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Abstract. Boosting algorithms are a means of building a strong ensem-
ble classi�er by aggregating a sequence of weak hypotheses. In this paper
we consider three of the best-known boosting algorithms: Adaboost [8],
Logitboost [10] and Brownboost [7]. These algorithms are adaptive, and
work by maintaining a set of example and class weights which focus the
attention of a base learner on the examples that are hardest to classify.
We conduct an empirical study to compare the performance of these al-
gorithms, measured in terms of overall test error rate, on �ve real data
sets. The tests consist of a series of cross-validatory samples. At each val-
idation, we set aside one third of the data chosen at random as a test set,
and �t the boosting algorithm to the remaining two thirds, using binary
stumps as a base learner. At each stage we record the �nal training and
test error rates, and report the average errors within a 95% con�dence
interval. We then add arti�cial class noise to our data sets by randomly
reassigning 20% of class labels, and repeat out experiment. We �nd that
Brownboost proves the least likely to over�t in this circumstance, be-
cause the algorithm incorporates an extra parameter which allows it to
compensate for noisy examples.

1 Introduction

Boosting algorithms have their origins in the analysis of the theory surrounding
the PAC (Probably Approximately Correct) learning model �rst introduced by
Valiant in 1984 [22].

In the PAC framework, a data set is said to be strongly (PAC) learnable
if there exists a classi�er that can achieve an arbitrarily low error rate for
all instances in the set. A weak learnable set requires only that the algorithm
marginally outperform random guessing in terms of overall error rate. Kearns
and Valiant [13] later proposed that these two de�nitions of learnability might
be equivalent, and that this might be proven if it were shown to be possible to
transform a weak learner into an arbitrarily strong one.

Schapire published the �rst hypothesis boosting algorithm in 1990 [19]. The
more robust Boost-by-Majority (BBM) algorithm [6] was introduced by Freund
at around the same time. The essential property of any boosting algorithm is
that it is possible to derive an upper bound on the �nal training error rate. Both
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these precursor algorithms de�ned this upper bound in terms of , which is an
amount by which the weak learner is guaranteed to outperform random guessing
(so that in the two-class case, the weak learner would have to be guaranteed to
yield an error rate below 1

2 � ).

In practice it is usually unreasonable to assume that a base learning algorithm
can always outperform a �xed error rate, and indeed the de�nition of a weak
learner only requires that it should outperform random guessing by an arbitrarily
small amount.

In 1995 Freund and Schapire published an adaptive algorithm known as Ad-
aboost [8], which makes no prior assumptions about the base learner and has
been the focus of much subsequent research. Adaboost is short for Adaptive
Boosting, and the algorithm is characterised by the adaptive way that it gen-
erates and combines weak hypotheses. A monotonically decreasing upper bound
on the training error can be derived, based on the performance of the individ-
ual component hypotheses. Thus if the base learner can consistently outperform
random guessing, and we iterate long enough, we can eventually achieve any
arbitrarily small error rate. It is also possible to derive an approximate upper
bound for the the error rate of the �tted aggregate hypothesis when presented
with new data.

It was subsequently observed [10] that Adaboost is in e�ect approximating a
stagewise additive logistic regression model by optimising an exponential crite-
rion. This leads us to new variants of Adaboost that �t additive models directly.
One such variant is Logitboost, which uses the Newton-like steps to optimise the
loss criterion.

In general terms, it has been observed that boosting algorithms do not tend
to over�t within the number of iterations for which they are likely to be run.
They are, however, particularly susceptible to class noise (where we take this to
mean that a proportion of class labels have been rede�ned at random - but note
that many authors use an alternative de�nition). Since the examples hardest to
classify are very likely to be these noisy data, weak hypotheses induced at later
iterations when such examples dominate will tend to be given undue inuence in
the �nal combined hypothesis, leading to a poor generalisation performance. In
his empirical comparison of methods for constructing ensembles of decision trees
[5], Dietterich concluded that `the performance of Adaboost can be destroyed
by classi�cation noise'.

Brownboost [7], introduced by Freund and based on his Boost-by-Majority
algorithm, may help to address this problem. It is derived by considering what
happens to the BBM algorithm if the example reweighting is assumed to happen
in continuous time. This leads us to an adaptive algorithm that resembles Ad-
aboost, but which incorporates an extra parameter (the time parameter) that
roughly corresponds to the proportion of noise in the training data. Because the
algorithm knows in advance for how long it is to be run, it will not attempt to
�t examples that are unlikely to be learnable in the remaining time. These are
likely to be the noisy examples, so given a good estimate of the time parameter
Brownboost is capable of avoiding over�tting. It can be shown [7] that Adaboost
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is a special case of Brownboost in the limit as the time parameter is allowed to
tend to in�nity.

In this paper, we conduct a series of empirical tests on four real data sets,
using implementations of the Adaboost, Logitboost and Brownboost algorithms.
We report our results in terms of overall test error rate. We then randomly
reassign one in �ve class labels in each of the datasets and rerun the tests.

In Sections 2, 3 and 4 of this paper, we briey describe each of the three
boosting algorithms in turn. In setting out the Adaboost and Brownboost al-
gorithms, we adopt notation that is consistent with the work of Freund and
Schapire. The multi-class Logitboost algorithm is quoted from Friedman [10].
In Section 5, we describe our empirical study in detail, and report our �ndings.
Finally, in Section 6 we summarise our conclusions.

2 Adaboost

Adaboost was the �rst adaptive boosting algorithm, and has received a good
deal of attention since being introduced by Freund and Schapire in [8].

Our multi-class version of the algorithm uses the Hamming decoding and
Error-Correcting Output Codes (ECOC) method of Allwein et al. (see [2] for
a full description of this). The algorithm that we use is equivalent to the Ad-
aboost.MH algorithm described in [21], and is an analogue of our own multi-class
extension to the Brownboost algorithm [15].

Adaboost works by �tting a base learner to the training data using a vector
or matrix of weights. These are then updated by increasing the relative weight
assigned to examples that are misclassi�ed at the current round. This forces
the learner to focus on the examples that it �nds harder to classify. After T

iterations the output hypotheses are combined using a series of probabilistic
estimates based on their training accuracy.

The Adaboost algorithm may be characterised by the way in which the hy-
pothesis weights � are selected, and by the example weight update step. At
iteration i, if i is the gain of the weak learner over random guessing, then the
hypothesis weight is chosen so that

�i =
1

2
ln(

1 + i

1� i
):

The weight update at step i multiplies the weights by an exponential function
of the con�dence of the prediction times the true label value, scaled by ��i.

In our multi-class adaptation of the algorithm, we maintain a separate weight
for every example and class label. When calling our base learner, we take account
of the possibility that this will either �t a binary (two-class) model, or a model
that returns separate independent predictions for each of the k class labels. In
the latter case, we assume that our coding matrix is the k�k matrix with 1 in all
diagonal entries, and -1 everywhere else. We assume that hypotheses generated
by base learners output con�dence-rated predictions that are real values in the
range [�1; 1].
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Adaboost Algorithm (Multi-Class Version)

Inputs:
ECOC Matrix: The k � ` coding matrix M.

Training Set: A set of m labelled examples: T = (xn; yn); n = 1; :::;m where xn 2 R
d and

yn 2 fy1; y2; :::; ykg. Each yn is associated via the matrix M with a set of ` binary labels f�n1 ; :::; �
n
` g,

where �nj 2 f�1; 1g, j = 1; :::; `.

Weights: An m� ` vector of initial weights, say, W1;j (xn; yn) =
1
m` , n = 1; :::;m, j = 1; :::; `

WeakLearn { A weak learning algorithm.

Do for i = 1; 2; :::; T

1. Binary base learner: Call Weaklearn ` times j = 1; :::; `, each time passing it the
weight distribution de�ned by normalizing Wi;j (xn; yn) for �xed j, and the training
data set alongside the binary labels de�ned by column j of the matrix M.
Multi-class base learner: Call Weaklearn, passing it the training data and
the full set of weights.

Receive from Weaklearn a set of ` hypotheses, hi;j(x), which have some advantage
over random guessing

Pm
n=1

P`
j=1Wi;j (xn;yn)(hi;j (xn)�

n
j )

Pm
n=1

P`
j=1

Wi;j (xn;yn)
= i > 0; n = 1; :::;m; j = 1; :::; `.

2. Select �i =
1
2 ln

�
1+i
1�i

�
.

3. Weight update: Wi+1;j (xn; yn) =
Wi;j (xn;yn)exp(��i`

n
j hi;j (xn))

Pm
n=1

P`
j=1

Wi;j (xn;yn)
:

Output Final hypotheses: pj (x) = sign
�PN

i=1 �ihi;j(x)
�
, j = 1; :::; `.

Figure 1: A Multi-class Adaboost Algorithm

3 Logitboost

The Logitboost algorithm [10] is based on the observation that Adaboost is in
essence �tting an additive logistic regression model to the training data. An
additive model is an approximation to a function F (x) of the form

F (x) =

MX

m=1

cmfm(x)

where the cm are constants to be determined and the fm are basis functions.
If we assume that F (x) is the mapping that we seek to �t as our strong

aggregate hypothesis, and the f(x) are our weak hypotheses, then it can be shown
that the two-class Adaboost algorithm is �tting such a model by minimising the
criterion

J(F ) = E(e�yF (x))

where y is the true class label in f�1; 1g. Logitboost minimises this criterion by
using Newton-like steps to �t an additive logistic regression model to directly
optimise the binomial log-likelihood

�log(1 + e�2yF (x)):
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This multi-class version of the algorithm is quoted from [10].

Logitboost Algorithm (Multi-Class Version)

1. Start with weights wi;j = 1=N; i = 1; :::; N; j = 1; :::; J; Fj(x) = 0 and
pj(x) = 1=J 8j.

2. Repeat for m = 1; 2; :::;M :

(a) Repeat for j = 1; :::; J:
i. Compute working responses and weights for the jth class

zi;j =
y�i;j�pj (xi)

pj(xi)(1�pj (xi))

wi;j = pj(xi)(1� pj(xi))

ii. Fit the function fmj(x) by a weighted least-squares regression of zij
to xi with weights wij .

(b) Set fmj(x) 
J�1
J (fmj(x)�

1
J

PJ
k=1 fmk(x)), and Fj(x) Fj(x) + fmj(x).

(c) Set pj (x) =
e
Fj (x)

PJ
k=1

eFk(x)
, enforcing the condition

PJ
k=1 Fk(x) = 0.

3. Output the classi�er argmaxjFj(x).

Figure 2: The multi-class Logitboost Algorithm, quoted from [10].

4 Brownboost

Brownboost is a continuous-time adaptive version of the Boost-by-Majority al-
gorithm. Here we quote our own multi-class extension to this algorithm [15].

The derivation of the algorithm is beyond the scope of this paper, but we
briey summarise some of its key points.

The `total time' parameter, c, sets the total amount of time for which the
algorithm is set to run. At each iteration a quantity t is subtracted from this,
and the algorithm terminates when the remaining time s reaches 0.

For every example (xn; yn) and class j, the algorithm maintains a margin.
These are all initially set to 0, and at iteration i they are updated to:

ri+1;j(xn; yn) = ri;j(xn; yn) + �ihi;j(xn)�
n
j

where �nj is the label related to the example for class j by the ECOC matrix.
The hypothesis weights �i are derived by solving a di�erential equation, and

the weight updates are a function of these and the margin.
We can relate the parameter c to the �nal training error � of the strong

hypothesis via

� = 1� erf(
p
c) (4.1)

where `erf' is the error function. Thus we can select c to guarantee any desired
�nal error.
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Brownboost Algorithm (Multi-Class Version)

Inputs:
ECOC Matrix: The k � ` coding matrix M.

Training Set: A set of m labelled examples: T = (xn; yn); n = 1; :::;m where xn 2 R
d and

yn 2 fy1; y2; :::; ykg. Each yn is associated via the matrix M with a set of ` binary labels f�n1 ; :::; �
n
` g,

where �nj 2 f�1; 1g,j = 1; :::; `.
WeakLearn { A weak learning algorithm.
c { a positive real valued parameter.
� > 0 { a small constant used to avoid degenerate cases.

Data Structures:
prediction value: With each example we associate a set of real valued margins.
The margin of example (xn; yn) for label �

n
j on iteration i is denoted ri;j(xn; yn). The

initial value of all margins is zero: r1;j(xn; yn) = 0; n = 1; :::;m; j = 1; :::; `.

Initialize `remaining time' s1 = c.
Do for i = 1; 2; :::

1. Associate with each example and label a positive weight

Wi;j (xn; yn) = e�(ri;j (xn;yn)+si)
2=c; n = 1; :::;m; j = 1; :::; `;

2. Binary base learner: Call Weaklearn ` times j = 1; :::; `, each time passing it the
weight distribution de�ned by normalizing Wi;j (xn; yn) for �xed j, and the training
data set alongside the binary labels de�ned by column j of the matrix M.
Multi-class base learner: Call Weaklearn, passing it the training data and
the full set of weights.

Receive from Weaklearn a set of ` hypotheses hi;j(x) which have some advantage
over random guessing

Pm
n=1

P`
j=1Wi;j (xn;yn)(hi;j (xn)�

n
j )

Pm
n=1

P`
j=1

Wi;j (xn;yn)
= i > 0:

3. Let ;� and t be real valued
variables that obey the following di�erential equation:

dt
d� =  =

Pm
n=1

P`
j=1 exp(�

1
c
(ri;j (xn;yn)+�hi;j (xn)�

n
j +si�t)2)hi;j (xn)�

n
j

Pn
n=1

P`
j=1

exp(� 1
c
(ri;j (xn;yn)+�hi;j (xn)�

n
j
+si�t)2)

where ri;j(xn; yn), hi;j(xn) and si are constants in this context.
Given the boundary conditions t = 0; � = 0 solve the set of equations to �nd
ti = t� > 0 and �i = �� such that either � � � or t� = si.

4. Margin update: ri+1;j(xn; yn) = ri;j(xn; yn) + �ihi;j(xn)�
n
j :

5. Update `remaining time' si+1 = si � ti.

Until si+1 � 0

Output Final hypotheses: pj (x) = erf

�PN
i=1 �ihi;j (x)p

c

�
, j = 1; :::; `.

Figure 3: A multi-class Brownboost algorithm based on [7].

5 The Experiments

We conducted a series of tests using the four data sets summarised in Table 1.
All of these data sets, with the exception of Credit were taken from the UCI

Machine Learning Repository [1].
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The Credit data set is a credit scoring data set of the type commonly found
in commercial banking. Details of these data have been omitted from Table 1
for commercial reasons.

Wisconsin is the well-known diagnostic data set for breast cancer compiled
by Dr William H. Wolberg, University of Wisconsin Hospitals [14].

The Wine data, based on a chemical analysis of Italian wines, and Balance

data, which records the results of a psychological experiment, are three-class data
sets which have been included to test the multi-class versions of the algorithms.

Data Class
Set Entries Attributes Classes Distribution

Wisconsin 699 9 2 241,458

Credit 500 { 2 {

Wine 178 13 3 59,71,48

Balance 625 4 3 288,49,288

Table 1: Summary table for the data sets used in experiments.

In order to ensure algorithmic convergence in the time available, the Credit

data set was curtailed to 500 examples. Indicator variables were substituted for
categorical variables where these occurred (see [11], Section 9.7 for more details).

We constructed a noisy version of each data set by assigning a randomly
chosen, incorrect class label to 20% of training examples.

We implemented Adaboost and Brownboost in Matlab, using a purpose writ-
ten binary stump algorithm as our base learner. Logitboost was implemented in
S-Plus using the internal tree function to generate binary stumps.

Each experiment consisted of 100 trials (25 for Logitboost). At each trial,
one third of the data examples were selected at random and set aside as a test
set. The remaining two thirds of examples were used to train the algorithm. We
recorded the �nal error rates of the output hypothesis on both the training and
test data.

We trained Adaboost and Logitboost on the original data to give us a bench-
mark for our comparison (recall that Adaboost is equivalent to Brownboost when
the �nal training error is set to 0).

We then trained all three algorithms on the noisy data.

In all trials Adaboost was allowed to run until its training loss matched the
expected training loss rate of that data set, or for a maximum of 100 iterations.
We used the one-against-all approach, so our coding matrix was the k�k matrix
whose diagonal entries are all 1, with all other entries -1.

Logitboost was allowed to run until its training loss matched the expected
loss rate, or up to a maximum of 20 iterations. We avoided numerical instabilities
in this algorithm using the prescriptions in [10].
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For Brownboost, we calculated the appropriate values for c using equation
4.1.

The training and test loss and error rates for each trial are recorded for a
95% con�dence interval in Tables 2 and 3.

0% Arti�cial Class Noise

Adaboost Logitboost

Data Set Training Error Test Error Training Error Test Error

Wisconsin 0:034 � 0:002 0:048 � 0:003 0:012 � 0:002 0:037 � 0:005

Credit 0:078 � 0:002 0:105 � 0:005 0:030 � 0:003 0:102 � 0:006

Wine 0:000 � 0:000 0:041 � 0:005 0:000 � 0:000 0:046 � 0:013

Balance 0:076 � 0:002 0:185 � 0:005 0:030 � 0:005 0:124 � 0:008

Table 2: Error rates for Adaboost and Logitboost on the unmodi�ed data sets, 95%
con�dence intervals, 0% arti�cial class noise.

20% Arti�cial Class Noise

Adaboost Logitboost Brownboost

Data Set Training Error Test Error Training Error Test Error Training Error Test Error

Wisconsin 0:216 � 0:003 0:238 � 0:005 0:190 � 0:004 0:238 � 0:009 0:188 � 0:001 0:230 � 0:004

Credit 0:239 � 0:003 0:316 � 0:010 0:190 � 0:005 0:281 � 0:009 0:177 � 0:002 0:289 � 0:005

Wine 0:088 � 0:003 0:287 � 0:008 0:171 � 0:012 0:256 � 0:019 0:165 � 0:003 0:255 � 0:011

Balance 0:214 � 0:003 0:337 � 0:006 0:185 � 0:005 0:247 � 0:012 0:158 � 0:002 0:280 � 0:006

Table 3: Error rates for Adaboost, Logitboost and Brownboost on the data sets with
20% arti�cial class noise, 95% con�dence intervals.

6 Discussion of Results and Conclusions

It is interesting that Logitboost proves better able to �t the unmodi�ed versions
of our four data sets, and that it appears to yield a much better generalisation
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error than Adaboost. The exception is the wine data set, which is the only one
that both algorithms were able to learn fully in all trials (presumably because it
consists of relatively few examples). But in this case the con�dence interval for
Logitboost is too wide to draw any �rm conclusions.

Broadly speaking, our results bear out claims that Adaboost is especially
susceptible to class noise, while providing strong evidence that Brownboost is
particularly robust in such situations. We were surprised that Logitboost com-
pares so favourably with Brownboost, which suggests that some property of
the algorithm (possibly the fact that it implicitly avoids making large weight
updates) makes it especially robust to over�tting.

It is immediately evident from the test error rates in Tables 2 and 3 that
the introduction of class noise to real data seriously impairs the generalisation
performance of Adaboost. This would appear to tally with the observations made
by Dietterich in [5].

When implementing Brownboost, we were able to calculate the value of c
directly given our prior knowledge. Of course, in a real situation we would be
very unlikely to know the level of class noise in advance. It remains to be seen
how di�cult it would prove to estimate c in practice.
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