
Social Computing: Principles, Platforms, and

Applications

Amit K. Chopra

University of Trento, Italy,

chopra@disi.unitn.it

Abstract—We present a conceptualization of social computing
as the computation of social dependence among autonomous
actors. Our conceptualization unifies many diverse kinds of ap-
plications such as multiparty business processes, social networks,
and online discourse. We contend that the current tradition
in software engineering fundamentally falls short of what is
required to successfully build such applications. We propose
a vision of social computing that relies exclusively on social
abstractions and outline the challenges in realizing the vision.

Index Terms—Actors, Autonomy, Protocols, Commitments,
Trust, Distribution, Middleware, Business processes, Social net-
works, Argumentation

I. INTRODUCTION

The nature of computation is changing. It is evolving from

activity and data-orientation to interaction-orientation. Social

networks, social cloud, e-business, virtual organizations, and

so on are evidence of the shift. In such applications, au-

tonomous social actors interact in order to exchange services

and information. However, software engineering has not kept

up with the ongoing shift. It remains rooted in a logically

centralized perspective of systems dating back to its earliest

days; it is still rooted in low-level control flow abstractions.

We understand social computing as the joint computation

by multiple autonomous actors, whether individuals, organi-

zations, or their software surrogates. “Joint” refers to their

interactions and the social relationships that come about from

the interaction, not necessarily cooperation, integration, or

any other form of logical centralization. The purpose of

the computation may be to carry out a multiparty business

transaction, to schedule a meeting, to loan a book to a friend,

to build consensus on an issue via argumentation, or globally-

distributed software development itself—anything that would

involve interaction among actors. We refer to applications that

perform social computations as social applications.

Current approaches take a logically centralized view of sys-

tems: to build a system is to build a computer. Internally, the

computer may well be modular in construction and distributed,

but it would effectively represent only one locus of control—

that of its stakeholders. Even expansive takes on software

construction such as programming in the large (PiL) [1], which

admitted independently built components, did not go so far as

to accommodate autonomous actors as components. Recent

work in architecture-based adaptation relies on centralized

adaptation managers to rewire components [2]. Following Zave

and Jackson [3], requirements engineering (RE) emphasizes

the importance of modeling and analyzing the environment in

coming up with system specifications. The notion of a system

as a computer, however, remains entrenched in RE. Agent-

oriented software engineering approaches are also logically

centralized. Jennings [4], for example, describes a scheduling

problem that is addressed by distributing it across intelli-

gent agents. In short, the established ideas have served us

well in building controllers: for example, operating systems,

databases, transaction managers, and flight control systems.

However, they fall short for building social applications, which

involve interactions among social actors.

Clearly, we are already building social applications, even

with current software engineering approaches. For example,

online banking is a social application in which a customer

interacts with one or more banks to carry out payments, de-

posits, and transfers. Blogs represent a social application in the

sense that authors and readers express their positions and argue

about them. Social networks such as Facebook and LinkedIn

facilitate interactions among theirs users. However, just be-

cause we can build social applications, it does not mean we

are building them the right way. Software engineering research

seeks to make building applications ever easier, and the biggest

leaps often come by way of new abstractions. Our principal

claim is that current software engineering approaches lack the

social abstractions to systematically build social applications.

In fact, the social aspects of these applications are currently

handled offline. For example, the contractual relationships that

arise in a business interaction are understood by the interacting

principals, but not by the software supporting their interaction.

Lacking social abstractions, each application is built from the

ground up from low-level abstractions based on control flow.

This limits reusability and leads to unnecessarily complex

software models and code, which in turn leads to software

management headaches. If we could come up with the right

social abstractions, seeming diverse social applications such

as business transactions, software development, blogs, and

social networks could potentially be built around the same

fundamental concepts and run on a common platform that

embodies the concepts.

II. THE NATURE OF SOCIAL COMPUTING

Social applications are studied under various guises in

computer science depending on the particular aspects stressed:

business processes, service-oriented computing, sociotechnical

systems, virtual organizations, e-government, and so on. We

1



discuss three broad but diverse classes (not mere instances) of

such applications, and then show that there is more common-

ality among them than may be readily obvious. Our aim is

to exploit this commonality to inform the construction of all

social applications.

Multiparty business processes: More and more business

transactions are being conducted on the Web. Initially, it

was the resourceful organizations that set up e-business

systems; however, with advances in Web technology and

the advent of online marketplaces such as eBay, even

individuals with limited resources were able to start

engaging each other in business transactions. The orig-

inal motivation behind service-oriented computing was

a common set of abstractions, protocols, and platforms

for enabling such multiparty business transactions and

processes.

Social networks: Another orthogonal but more recent direc-

tion in the evolution of the Web is social networks

where actors are the nodes of the network and social

relationships among actors the links. Users are increas-

ingly reliant on social networks to organize social and

business activities, not just to publish information. Social

networks are being used in money lending, to facilitate

book-sharing and carpooling, to help travelers find hosts

to stay with, and in myriad other ways.

Online discourse: The Web supports semi-structured social

interactions among actors via online forums and blogs

(including microblogs, such as Twitter). Nowadays, writ-

ing comments to blogs posts and news items is in-

creasingly commonplace. Often in response to a post,

people argue vehemently for their own viewpoint. Orga-

nizations, including governments, are increasingly using

blogs to solicit opinions and ideas from their audiences.

Researchers are increasingly looking at ideas from dis-

course theory, especially argumentation to capture these

interactions in a more meaningful and structured way.

Issue-based information systems (IBIS), a traditional

application area in computer science, seeks to apply

argumentation towards capturing knowledge in software

development lifecycles.

Many of these social applications are primarily built on top

of the Web. However, the Web was conceptualized essentially

as a distributed, resource-oriented, hyperlinked database. Con-

sequently, it offers only correspondingly low-level database

abstractions (the HTTP primitives). It lacks high-level so-

cial abstractions for easily building social applications. Some

social applications run on their own specialized layer that

runs on top of the Web (or other suitable infrastructure). For

instance, business applications are often built on top of the

WS-* platform. However, WS-* lacks any social abstractions

whatsoever. Consider especially that business workflows, a

widely prevalent way of programming such applications, are

not even actor-centric—they are activity and flow-centric.

Social applications such as Facebook and LinkedIn are concep-

tually similar; however, they share no common abstractions,

application programmer’s interface (API), and infrastructure

except at the level of the Web. Moreover, the two networks

remain noninteroperable even though a contact on LinkedIn

could well be a friend on Facebook. Naturally, there is always

the question of whether organizations want interoperability.

But suppose they wanted it. Do we have the platform to

support their interoperability? Discourse on the Web is only

recently beginning to receive attention. Currently, we observe

little structure beyond posts and comment trees (comments to

comments and so on), although some recent efforts such as

debategraph.org have begun to support a richer argumentative

structure.

What is the essence of being social? What unifies these

applications conceptually? Our fundamental insight is that all

social applications can potentially be built from the same

social abstractions. The idea of social dependence among

actors is what lies at the heart of all social applications.

Manufacturers depend on suppliers for parts. Patients depend

on laboratories to deliver accurate test results. When a bidder

wins an auction on eBay, the seller depends on him to make

the payment. When a user announces a party at his home

on Facebook, the invitees depend on him for hosting the

party. When a person agrees to host a visitor, the visitors

depend on him for accommodation. When a person argues in

an online forum that globally glacier volume was decreasing

at an annual rate of 5% or when a stakeholder argues for

the implementation of a certain requirement, they are both

beholden to other participants for the truth of their claims

(regardless of whether the others believe them).

Social dependencies arise naturally in situations that involve

interactions among actors. In fact, the dependence is social

because it is grounded in interaction. Social dependence is a

fundamental unifying notion, a semantic notion that cuts across

applications. Social computation is the joint computation of

the actors, not in the sense of common goals or intentions,

but in the sense of the evolution of the network of the social

dependencies among actors. For example, when a supplier

delivers the parts, the manufacturers dependency on the sup-

plier is satisfied, but the supplier may now depend on the

manufacturer for payment. Popular social networks emphasize

relationships such as friend, colleague, family, coauthor, and so

on, which are application-specific, and in that sense, relatively

arbitrary. We posit that social dependence lies at the base

of even these relationships. For example, one depends on

coauthors to disseminate joint work, on grandparents to babysit

the children, and on friends to not forward pictures and

information, such as telephone numbers and addresses, that

they are privy to. Naturally, the idea of social dependence

leads to the idea of social networks where the fundamental

links between actors are social dependencies. Other kinds of

relationships, such as coauthor, could presumably be built on

top of such dependencies.

III. CHALLENGES

To put it in a nutshell, the problem essentially is that

programming any social application today is akin to writing

2



Emacs in microprocessor assembly language or programming

banking applications over TCP/IP sockets. There exist no

common social abstractions, languages, principled method-

ologies, and infrastructure for building and running them.

This shortcoming will only become more evident and its

effects more severely felt as we see a merging of what

were traditionally considered different classes of applications.

For example, the emerging area of social cloud seeks to

exploit business services on social networks; social networks

are increasingly being used to carry out political discourse;

and sociotechnical systems are being applied to coordinate

autonomous organizations.

Social dependence networks would represent logically, in a

uniform manner, all kinds of social applications that are today

understood and tackled in very diverse manners, including the

ones discussed above. If we could understand the fundamental

nature and forms of social dependence, we could build a social

platform that would support interoperability and a correspond-

ing API that would make programming social applications far

easier than it is today—analogous to how TCP/IP promoted

interoperability between computers and made programming

network applications easier via a socket-based API.

We identify the following challenges in coming up with a

principled methodology for social applications.

Identify and formalize the social abstractions. What is the

nature of social dependence? How can we represent,

compute, and reason about social dependence? What

would constitute the fundamental patterns of social de-

pendence from which composite patterns could then be

built? The questions above stress not only technical rigor

but also generality—via social dependencies we should

be able to capture and reason about a rich variety of

patterns, from relatively simple ones such as those that

arise in scheduling an appointment to those that arise in

argumentation and business contracts.

Devise a social application language. The language would

express the architecture of an application in terms of roles

and social abstractions. What is the set of features such

a language should support for it to be expressive enough

for a wide range of applications? For example, we should

be able to encode simple business contracts, service-

level agreements, quality constraints, delegation, temporal

constraints on events, timeouts, and compensation. Can

we express all of these using solely dependencies without

resorting to lower-level abstractions?

Identify the software engineering principles. What are the

principal specification artifacts of social applications?

What are the software engineering principles and method-

ologies for building these artifacts?

Build a social middleware and API. The middleware rep-

resents the social layer—a platform—on which all social

applications run, much like how socket applications run

over TCP/IP and Web services run over HTTP (or WS-*).

However, unlike them both, the middleware understands

social abstractions. What are the basic platform services?

What are the protocols for providing those services? How

does the platform compute dependencies and maintain

interoperability among actors? What is the basic API that

provides access to platform services? How can we ensure

that the API is extensible so we simplify programming

high-level patterns?

IV. APPROACH

Social applications are necessarily embedded in the real

world, in the sense that the actors derive their autonomy from

the autonomy of their principals and social dependencies are

real world relations that evolve due to the communication

among actors. Two promising candidates for capturing the

notion of dependence are social commitment [5], [6] and

social trust [7]. For example, when a supplier commits to a

manufacturer to deliver parts, it means the manufacturer can

depend on the supplier for parts. In this sense, a commitment

is essentially an elemental contract. The notion of dialectical

commitment, a special kind of social commitments, can be

applied to model the content of online discourse. The concept

of social trust is relatively new; unlike cognitive trust, it em-

phasizes the architectural specification of social applications

by capturing trust relationships among roles. We conjecture

that social applications may be specified primarily in terms

of trust relationships between actors; operationally, however,

trust relationships may need to be backed up by social com-

mitments. For example, a healthcare system architect may

specify that patients trust the local government for scheduling

appointments with doctors; however, operationally, patients

would expect that this trust be backed up by the appropriate

commitments and contracts from the involved parties.

We need to understand the core software engineering prin-

ciples such as modularity, abstraction, encapsulation, and

separation of concerns anew for social applications. Consider

modularity, for instance. Because each actor is autonomous,

actors would form the essential unit of modularity. Perhaps this

in itself may not appear surprising when stated as such, but

consider that service-oriented approaches that rely on business

workflows completely ignore this principle. Plus consider the

implications of modularity by actors for internally complex

actors such as organizations: because organizations themselves

consist of actors which may themselves be complex, one

would have no recourse but to model the interactions among

the actors all the way down.

Clearly, application-level protocols (as against the middle-

ware protocols), as specifications of interaction, will form the

cornerstone of our approach. For example, Facebook would

be one application-level protocol in our approach; eBay would

be another. Traditional languages for specifying protocols, for

example UML interactions diagrams, statecharts, and so on are

too low-level for social applications. Instead, protocols must be

specified in terms of how communications affect the social de-

pendencies; in other words, communications must be mapped

to the social abstractions supported by the middleware.

The role of the middleware is to operationalize the

application-level protocols in terms of the elementary proto-

cols. The social dependencies between actors would evolve

3



by enacting the elementary protocols. An important role of the

middleware would be to maintain interoperability. The middle-

ware would also support protocols for discovering actors, for

example, to discover auctioneers that have a good reputation

or experts on a particular subject. We expect techniques from

referral networks to play a key role here. The middleware

would itself run on commonly available infrastructure such as

HTTP or enterprise services buses (ESBs).

To demonstrate the advantages of our approach, we would

need to build prototype applications that incorporate business

interactions, argumentation, and social networks. Two that we

are especially interested in are software project management

(visualizing software development as an interactive activity

among stakeholders) and a personal information system that

helps users keep track of their commitments (similar to a

calendar, only far more versatile).

V. CONCLUSIONS

Our vision of social computing differs substantially from

some recent ideas in this area. Some recent manifestos and

funding programs emphasize the notion of powerful social

computers that can engage humans (for example, as in crowd

computing) as problem-solving elements and take into account

laws and social conventions [8]. Social computing, as we

envisage, is complementary to the notion of a social computer.

In our framework, the social computer would simply be

one single actor that runs on top of the social middleware.

Imagine a network of social computers. Our vision of social

computing (via the social language) would be indispensable

to the application that the computers collectively represent

(for example, a virtual organization for resource sharing). Our

vision would give the network teeth (via the middleware). Our

vision would make programming social computers easy (via

the social API).

By social computing, we also do not refer to social ap-

proaches such as collaborative filtering and tagging to answer

queries. In those approaches, while input from multiple actors

is gathered, there is one centralized computer that mines

user inputs to answer queries; there is no direct interaction

between actors. The algorithms for collaborative filtering and

tagging could be thought of a single social computer. For

the same reason, running Google’s PageRank is not doing

social computing. The distinction between a social computer

and social computing is analogous to the distinction between

algorithm and interaction.

Social computing is not about the joint goals or intentions of

actors, abstractions that have been used to capture the mental

states of actors and have proved influential in distributed

AI (especially via speech act theory) and RE. In fact, our

vision of social computing makes no assumptions whatsoever

about actor state, rationale, or plans. Social computing is

about the public, the observable. At any given instant, the

network of social dependencies reflects the observable state

of the application. And therefore social dependencies cannot

be formulated in terms of mentalist notions (we refer interested

readers to [9], [10]).

The principal breakthroughs from our vision would be (1)

a paradigmatic shift in the way we think about, model, and

engineer social applications, and (2) a radically different plat-

form on which to run these applications. In contrast to existing

platforms, the social platform would understand (and compute)

high-level social abstractions and patterns thereof. Our earliest

platforms for building applications were operating systems

and databases; TCP/IP emerged as the platform for network

applications; now, we are largely building applications on top

of the Web, but there does not exist yet a single social platform

on which to run social applications. Yes, we have instances of

social applications, but today they run directly on the Web,

not on any social platform. Our proposed social platform will

address this mismatch. The platform will potentially prove

to be as important to the future of social applications as the

Web has been for the distribution of information. Web 2.0 has

proved to be empowering for individuals and small businesses.

A clear conceptual understanding of social applications and an

infrastructure that vastly simplifies building them will prove

to be more empowering by orders of magnitude.

The realization of the objectives of this vision will lead

to common conceptual bases for different disciplines such as

service-oriented computing, sociotechnical systems, and social

networks and spur fundamentally new directions of research.

Acknowledgments. This vision owes a substantial intellec-

tual debt to Munindar Singh. Work with Fabiano Dalpiaz,

John Mylopoulos, and Paolo Giorgini helped streamline the

vision. Matteo Baldoni, Nicolas Maudet, Pınar Yolum, Michael

Huhns, and Michael Jackson gave helpful comments. The

research was supported by a Marie Curie Trentino award.

REFERENCES

[1] F. DeRemer and H. H. Kron, “Programming-in-the-large versus
programming-in-the small,” IEEE Transactions on Software Engineer-

ing, vol. 2, no. 2, pp. 80–86, Jun. 1976.
[2] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste,

“Rainbow: Architecture-based self-adaptation with reusable infrastruc-
ture,” IEEE Computer, vol. 37, no. 10, pp. 46–54, 2004.

[3] P. Zave and M. Jackson, “Four dark corners of requirements engineer-
ing,” ACM Transactions on Software Engineering and Methodology,
vol. 6, no. 1, pp. 1–30, 1997.

[4] N. R. Jennings, “On agent-based software engineering,” Artificial intel-

ligence, vol. 117, no. 2, pp. 277–296, 2000.
[5] M. P. Singh, “Semantical considerations on dialectical and practical

commitments,” in Proceedings of the 23rd Conference on Artificial

Intelligence, 2008, pp. 176–181.
[6] N. Desai, A. K. Chopra, and M. P. Singh, “Amoeba: A methodology

for modeling and evolution of cross-organizational business processes,”
ACM Transactions on Software Engineering and Methodology, vol. 19,
no. 2, pp. 6:1–6:45, 2010.

[7] M. P. Singh, “Trust as dependence: A logical approach,” in Proceed-

ings of the 10th International Conference on Autonomous Agents and

MultiAgent Systems (AAMAS), 2011, pp. 863–870.
[8] F. Giunchiglia and D. Robertson, “The social computer—Combining

machine and human computation,” University of Trento, Tech. Rep.
DISI-10-036, 2010.

[9] M. P. Singh, “Agent communication languages: Rethinking the princi-
ples,” IEEE Computer, vol. 31, no. 12, pp. 40–47, Dec. 1998.

[10] A. K. Chopra, A. Artikis, J. Bentahar, M. Colombetti, F. Dignum,
N. Fornara, A. J. I. Jones, M. P. Singh, and P. Yolum, “Research
directions in agent commmunication,” ACM Transactions on Intelligent

Systems, 2011, to appear.

4


