, and integrates the skeleton with its policies. A
policy is a (typically, private) description of an agent’s
business logic that controls its participation in a process. For
example, a protocol may allow a role to choose among
multiple actions; the agent playing that role would select an
action based on its policy. Policies help determine the
parameters of the messages being sent, typically based on
the parameters of the messages previously received.

Our theoretical contributions are developing the concept
of commitment protocols and applying the �-calculus to
formalize certain aspects of protocols and policies. We show
how to formally construct composite protocols and derive
processes by integrating protocols and policies. The for-
malization enables us to reason about properties of
protocols such as their incorrectness, compatibility, equiva-
lence, and flexibility.

Our practical contributions include a language and tools
for protocols, called OWL-P. OWL-P, captured as an
ontology expressed in the Web Ontology Language
(OWL) [1], provides the primitives to specify protocols,
such as roles, the messages exchanged between them, and
declarative rules describing the effects of messages in terms
of commitments. Our approach includes:

1. specifying protocols,
2. composing protocols,
3. generating role skeletons from a protocol,
4. compiling protocols into executable rules,
5. instantiating protocols, and
6. enacting processes.

This paper focuses on the first four steps.
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The key benefits of this approach are:

1. a separation of concerns between interaction (proto-
cols) and local decision making (policies),

2. reusability of protocols across processes,
3. evolution and refinement of processes by protocol

composition, and
4. flexible process enactment that respects local policies

while adapting continually.

1.1 Case Study

Let’s consider the common business process involving a

Customer who wants to procure items, a Merchant who

supplies items, a Shipper who is a logistics provider, and a

Payment Gateway who authorizes payments. The payment-

related interactions are based on the Secure Electronic

Transactions (SET) standard [2]. Fig. 1 depicts a variant

where the items and price have been agreed upon. Each

participant is shown as a separate shaded region, the graph

within it denoting its local process. Circular nodes represent a

participant’s internal business logic or policies, e.g., to decide

the parameters of an outbound message. Rectangular nodes

represent external interfaces through which a participant

receives messages. All out-edges from a node are taken

concurrently. The messages are labeled with numbers to

indicate a possible order in which they might occur. For

example, after message 9, the Merchant could send

message 10 and message 13 in any order. Just one possible

scenario is shown; a realistic process would involve multiple

scenarios.

1.2 Shortcomings of Traditional Approaches

The above process can be captured via a traditional flow-
based approach such as BPEL [3]. Such a representation
would be functionally correct, but inadequate from the
perspective of software engineering in open environments.

. Lack of Reusable Components. Local processes are
monolithic in nature, and formed by ad hoc
intertwining of internal business logic and external
interactions. Since the business logic is proprietary,
the local processes of one partner are not usable by
another. For instance, if a new customer were to
participate in this market, its local process would
have to be developed from scratch.

. Lack of Semantics. Traditional approaches expose
low-level interfaces, but associate no semantics with
the participants’ actions. This precludes flexible
enactment (as needed to handle exceptions) as well
as compliance checking. Without semantics, we
cannot determine if a deviation from an expected
sequence of steps is significant.

. Inadequate Evolvability. Suppose the merchant
wishes to change the way it interacts with its
customers, maybe because of new service features,
i.e., say the goods can be shipped before the payment
is received. Due to an update in the merchant’s
process, the customer agent may no longer be able to
interact correctly. It is not clear what updates must be
made to the process and where.

1.3 Organization

Section 2 introduces key concepts and terminology. Section 3
describes our protocol specification language and its seman-
tics. Section 4 discusses protocol composition and demon-
strates its applicability in exception handling. Section 5 shows
how augmenting policies with protocols can be used to
develop processes. Section 6 presents a �-calculus formaliza-
tion. Section 7 discusses the relevant research. Section 8
outlines directions for future research.

2 CONCEPTS AND TERMINOLOGY

Key intuitions underlying protocols and processes and a
deeper background were introduced in [4]. A finite
automata representation of protocols and their grounding
in BPEL [3] were presented in [5]. A state-based model of
commitment protocols and a protocol algebra for refine-
ment and aggregation were presented in [6].

Fig. 2 shows our conceptual model for a treatment of
business processes based on protocols and policies. Boxed
rectangles are abstract entities (interfaces), which must be
combined with business policies to yield concrete entities that
can be fielded in a running system (rounded rectangles).
Abstract entities can be published and reused. They corre-
spond to service specifications in service-oriented computing
(SOC). We specify the protocol logic via rules that describe
interactions among the participating roles. Roles are abstract,
and are adopted by agents to enable concrete computations.

Whereas a protocol specifies interactions from the global
perspective, a skeleton specifies interactions from a parti-
cipant’s perspective. To participate in multiple protocols, an
agent would adopt a role in each of them. A composite
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skeleton can be constructed by combining the adopted role
skeletons according to some composition constraints. For
example, in a supply chain process, a supplier would be a
merchant when interacting with a retailer in a trading
protocol and an item-sender in a shipping protocol for
sending goods to the retailer. A skeleton for such a supplier
would combine the skeletons for a trading merchant and a
shipping item-sender. Alternatively, as here, a composite
protocol for supply chain can be composed from component
protocols such as trading and shipping, and the supplier’s
skeleton derived from the composite protocol. The resultant
composite skeleton could be published and, thus, used by
multiple suppliers.

The local process of an agent is an executable realization of
its skeleton instantiated with its policies or business logic. A
business process aggregates the local processes of the agents
participating in it. Equivalently, a business process imple-
ments the constituent business protocols.

2.1 Protocols and Commitments

Commitments capture a variety of contractual relationships,
while enabling manipulations such as delegation and assign-
ment, which are essential for open systems [7]. For example, a
customerwouldcommit to the merchant to payanitem’sprice
upon delivery. Violations of commitments can be detected; in
someimportant settings, violators canbe penalized.Verifying
compliance is essential in open settings [8].

Definition 1. A commitment Cðx; y; pÞ denotes that agent x is
obliged to agent y for bringing about condition p.

Here, x is called the debtor, y the creditor, and p the
condition of the commitment. The condition is expressed in a
suitable formal language.

Commitments can be conditional, denoted by CCðx; y; p; qÞ,
meaning that x is committed to y to bring about q if p holds
where p is called the precondition of the commitment. For
example, CCðc; b; goodsðgÞ; payðpÞÞ means that customer c is
committed to pay the bookstore b an amount p if bdelivers the
book g to c. When b delivers the book, i.e., goodsðgÞ holds,
CCðc; b; goodsðgÞ; payðpÞÞ yields the base-level commitment
Cðc; b; payðpÞÞ.

The following operations describe how a commitment c
is created, satisfied, and manipulated [7]:

1. CREATEðx; cÞ establishes c, if directly performed by
c’s debtor, or because of a conditional commitment.

2. CANCELðx; cÞ terminates c as an action of c’s debtor x.
Generally, cancellation is constrained and would lead
to new commitments.

3. RELEASEðy; cÞ terminates c by releasing c’s debtor x.
This only can be performed by the creditor y.

4. ASSIGNðy; z; cÞ replaces y with z as c’s creditor.
5. DELEGATEðx; z; cÞ replaces x with z as the c’s debtor.
6. DISCHARGEðx; cÞ c is terminated by x fulfilling it.

A commitment is active if it has been created but not yet
terminated. Commitments are transformed via the rules
below:

1. Cðx;y;pÞ^p
dischargeðx;Cðx;y;pÞÞ ,

2. CCðx;y;p;qÞ^p
createðx;Cðx;y;qÞÞ^dischargeðx;CCðx;y;p;qÞÞ ; and

3. CCðx;y;p;qÞ^q
dischargeðx;CCðx;y;p;qÞÞ .

3 PROTOCOL SPECIFICATION

Let’s now consider how protocols are specified based on the
meaning associated with a message.

3.1 OWL-P

Fig. 3 shows key OWL-P concepts (nodes) and their
properties (edges: the end with a rectangle is the domain),
reflecting the conceptual model of Section 2. The core of a
protocol is specified using implication rules, as in the
Semantic Web Rule Language (SWRL) [9]. A Message has a
sender, a receiver, and one or more parameters as Slots. The
semantics of a message is given by its effects on commit-
ments, expressed via operations. Slots function as data
variables. A slot is defined when it is assigned a value and
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used when its value is assigned to another slot. A native slot
is typed and defined within the protocol. An external slot is
assigned a value produced by another protocol.

A protocol dictates rules that govern the interaction and

consults a knowledge base, which consists of a set of

propositions. Propositions are represented as slotted facts

in a rule-based system. Propositions express messages sent

or received, active commitments, and domain facts.
Fig. 5 shows possible scenarios for protocols. Leading

and trailing *, as in *amount*, identify an external slot.
Consider the Order protocol. The buyer requests a quote for
an item; the seller responds with a quote. The semantics of
quote is that it creates a commitment from the seller to the
buyer guaranteeing delivery if the buyer pays the quoted
price. In this scenario, the buyer accepts the quote. The
semantics of accept is to create a commitment from the
buyer to the seller to pay the quoted price if it receives the
requested item. Below are the rules for Order in the
“antecedent ) consequent” notation:

1: startProp ) reqForQuote(?itemID)

2: reqForQuoteProp(?itemID))
quote(?itemID, ?itemPrice) ^
CC(S, B, pay(?itemPrice), goods(?itemID))

3: quoteProp(?itemID, ?itemPrice) )
acceptQuote(?itemID, ?itemPrice) ^
CC(B, S, goods(?itemID), pay(?itemPrice))

4: quoteProp(?itemID, ?itemPrice) )
rejectQuote(?itemID, ?itemPrice)

A knowledge base contains startProp at the start of a

protocol. Here, reqForQuote, quote, and acceptQuote are

OWL-P messages, and their corresponding propositions are

reqForQuoteProp, quoteProp, and acceptQuoteProp. pay

and goods are also propositions. ?itemID and ?itemPrice are

native slots. The ?itemID in the first rule is not assigned any

value by the antecedent, meaning that the rule is abstract

and not executable. As we see in Section 5.2, it can be

augmented with business logic that produces such values.

The OWL-P ontology and example protocols are available

at http://research.csc.ncsu.edu/mas/OWL-P/.

3.2 Operational Semantics

Protocols are specified from the global perspective with an
assumption of an abstract global knowledge base. Later
sections show how the abstraction of a global knowledge base
maps to the perspectives of the participants’ local knowledge
bases. In OWL-P, rules are forward-chained. A message in the
consequent of a rule indicates a message exchange. A
commitment in the consequent of a rule indicates its creation.
By the inference rules in Section 2.1, a commitment is
discharged automatically when its condition holds. Other
operations on commitments are explicitly specified.

Fig. 4 shows an abstract rule machine that provides
operational semantics to the rules. For now, ignore Steps 3,
4, and 5 dealing with policy rules. When a message is
received, it is checked against the protocol rules to see if it
may be consumed. If so, a corresponding proposition is
asserted and any rules thus activated are executed. Doing so
may activate other rules, resulting in further propositions
being asserted and messages being sent.

4 COMPOSITE PROTOCOLS

Protocols are rarely used in isolation and must be composed
so as to address multiple business goals. Another motivation
for composition is that it enables modifying protocols. When
a desired modification is captured as a set of rules, it is
definitionally identical to a protocol. Thus, a protocol can be
modified by composing it with a given modification. Let’s
now discuss how we can construct composite protocols and
how they facilitate reusability and refinement.

4.1 Construction of Composite Protocols

Fig. 6 describes key entities and properties dealing with
protocol composition. A composite protocol aggregates
(component) protocols and is defined by a composition
profile. A composition profile stipulates several composition
axioms to constrain the composite protocol. Fig. 5 depicts
three protocols, Order, Shipping, and Payment, and a set of
composition axioms. We denote the composition axioms as
axiom1ðproperty1 : range1, property2 : range2; . . . ), where
axiom1 identifies the axiom class, the propertyi are the
properties of axiom1 and the rangei are the values of those
properties. For brevity, we replace irrelevant slot names
by “�”.

A role definition axiom defines a (unified) role in the
composite protocol in terms of the roles in the component
protocols to which it corresponds. In Fig. 5, the first axiom
states that customer in Purchase unifies buyer in Order,
payer in Payment, and receiver in Shipping. Similarly, the
second axiom defines a merchant in Purchase. Typically,
the nonunified roles are played by different agents.

A data flow axiom captures a data flow between the
protocols. It defines an external slot in one protocol as using
an external or a native slot of another. In Fig. 5, the fourth
axiom states that slot ?amount in Payment gets its value
from slot ?itemPrice in Order. Such a dependency implicitly
ensures that none of the rules using a slot can fire before the
slot is assigned a value by the defining rule. Formally:

axiom :dataFlow(definition:Order.itemPrice,
usage:Payment.amount)

def :reqForQuoteProp(�) ) quote(�,?itemPrice) ^ � � �
use0 :paymentInfoProp(�; �) ) authReq(�; �,?amount)
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usei :� � �
usen :captureReqProp(�) ) captured(?amount)

The resulting rules:

use0 :paymentInfoProp(�; �) ^ quoteProp(�,?itemPrice))
authReq(�; �,?amount)

usei :� � �

usen :captureReqProp(�) ^ quoteProp(�,?itemPrice) )
captured(?itemPrice)

The ordering is achieved by adding the definition of the

slot as a premise for the usage of the slot. Since there might be

multiple uses of a slot, premises of all of them need to be

updated. The usage slot takes the name of the defining slot

and the external slot is not needed in the composite protocol.
An implication axiom states that proposition X in a

protocol implies proposition Y in another protocol. In Fig. 5,

the sixth axiom states that an assertion of authOKProp in

Payment means an assertion of pay in Order. This is

achieved by adding an implication rule to the composite

rule base. Formally:

axiom :implication(body:Payment.authOKProp,

head:Order.pay)

The resulting rule:

rule :authOKProp(�; �) ) pay(�)
An event order axiom specifies an ordering among

selected messages of the component protocols. In Fig. 5,

the seventh axiom states that an authOK message from the

payment gateway must be received before a shipOrder

message is sent to the shipper. This can be ensured by

making the rule for the later event depend on the rule for

the earlier event, that is:
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axiom :eventOrder(earlier:Payment.authOK,
later:Shipping.shipOrder)

earlier :authReqProp(�; �; �) ) authOK(�; �) ^ CC(�; �; �; �)
later :chooseOptionProp(�; �) ) shipOrder(�; �; �) ^

CC(�; �; �; �)
The resulting rule:

later :chooseOptionProp(�; �) ^ authOKProp(�; �) )
shipOrder(�; �; �) ^ CC(�; �; �; �)

Composition axioms must be specified by a designer.

There may be several ways of composing a protocol.

Specifically, if the component protocols are mutually

independent, no axioms need be specified; the protocols

can simply be unioned, yielding the specification of a

composite. If necessary, additional subclasses of Composi-

tionAxiom may be introduced by specifying their syntactic

properties and operational semantics. A composite protocol

is like any other protocol, and can be composed further.

How can we determine whether additional component

protocols are needed to obtain an enactable protocol? A

protocol may not be enactable due to nonlocal choice, which

means that an agent’s decision depends on information it

doesn’t have locally [10]. For example, protocols with rules

of the form a ) b, where proposition a is known only to

roles �1 and �2, and message b is sent by �3, are not

enactable as �3 cannot observe a. This problem can arise

because a protocol is a global specification whereas role

skeletons are partial local views. The following properties of

a protocol P avoid this problem and ensure that P is

enactable. Here, r denotes a rule, a, b, p, and q are

propositions or messages as applicable, and P is interpreted

as a set of rules.

Prop1. 8r 2 P , 8a 2 r:body, a 6¼ start! 9r0 2 Pa 2 r0:head.
The propositions in the antecedent of a protocol rule must be
asserted by some protocol rule.

Prop2. 8r 2 P , 8a 2 r:head, ðstart
e

> aÞ 2 P . All asserted
propositions are reachable from start. Here, p

e

> q means q is
reachable fromp. Formally,p

e

> q¼defp) q _ (p) q0 ^ q0
e

> q).

Prop3. 8r 2 P , 8a 2 r:body, ð9b 2 r:head ^ 9� ¼ senderðbÞ !
� ¼ senderðaÞ _ � ¼ receiverðaÞÞ. If a message exchange b
has an antecedent a, then the sender � of b must be able to
verify a. That is, � must receive a message corresponding to a
or must send a message corresponding to a, i.e., � observes a or
causes a.

A designer’s goal is to obtain an enactable protocol by

repeated applications of composition. Observe that in Fig. 5,

the rules of Order do not assert propositions pay and goods

necessary for discharging the commitments created. The rules

of Payment do not assert the proposition pay(fineAmount).

The rules of Shipping do not assert payToSenderProp and

payToShipperProp. The rules of the composite Purchase do

not assert the propositions payFine(fine), payToSenderProp,

and payToShipperProp. A designer would choose protocols

that assert the missing propositions and compose them with

Purchase to obtain an enactable protocol.

4.2 Refinement by Composition

Business protocols evolve continually as new requirements

and new features arise. Therefore, the ability to system-

atically refine protocols is valuable. In the composite

Purchase, consider a situation in which the customer has

already paid the merchant for the goods and, hence, the

commitment C(m, c, goods(itemID)) is active. If a fire

destroys the merchant’s warehouse, the merchant will not

be able to honor its commitment to ship the item. How can

such exceptions be handled? Of course, we could detect the

violation due to an unfulfilled commitment, and the

merchant could be held legally responsible. However, a

more flexible solution would be to allow the merchant to

refund the payment and release the merchant from the

commitment, provided the customer agrees to it. We can

achieve this flexibility by combining Purchase with Adjust-

ment as specified below (see Fig. 7):

C(d, c, cond) ) exception(?reason) ^
cancel(d, C(d, c, cond))

exceptionProp(?reason) ) OK() ^ C(d, c, newCond))

exceptionProp(?reason) ) NOK() ^ C(d, c, oldCond))

The axioms below yield New, a more flexible protocol:

1: roleDefinition(define:New.customer,

unify:Purchase.customer, unify:Adjustment.creditor)

2: roleDefinition(define:New.merchant,

unify:Purchase.merchant,unify:Adjustment.debtor)

3: Implication(body:Purchase.C(m,c,goods(itemID)),

head:Adjustment.C(d, c, cond))

4: Implication(body:Adjustment.C(d, c, newCond),

head:Purchase.C(m, c, refund))

5: Implication(body:Adjustment.C(d, c, oldCond),

head:Purchase.C(m, c, goods(itemID)))

Adjustment allows cancellation of the merchant’s com-

mitment if the customer deems it reasonable. The semantics

of OK specifies the creation of a new commitment for

compensation. The creditor may not agree, send a NOK, and

retain the old commitment. Similar protocols for assigning,

delegating, and releasing commitments can be defined.
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5 PROCESSES

To enact its local process, a participant extracts its skeleton

from an enactable protocol and instantiates it with its

policies.

5.1 Role Skeletons

OWL-P describes a protocol assuming a global state. As in all

distributed systems, the state of a protocol as seen by a role

changes only when a message is sent or received by that role.

This observation forms the basis of skeleton-generation as

shown in Algorithm 1, where P is a protocol and � is a role.

The algorithm gathers all the rules from the specification

for P that have � receiving or sending a message. Next, the

algorithm invokes replace (P; �; a), defined from line 16 to

line 29. If a proposition a enables a rule r 2 �:rules but a is

not asserted by any rule in �:rules, it means that a was not

observed by �. This procedure replaces a with the last

proposition that � did observe, i.e., the proposition a0 that

was asserted in �:rules and leads to a being asserted. Such a0

will be found due to the properties of an enactable protocol.
As an example, we show a rule in Shipping in Fig. 5,

and the same rule in the receiver’s skeleton. As the

receiver would not be aware of the previous exchanges

between the sender and the shipper, the antecedent of the

rule for receiving senderOptionQuote should be adjusted

as shown below:

Protocol rule:

shipperOptionQuoteProp(�, �)) senderOptionQuote(�, �) ^
CC(Se,Re,payToSenderProp(�),shipmentProp(�))
Receiver skeleton rule:

shipInfoProp(�) ) receive(senderOptionQuote(�, �)) ^
CC(Se,Re,payToSenderProp(�),shipmentProp(�))

Protocol computations are given in terms of the
message exchanges m, whereas skeletons computations
are given in terms of sendðmÞ and receiveðmÞ. We now
prove Algorithm 1 correct.

Theorem 1 (Soundness). If condition cond enables sendðmÞ
and receiveðmÞ in the skeletons generated from protocol P ,
then cond enables m in P .

Proof. Let cond hold in the skeletons, enabling sendðmÞ and
receiveðmÞ. As cond enables sendðmÞ, there must exist a
role � ¼ senderðmÞ such that (cond) sendðmÞ) 2 �:rules.
For this rule to be in �:rules, it is necessary that a rule
(cond ) m) 2 P:rules, as line 14 in Algorithm 1 is the
only way to add such a rule to �:rules. However, if
(cond) m) 2 P:rules then the message exchange m is
enabled in P . tu

Theorem 2 (Completeness). If condition cond enables a
message exchange m in protocol P , then cond also enables
sendðmÞ and receiveðmÞ in the skeletons generated from P .

Proof. Let cond hold in P , enabling m. This implies a
rule (cond) m) 2 P:rules. By line 14 in Algorithm 1, this
means that there exists a role �s ¼ senderðmÞ such that
(cond) sendðmÞ) 2 �s:rules. If such a rule exists in
�:rules, and if cond holds, then sendðmÞmust be enabled.

Also, by line 14, there exists a role�r ¼ receiverðmÞ such
that cond0 ) receiveðmÞ 2 �r:rules, where cond0 is the
result of line 5. However, by Lemma 1 (Appendix D which
is available at http://computer.org/tse/archives.htm),
cond! cond0. Hence, receiveðmÞmust be enabled. tu

5.2 Policies

As mentioned earlier, a rule in a protocol may be abstract,
meaning that values of some of its native slots must be
produced via the role’s business logic. That is, a role
skeleton must be augmented with business logic to obtain a
local process. To capture this intuition, we define a skeleton
as concrete if all of its native slots are defined and as abstract
otherwise.

Definition 2. A local process is a concrete skeleton derived from
an enactable protocol.

An agent’s business logic is specified as local policy
rules. The skeleton of the seller in Order augmented with
the policy rules of the seller agent is shown below. The
policy rule invokes a business logic operation to decide
what price to quote. The operation asserts quotePolicy,
which activates the second skeleton rule.

Seller skeleton rules:

1:startProp ) receive(reqForQuote(?itemID))

2:reqForQuoteProp(?itemID) ^ quotePolicy(?itemPrice))
send(quote(?itemID, ?itemPrice)) ^
CC(S, B, pay(?itemPrice), goods(?itemID))

3:quoteProp(?itemID, ?itemPrice) )

DESAI ET AL.: INTERACTION PROTOCOLS AS DESIGN ABSTRACTIONS FOR BUSINESS PROCESSES 1021



receive(acceptQuote(?itemID, ?itemPrice)) ^
4:CC(B, S, goods(?itemID), pay(?itemPrice))

quoteProp(?itemID, ?itemPrice) )
receive(rejectQuote(?itemID, ?itemPrice))

Seller’s policy for deciding quote:

1:reqForQuoteProp(?itemID) )
call(policyDecider, quotePolicy(?itemID))

This pattern of augmenting policy rules is general and

applies to rules where the agent has to make a decision and

respond. It also assigns a value to native slots that are not

defined. Fig. 4 shows the interplay between the protocol

rules and the policy rules of an agent. Steps 3, 4, and 5 show

policy rules in action. The business logic could involve

looking up a legacy database or waiting for human input.

5.3 Usage

Here, we show how our model of business processes can be

grounded in Web services. Fig. 8 summarizes our methodol-

ogy with a scenario involving a customer interested in

purchasing goods online. Software designers design proto-

cols and register them with protocol repositories. They may

also construct composite protocols by specifying composition

axioms and reusing the existing component protocols from

the repository. Composer is our tool for generating the

composite protocol. A merchant wishing to supply goods

online looks up Purchase in a repository. It generates the

skeleton for the merchant role, augments it with its local

policies, and deploys the result as a service. The profile for

this service contains an OWL-P description of Purchase, and

may be published to a UDDI registry. If a customer wishes to

procure goods online, it searches the UDDI registry, finds the

merchant, and acquires the OWL-P skeleton for the customer

role from the merchant. The customer enacts its local process

by augmenting the skeleton with its local policies and starts

interacting with the merchant. Our tools support these

development scenarios and a prototype implementation

based on the agent architecture of Fig. 4.

6 �-CALCULUS FORMALIZATION

The foregoing showed how our interaction-based treatment

facilitates reusability and evolvability. It would help to

reason about the properties of the protocols. To do so, we

first introduce the �-calculus, show how protocols and their

composition can be specified in it, and then describe some

properties of protocols established using the �-calculus

formalization.

6.1 The �-calculus

The �-calculus [11] is a process algebra for modeling
concurrent processes whose configurations may change as
the processes execute. In the �-calculus, the fundamental unit
of computation is the transfer of a communication link
between two processes. The simplicity of the�-calculus arises
from the fact that it includes only two kinds of entities: names
and agents (processes). These are sufficient to rigorously
define interactional behavior. This paper uses the synchro-
nous �-calculus in which interaction corresponds to a
handshake between two processes and involves the output
of a link by one process and simultaneous receipt of the link
by another process. The language of the �-calculus consists of
prefixes and process expressions, as summarized below.

Prefixes are of the following kinds:

Prefixes � ::¼ aðxÞ ðOutputÞ
aðxÞ ðInputÞ
� ðSilentÞ:

. The output prefix aðxÞ means that x is sent along the
channel a.

. The input prefix aðxÞ means that the channel a can
be used to receive input and binds this input to x.

. The silent � means that nothing observable happens.

The process expressions are as follows:

Agents P ::¼ 0 ðNilÞ
�:P ðPrefixÞ
P þ P ðSumÞ
P jP ðParallelÞ
½x ¼ y�P ðMatchÞ
½x 6¼ y�P ðMismatchÞ
ðnew xÞP ðRestrictionÞ
!P ðReplicationÞ
Ahy1; . . . ; yni ðIdentifierÞ

Definitions Aðx1; . . . ; xnÞ ¼defP ; ðwhere i 6¼ j
) xi 6¼ xjÞ

. 0 represents the nil-process.

. �:P does the action represented by prefix � and
changes to P .

. P þQ represents the sum-nondeterminism, that is,
do either process P or process Q.

. P jQ represents that process P and process Q execute
in parallel.

. ½x ¼ y�P represents the process that changes to P if
x ¼ y. Mismatch is the opposite, i.e., it checks x 6¼ y.
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. ðnew xÞP means that the variable x is declared as a
new name local to process P and bound in P . It is
not visible outside of P .

. !P represents an unbounded number of copies of the
process P . Formally, !P ¼defP j!P .

. Ahy1; . . . ; yni represents the instantiation of a defined
agent.

. Aðx1; . . . ; xnÞ¼
def

P represents the declaration of a
process A in terms of process P . One can think of it
as a method declaration in traditional procedural
programming.

The input prefix and the new operator bind names. For
example, in the process aðxÞ:P , the name x is bound, but a is
not. It helps to use the polyadic �-calculus because it enables
sending and receiving tuples of variables [11]. For example,
xða; b; cÞ outputs three names a, b, and c over the channel x.
And, xðp; q; rÞ receives three names over x and binds them
to p, q, and r respectively. We introduce a notation for
broadcasts. A broadcast on a channel x of a name y is
indicated by bxxðyÞ and is equivalent to !xðyÞ. As an example,
consider the following:

P � ðnew zÞðzðwÞ:wðyÞjxðuÞ:uðvÞjxðzÞÞ:

The pair xðzÞ and xðuÞ can interact. P1 indicates the
process left after interaction.

P1 � ðnew zÞðzðwÞ:wðyÞjzðvÞj0Þ:

In P1, another interaction is possible over the channel z
giving process P2.

P2 � ðnew zÞðvðyÞj0j0Þ:

Thus, process P evolves to P2 over two interactions: P !
P1 and P1 ! P2. We use !� to abbreviate a series of such
interactions, thus writing P !� P2.

6.2 Protocols

Using Order of Fig. 5 as an example, we show how to
formalize a protocol in the �-calculus. Fig. 9 shows a model
of Payment in the �-calculus. Pipes denote the channels,

boxes the �-processes, and rounded rectangles the agents.
The Appendix (which is available at http://computer.org/
tse/archives.htm) presents complete formalizations of Pay-
ment, Shipping, and Purchase.

An exchange of messages corresponds to reactions in the
�-calculus. Thus, a protocol can be specified as a �-process
in which each message is represented by a channel. Unique
names for channels corresponding to each message type are
assumed. Each role skeleton is a �-process having the
relevant messages as the �-process parameters. The
structure of a protocol �-process would be a parallel
composition of the skeletons of each of the roles. Thus,
Order would be formalized as:

Orderðb; s; rfq; quote; accept; reject; goods; payÞ¼def

Buyerhrfq; quote; accept; rejecti j
Sellerhrfq; quote; accept; rejecti j
Commhb; s; rfq; quote; accept; reject; goods; payi

Here, Comm is a process that observes the message
exchanges and manages commitments according to the
message semantics. Each role is also represented as a name,
e.g., b and s, and may represent a debtor or a creditor of a
commitment. The protocol messages are channels rfq,
quote, accept, and reject. The channels goods and pay

represent external messages, as discussed below. Both
skeletons are passed all the message channels as both of
the roles are involved in all the interactions. Here is the
�-process for the seller skeleton:

Sellerðrfq; quote; accept; rejectÞ¼defðnew quote polÞ
rfqðgÞ:Quotep: dquotequoteðg; pÞ:
ðacceptðg0; p0Þ þ rejectðg0; p0ÞÞ

Quotep � quote polðgÞ:quote polðg; pÞ

The seller receives g (itemID) on rfq, consults its policy
for quoting and sends the quote price p (itemPrice) on quote,
and receives either accept (acceptQuote) or reject (reject-

Quote). Quotep is a stub for interacting with the quoting
policy of the seller agent, using the channel quote pol. Such
policy stubs output necessary names to the corresponding
policy channel, and then receive some new names output
by the business logic on the same channel. As the policies
are private, the channels for interacting with them are
restricted to the skeleton �-process, e.g., quote pol. As g is
bound by rfq, a new name g0 should be bound to the input
on accept or reject. Similarly as p is bound by quote pol, p0

binds to the input on accept or reject. Usually, g and g0

would receive the same input but it cannot be guaranteed.
Ideally, the seller should check if they match for the
purpose of correlation. The following is the �-process for
the buyer skeleton:

Buyerðrfq; quote; accept; rejectÞ¼defðnew rfq pol; accept polÞ
RFQp: crfqrfqðgÞ:quoteðg0; p0Þ:
ðAcceptp: dacceptacceptðg0; p0Þ þRejectp: drejectrejectðg0; p0Þ
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RFQp � rfq pol:rfq polðgÞ
Acceptp � accept polðg0; p0Þ:accept pol
Rejectp � reject polðg0; p0Þ:reject pol

It is easy to see that (Buyer j Seller)!� 0, provided the

business logic is correct. This means that the skeletons of the

buyer and the seller role are compatible for interaction. The

commitment semantics of the interaction is given by the

observer �-process Comm as follows:

Commðb; s; rfq; quote; accept; reject; goods; payÞ¼def

ðnew ch1; ch2; ch3; ch4Þ
quoteðg; pÞ:CChs; b; pay; goods; ch1; ch2i:ðch1ðpÞ j ch2ðgÞÞ j
acceptðg0; p0Þ:CChb; s; goods; pay; ch3; ch4i:ðch3ðg0Þ j ch4ðp0ÞÞ

On a message exchange involving a commitment

operation, Comm would invoke the corresponding commit-

ment operation �-process. Here, the commitments are

created when quote or accept is observed according to their

semantics. After calling the �-process CC for a conditional

commitment, the necessary message parameters are passed

to it. The �-process CC is:

CCðdeb; cred; cond1; cond2; ch1; ch2Þ¼
defðnew ch3; ch4; ch5Þ

ðch1ðval1Þ j ch2ðval2ÞÞ:ðcond2ðval02Þ:ð½val2 6¼ val02�
CChdeb; cred; cond1; cond2; ch3; ch4i:ðch3ðval1Þ j ch4ðval2ÞÞþ
½val2 ¼ val02��Þ þ cond1ðval01Þ:ð½val1 ¼ val01�
Chdeb; cred; cond2; ch5i:ch5ðval2Þ þ ½val1 6¼ val01�
CChdeb; cred; cond1; cond2; ch3; ch4i:ðch3ðval1Þ j ch4ðval2ÞÞÞÞ

First, the parameters passed by Comm are received, and

then the channels related to the commitment conditions are

observed. On an exchange, if the commitment condition is

satisfied then the process ends. If the precondition is

satisfied, the conditional commitment reduces to a commit-

ment, the �-process C is called, and the necessary

parameters passed to it. If neither is satisfied, CC is called

again and the commitment remains active. Private channels

chi are used for passing parameters to avoid interference

with the protocol channels. The commitment conditions

may involve varying number of parameters and CC needs

to be defined accordingly. The definition is for when both

the precondition and the condition have one parameter

each. Similarly, the �-process C is:

Cðdeb; cred; cond2; ch2Þ¼
defðnew ch3Þch2ðval2Þ:

ðcond2ðval02Þ:ð½val2 ¼ val02�� þ ½val2 6¼ val02�
Chdeb; cred; cond2; ch3i:ch3ðval2ÞÞÞ

The separation of the commitment semantics from the

interaction specification simplifies the derivation of skele-

tons, e.g., the buyer skeleton is the parallel composition of

the �-processes Buyer, Comm, CC, and C. Also, the lose

coupling among the commitment semantics, the interaction

specification and the policy definitions (business logic)

allows maintainability, reusability, and simplicity of design.

6.3 Composite Protocols

A composite protocol is a parallel composition of the

component protocols and the composition axioms, e.g,

Purchase can be composed as follows (details in the

Appendix C which is available at http://computer.org/

tse/archives.htm):

Purchaseðc;m; g; sh;
. . . order channels . . . ;

. . . payment channels . . . ;

. . . shipping channels . . .¼def

Orderhc;m; . . .i j Paymenthc;m; g; . . .i j
Shippinghc;m; sh; . . .i j Axiom4haccept; amtchi j
Axiom6haOK; payi j Axiom7haOK; shipmenti j
. . . other axioms . . .

Axiom4ðmsg; channelÞ¼defmsgðg; pÞ: dchannelchannelðpÞ

Axiom6ðmsg1;msg2Þ¼
def
msg1ðtNO; amtÞ:msg2ðamtÞ

Axiom7ðmsg1;msg2Þ¼
def
msg1ð�; �Þ:msg2ð�; �; �Þ

The channels c, m, g, and sh are the roles of Purchase.

Notice how passing these channels to Order, Payment,

and Shipping accomplishes role unification; role definition

axioms are not needed. The axiom numbers relate to the

axioms in Fig. 5.
A Data Flow axiom is a �-process with two parameters:

the channel that defines a name, and the channel that uses

the defined name. The axiom receives on the defining

channel and forwards it to the using channel. For example,

Axiom4 receives the price on the accept channel and

outputs the price to the amtch, i.e., the channel on which

the users of amt in Payment listen for the definition.

(Broadcast is needed as there might be multiple listeners.)
An Implication axiom is a �-process with two parameters.

The first parameter is the antecedent of the implication and

the second parameter is the consequent. The axiom listens

on the antecedent channel, and on the message exchange,

signals by outputting to the consequent channel. For

example, Axiom6 listens on aOK to see if the payment is

authorized and, signals so to pay when it is authorized.
An Event Order axiom is a �-process with two para-

meters: the channels that should exchange messages first

and last, respectively. For example, Axiom7 expresses the

condition that pay should do its exchange before shipment.

We take a passive view of event order: monitoring the

events to determine if the ordering is satisfied, but not

attempting to enforce the condition through planning.
Fig. 10 shows a model of Purchase. The dotted pipes are

the protocol channels and the axioms listen on them. Agent

business logics and the policy channels are not shown. It is

encouraging to see how the protocols can be coupled with

each other through their external channels via composition

axioms. Clearly, Purchase itself can be a component

protocol in another composition.
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6.4 Properties of Protocols

We describe some inferences about protocols that are
supported by our formalization. Below, P is any �-process
expression, Proti is a protocol �-process definition, Roleij is
the skeleton definition of role j inProti, and chik is an external
channel k for Proti. Subscripts i; j; k;m; n, etc., range over the
cardinality of the respective entity, e.g., Rolemn could
represent a skeleton �-process for role n in a protocol Protm.
Also, S and � are the weak simulation and bisimulation
relations, respectively. We assume correct functioning of the
business logic by replacing each Policyp by � .

6.4.1 Incorrectness

A protocol specification Prot1 causes a commitment
violation if Prot1 j ch11 j � � � j ch1k !� C j P. The debtor of
C is responsible for the violation.

A protocol specification Prot1 causes an interaction
violation if Prot1 j ch11 j � � � j ch1k !� Role1j j P.

A protocol specification Prot1 causes an event ordering
violation if Prot1 j ch11 j � � � j ch1k !� Axiomi j P, and
Axiomi is an event order axiom.

A protocol specification Prot1 is incorrect if it causes
either of the above violations. Note that correctness of a
specification can only be verified relative to requirements.
The definition of incorrectness given here is general and
applies regardless of the requirements.

6.4.2 Compatibility

Role skeletons Roleij and Rolemn are compatible if
Roleij j Rolemn j ch11 j � � � j chpq !� 0. Although this defini-
tion is intuitive, in case of iterative interactions, the process
would never reduce to a nil process as suggested by Canal
et al. [12]. In that case, Skeletons Roleij and Rolemn are
compatible if Roleij j Rolemn j ch11 j � � � j chpq continues mak-
ing � transitions without interacting with its environment.

6.4.3 Equivalence

Protocols Prot1 and Prot2 are equivalent if Prot1 � Prot2.
Due to the presence of policy stubs in the protocol specifica-
tion, the equivalence is defined by the weak bisimulation with

policy interactions modeled as � transitions.

6.4.4 Flexibility

A protocol Prot1 is more flexible than a protocol Prot2 if
ðProt2; Prot1Þ 2 S and ðProt1; Prot2Þ=2S. Note that this also
implies Prot2 can be substituted by Prot1. Canal et al. [12]
give a more rigorous treatment of component substitutability.

Other properties of interest might be commitment
equivalence of the protocols to see if two protocols are
equivalent as far as the commitment semantics of the
interaction goes. Also, a relation between a protocol and its
refined version can be defined to see if one of them is a
specialization of the other. For example, payment by credit

card is a specialized payment protocol. We believe the
formalization is rich enough to allow such inferences.

7 RELATED WORK

The uniqueness of our approach arises from 1) our
commitment-based semantics for interactions, 2) a focus
on a methodology that enables reuse, refinement, and
aggregation, and 3) practical grounding of our concepts
along with their theoretical foundations. Several relevant
research efforts are summarized next.

Component behavior modeling. Plasil et al. [13] propose
a language based on regular expressions for describing the
behavior of software components using protocols. They
define software components as agents and the proposed
language allows expressions of method invocations over
components. This behavior protocols are similar to our
protocols but do not support commitments. Similarly, Canal
et al. [12] use the �-calculus to describe protocols over the

methods provided of CORBA objects. They reason about
interaction compatibility and object substitutability, i.e.,
whether an object can be successfully substituted by
another. Studying architectural connectors, Allen et al.
[14] express similar intuitions about interactions being a
fundamental abstraction for complex systems. Their com-
ponents correspond to our agents, connectors to protocols,
and attachments to role adoption. They formalize compo-
nents and connectors in CSP [15], and have abstractions of
roles and connector composition analogous to ours.

These approaches seek to verify interaction specifications
for correctness, compatibility, deadlock freedom, and
substitutability for components, whereas our thrust is to
exploit protocols to develop processes, thus improving the
quality of modeling and reuse of interactions. Previous
approaches view interactions as sequences of send and

receive actions without considering commitment-based
semantics.

Scenario-based behavior modeling. This area develops
visual formalisms for modeling interaction scenarios of
entities (agents, components, or processes). Popular form-
alisms include AUML [16], Message Sequence Charts [17],
and UML sequence diagrams [18].
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Whittle et al. [19] present an approach for creating a
design model (specified as a statechart) from a collection of
interaction scenarios using a state-identification approach to
merge scenarios. Uchitel et al. [20] present an MSC language
to explicitly specify the assumptions under which scenarios
are merged. Whereas the above approaches merge beha-
viors to produce one protocol, our approach merges several
protocols to produce a composite protocol. Further, our
methodology incorporates commitments to better capture
business requirements.

Uchitel et al. [21] elaborate behavior models by deriving
implied scenarios from an existing model, categorizing
them as desired or not, and updating the model. Implied
scenarios arise as a result of the partial nature of scenario-
based specifications. Protocols are naturally extensible,
especially nonenactable protocols, which necessarily need
to be fleshed out to become enactable.

Service composition. BPEL [3] is a language for
specifying the static composition of Web services. However,
it mixes interaction activities with business logic, thus
reducing reusability. WS-CDL [22] specifies the conversa-
tional behavior of a service using control flow constructs.
However, these specifications lack a flexible semantics,
which makes them difficult to compose and reuse. OWL-S
[23], which includes a process model for Web services, uses
semantic annotations to enable dynamic composition. A
composed service is produced at runtime based on stated
constraints. Dynamic service composition assumes a perfect
markup of the services being composed, and involves
ontological matching between inputs and outputs. OWL-S
formalizes process models of the ilk of BPEL, but doesn’t
address protocols as such. An end-to-end service creation
approach separates a logical composition (service type)
from a physical one (service instances) [24]. Agarwal et al.’s
approach combines a service matchmaking similar to
OWL-S and a BPEL based service implementation. Due to
its close ties with OWL-S and BPEL, it inherits their
limitations mentioned above.

Some approaches treat service composition via formal
specifications to support verifiability. Solanki et al. [25]
employ interval temporal logic to specify and verify
ongoing behavior of a composed service. Their use of
“assumption” and “commitment” (different meaning than
here) assertions yields better compositionality than other
approaches. Gerede et al. [26] model services as activity-
based finite automata to study the decidability of compo-
sability and existence of a lookahead delegator for a set of
services. However, these approaches consider neither the
autonomy of the partners, nor the flexibility of composition.

Agent-oriented software engineering. Agent-oriented
software methodologies, e.g., Gaia, KAOS, MaSE, and
SADDE [27], apply software engineering principles to
agent-based systems. Tropos [28] includes an early require-
ments stage in the process. Gaia [29] describes roles in the
software system being developed, identifies their processes,
and the safety and liveness conditions for the processes. It
incorporates protocols in its interaction model and can be
used with commitments. Baı̈na et al. [30] advocate a model-
driven Web service development approach to ensure
compliance between a service’s implementation and its
external protocol specifications. By contrast, our objective is

achieving protocol reusability by separating protocols and
policies, and by composing protocols.

Component catalogs. Our methodology enables using
protocols as building blocks of business processes. Protocols
are reused by refining them to yield improved protocols.
RosettaNet [31] has put protocols in practice. About 100 pub-
lished protocols, termed Partner Interface Processes (PIPs),
account for billions of dollars of business. However, Rosetta-
Net is limited to two-party request-response PIPs, which lack
a formal semantics. The MIT Process Handbook [32] classifies
business processes. For example, sell is a generic business
process, which can be qualified by sell what, sell to whom, etc.

8 CONCLUSIONS

The contributions of this paper include an approach to
protocol composition, its grounding in OWL-P, and a
formalization of the approach. The charm of this approach
is that it recognizes the fundamental interactive nature of
open environments where the autonomy of the participants
must be preserved. Interactions are treated as first class.
Commitments provide a semantics that combines rigor with
flexibility. The presented approach will enable the devel-
opment of an ever-increasing set of protocols for critical
business functions.

We demonstrated the practicality of our approach by
grounding it in a framework for specifying protocols. Some
useful prototype tools supporting this methodology are
available. We also demonstrated how our approach is
theoretically founded in the �-calculus.

An important direction is to validate this approach in
practice on a real-life problem with respect to metrics of
reusability, scalability, and cost-effectiveness [33]. Another
direction is to adapt protocols or skeletons to the context in
which the business partners are interacting.
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