
Improved Evaluation of Automatic Source Code Summarisation

Jesse Phillips and David Bowes and Mahmoud El-Haj and Tracy Hall
School of Computing and Communications

Lancaster University, UK
{j.m.phillips, d.h.bowes, m.el-haj, tracy.hall}@lancaster.ac.uk

Abstract
Source code summarisation is a vital tool for
the understanding and maintenance of source
code as summarisations can be used to explain
code in simple terms. However, source code
with missing, incorrect, or outdated summaries
is a common occurrence in production code.
Automatic source code summarisation seeks
to solve these issues by generating up-to-date
summaries of source code methods. Recent
work in automatically generating source code
summaries uses neural networks for generating
summaries; commonly Sequence-to-Sequence
or Transformer models, pretrained on method-
summary pairs. The most common method of
evaluating the quality of these summaries is
comparing the machine-generated summaries
against human-written summaries. Summaries
can be evaluated using n-gram-based trans-
lation metrics such as BLEU, METEOR, or
ROUGE-L. However, these metrics alone can be
unreliable and new Natural Language Genera-
tion metrics based on large pretrained language
models provide an alternative. In this paper, we
propose a method of improving the evaluation
of a model by improving the preprocessing of
the data used to train it, as well as proposing
evaluating the model with a metric based off a
language model, pretrained on a Natural Lan-
guage (English) alongside traditional metrics.
Our evaluation suggests our model has been
improved by cleaning and preprocessing the
data used in model training. The addition of a
pretrained language model metric alongside tra-
ditional metrics shows that both produce results
which can be used to evaluate neural source
code summarisation.

1 Introduction

Research producing models for neural source code
summarisation frequently uses metrics designed
for translation and Natural Language Generation
(NLG) tasks, such as BLEU (Papineni et al., 2002),
METEOR (Banerjee and Lavie, 2005), (Denkowski
and Lavie, 2014), and ROUGE-L (Lin, 2004).

These metrics are oriented to tasks such as trans-
lation and summarisation. Mahmud et al. (2021)
used these metrics and a shared dataset to com-
pare state-of-the-art models for neural source code
summarisation. These metrics are based on n-gram
matching, which compares the lexical similarity of
texts, but lacks a comparison of the meaning of the
texts - the semantic similarity. A lack of semantic
comparison means that machine-generated texts
which share sequences of n-grams with reference
texts score well regardless of their ability to convey
a similar meaning; whereas texts which convey a
similar meaning but don’t share many sequences
of n-grams with reference texts score poorly. For
summarisation tasks, the ability to replicate the se-
mantics of a text where the generated language may
be abstractive is more significant than the ability
to generate as many n-grams matching those in a
human-written summary as possible because the
purpose of a summary is to provide the reader with
an overview of the meaning of a larger text (or in
this case, a source code method).

NLG metrics based on Large Language Models
(LLM) aim to improve the reliability of evaluation
scores by capturing semantics through reliance on
contextual embeddings. However, these metrics
require large amounts of computational resources
- making them expensive to run in comparison to
traditional n-gram matching metrics. New efforts
in making these LLM-based metrics more acces-
sible attempt to reduce the number of parameters
compared to previous LLM-based models whilst
retaining similar accuracy. This allows for faster
calculation of LLM-based metrics. One such new
effort is the FrugalScore metric (Kamal Eddine
et al., 2022) for evaluating NLG tasks. FrugalScore
uses previous LLM-based metrics to train a minia-
ture language model which learns on the internal
mapping of the expensive metric. It is this model
which is used for generating scores for pairs of
sequences of text.

In this paper, our aim is to train a state-of-the-art
neural network model (we use the NeuralCodeSum
model (Ahmad et al., 2020)) designed for source
code summarisation, using a dataset of source code
- summary pairs as described in Section 2. The
dataset we use is a modified version of the Funcom
dataset (LeClair and McMillan, 2019). We selected
this dataset to allow us to compare our model to pre-
vious research (Mahmud et al., 2021) which trains
NeuralCodeSum on the same dataset and evaluates
the results using traditional n-gram matching met-
rics. We then evaluate our trained model using the
FrugalScore metric (Kamal Eddine et al., 2022) to
show the ability of such a metric to evaluate neural
source code summarisation.

1.1 Research Questions

RQ1.1 What does a comparison of commonly
used metrics show about our model fol-
lowing our data cleaning?

We train our model and evaluate it using a series of
n-gram-based NLG metrics. We can then use these
results to compare to previous research.

RQ1.2 How does the model trained on our dataset
compare against previous experiments on
the same model?

We compare our results to previous research train-
ing NeuralCodeSum models. Comparing our
model to Mahmud et al.’s (2021) model will show
the effect of our improved pretraining of training
data on improving the evaluation of the model.

RQ2 How do the results of traditional metrics
compare to those of FrugalScore?

We present an alternative method of evaluating neu-
ral source code summarisation, by using a met-
ric based on a language model - FrugalScore (Ka-
mal Eddine et al., 2022). We show the difference
between traditional and LLM-based metrics and the
ability to use both for a more complete evaluation
of source code summarisation.

2 Dataset

The data we used comes from the filtered version of
the Funcom dataset (LeClair and McMillan, 2019).
Funcom was proposed in the paper “Recommen-
dations for Datasets for Source Code Summariza-
tion” as a dataset of Java methods with associated

English Javadoc comments including summaries.
There are three versions of the Funcom dataset:
raw, filtered, and tokenised. The filtered dataset
is chosen over the raw dataset as it removes auto-
matically generated code and code without English
summaries. We chose the filtered dataset over the
tokenised dataset for the purposes of this experi-
ment to give us greater control over the data pre-
processing; the tokenised dataset implements their
own removal of special characters, tokenisation,
splitting of camel case, and lowercasing. These are
all steps which we perform, but intend to control.

Mahmud et al. (2021) set out a method for pre-
processing the Funcom dataset for use with Neu-
ralCodeSum, alongside other neural networks for
neural source code summarisation. However, this
method does not require code to be compilable, and
the script provided by the authors for replicating
the experiment contains a flaw as described below
(also, see Listing 1 and Appendix A).

In attempting to remove comments, Mahmud
et al.’s (2021) method strips all lines containing the
string “//”. Whilst this is the identifier for an inline
comment in Java, the same string may be used
elsewhere. For example: “//” occurs numerous
times in our dataset as part of a URL.

Listing 1: Mahmud et al.’s (2021) method for removing
comments: pseudocode

f u n c t i o n remove_comments (method)
{

c r e a t e an a r r a y (o f s t r i n g s)
f o r each l i n e o f t e x t i n a

method :
{

i f t h e l i n e does n o t
c o n t a i n " / / "

add t h e l i n e t o t h e
a r r a y

}
combine t h e c o n t e n t s o f t h e

a r r a y i n t o a new method
r e t u r n t h e new method

}

We created a new method for preprocessing the
filtered version of the Funcom dataset (LeClair and
McMillan, 2019), based on that followed by Mah-
mud et al. (2021), with some changes to fix these
issues. The first of these changes is parsing the Java
code used to ensure that only compilable code is
included in the experiment. We did this using Java-
Parser (van Bruggen et al., 2020). The use of only

Figure 1: Dataset Preprocessing

Parse the Java

Remove HTML tags

Extract summaries

Lowercase and remove special characters

Tokenise the source code

Remove repeat data

Trim the dataset to 500K

Split the dataset

compilable code focuses the model on “production”
code. Following the principle that we can disregard
code which cannot be used in a real-world system
to allow the model to focus solely on code used
in production. We then used JavaParser to remove
inline code comments written by the developers
without the risk of damaging the code itself. Re-
moval of natural language code comments from the
code removes bias due to encountering potentially
incorrect summaries written by the developers. Our
method of using JavaParser to remove only strings
the Java compiler would recognise as code com-
ments ensures that potentially useful data within
the Java source code which contains the string “//”
does not get removed. For example:

/ / Example A :
p u b l i c vo id p l a y () {

/ / I f no sound f i l e i s t h e r e
n o t h i n g can be p l a y e d .

. . .

/ / Example B :
l o c a t i o n = l i n k U r l . t o S t r i n g () .

r e p l a c e F i r s t (" f i l e : / " , " f i l e
: / / ") ;

Example A would have the string “// If no sound
file is there nothing can be played.” removed, but
Example B would not be affected.

As Figure 1 shows, the dataset is first parsed by
JavaParser, and method-comment pairs where the

methods cannot be interpreted are removed from
the data. During this parsing phase, comments
within the methods are stripped from the methods
to remove noise as described above.

HTML data is then removed from the comments,
as remnants of HTML tags in the comments used
for training may influence the predictions and skew
the results of the experiment. This is because af-
ter removing special characters, leftover text from
the HTML tags could be present in the training
data, and the model would - therefore - attempt to
replicate that pattern in evaluation.

Following this, we extract the section of each
comment in a method-comment pair most likely to
represent a basic summary. For example, from:

/ * *
* R e t u r n s t h e p us he s lowerbound

o f t h i s board p o s i t i o n .
*
* @return t h e pu sh es lowerbound

* /

we extract the string “Returns the pushes lower-
bound of this board position.”. This is done by ex-
tracting the first line of non-whitespace (that is: not
composed entirely of space and/or tab characters)
text with more than 8 characters. As the comments
in the method-comment pairs are extracted from
method-level Javadoc, the first line of meaningful
text in our dataset is usually a method summary.

These summaries are lowercased and special
characters (characters which are not alphanumeric,
full-stops, or apostrophes) are removed from them,
in order to ensure each method has a plain natural
language summary with minimal noise which could
interfere with the neural network model. Much like
with the removal of HTML tags, these special char-
acters which may not add to the natural language
summary of the method would be replicated by the
model, potentially worsening results.

The source code methods are then tokenised. As
part of our tokenisation, camel case phrases are
split into individual words, punctuation is spaced
out from words, and the text is then lowercased.
This maintains the structure of the source code
(including any structural information), whilst re-
moving information which may be misleading. For
example, one camel case word may contain a string
of words which provide useful information to the
model when tokenised.

Repeat data is then removed to prevent any bias
on the final results. In our initial testing, we found

our model scored highly on all metrics, but when
we generated a histogram of the results, we dis-
covered that this was due to an incredibly high
number of perfect matches, rather than a single
right-skewed peak. By comparing our test data to
our training data, we discovered multiple copies of
the same method in the dataset, which were present
in both testing and evaluation data. Removing these
repeats allows us to reduce this effect.

The size of the dataset is then reduced in order
to decrease the time and compute power needed
to run this experiment. The first 500,000 valid
method-comment pairs are used as the data for
this experiment. Selecting only the first 500,000
pairs is a technique used by Mahmud et al. (2021),
which means that our results are still comparable.
However, this means there is potential to improve
the model further in future by training it on a larger
dataset.

We further split our dataset into training, valida-
tion, and evaluation (80% / 10% / 10%) datasets.
We chose this split as that is the same split chosen
by both Ahmad et al. (2020) and Mahmud et al.
(2021) for training and evaluating their Neural-
CodeSum models. The data is split with a ran-
domised mixture of code from multiple projects
in each dataset to prevent the artificial inflation
of results due to any one dataset having a ma-
jority of code from a single project within the
larger dataset, which may cause artificial inflation
of performance due to data snooping in our eval-
uation which wouldn’t reflect real conditions (as
suggested by both LeClair and McMillan (2019),
and Mahmud et al. (2021)).

3 Research Methodology

We began by building our dataset, as described
in the Section 2. We used the Funcom dataset
(LeClair and McMillan, 2019), as this will al-
low us to compare our results to Mahmud et al.’s
(2021) evaluation of NeuralCodeSum, and added
our own preprocessing steps in order to improve
our model. The model was trained and evaluated
on a machine using an Intel i9-12900KF CPU,
128GB DDR4 RAM, and an Nvidia GeForce
RTX 3090 GPU, using the official implemen-
tation of NeuralCodeSum, PyTorch 1.3, and
Python 3.6. The result data from the evalua-
tion process is collected in JSON format. The
code used to process the dataset is available at
github.com/phillijm/JavaDatasetCleaner.

3.1 Methodology for RQ1.1

In testing our model using metrics, we selected
the metrics previously used for research on Neu-
ralCodeSum, Ahmad et al. (2020) and Mahmud
et al. (2021) both used Smoothed BLEU-4 (Pap-
ineni et al., 2002), METEOR (Banerjee and Lavie,
2005), and ROUGE-L (Lin, 2004) for the evaluation
of their NeuralCodeSum models. In using these
metrics, we can compare our results to previous re-
search more accurately. We also calculated BLEU-
1-4. By analysing the difference between these,
we can identify some strengths and weaknesses
of our model. The smoothing technique used for
Smoothed BLEU-4 was Lin and Och’s (2004) tech-
nique. METEOR was measured using the official
Java implementation of METEOR 1.5 (Denkowski
and Lavie, 2014). ROUGE-L was measured using
the Google Research python implementation of the
metric (Liu, 2022).

3.2 Methodology for RQ1.2

To establish whether our model has improved based
on our improvements to the preprocessing of train-
ing data, we compare our results from RQ1.1 to
those of Mahmud et al. (2021) in Table 2. Mahmud
et al. (2021) also trained a NeuralCodeSum Model
on the Funcom dataset, but with a simpler approach
to preprocessing. We hypothesise our model should
outperform Mahmud et al.’s (2021) model in evalu-
ation against the same metrics: Smoothed BLEU-4
(Papineni et al., 2002), METEOR (Banerjee and
Lavie, 2005), and ROUGE-L (Lin, 2004), due to the
improvements made in preprocessing the dataset
used to train the model, as detailed in the Dataset
Section, where we train the model on only com-
pilable code, with the training summaries heavily
sanitised.

3.3 Methodology for RQ2

Once this baseline comparison of our model against
Mahmud et al.’s (2021) model has been established,
we evaluate our model against the FrugalScore (Ka-
mal Eddine et al., 2022) metric, in order to com-
pare FrugalScore against traditional n-gram-based
metrics for a neural source code summarisation
task. Our aim in evaluating the model against Fru-
galScore is to see a FrugalScore value which is
comparable with traditional metrics and be able to
compare the distribution of FrugalScore to tradi-
tional metrics on a histogram. This will suggest
that the results produced by the model are able to

https://github.com/phillijm/JavaDatasetCleaner

be measured reliably using FrugalScore as a metric.

4 Result Analysis

Table 1: Comparison of n-gram based metrics against
FrugalScore, measuring summaries generated by our
NeuralCodeSum Model.

Metric Score
BLEU-1 37.70
BLEU-2 27.03
BLEU-3 19.94
BLEU-4 14.67
Smoothed BLEU-4 29.17
METEOR 19.93
ROUGE-L 45.82
FrugalScore 65.76

In answer to RQ1.1: how our model compares
against commonly used metrics; as seen in Table
1, our model scores well with lower n-gram BLEU

metrics, but that decreases with higher numbers of
n-grams. Lin and Och (2004) suggest that a drop
in BLEU from lower to higher orders of n-grams
could correlate a high degree of adequacy (the gen-
erated summary is still understandable), but a lower
degree of fluency in the language generated. A lack
of fluency in the text generated by our model would
also explain the lower METEOR score. Banerjee
and Lavie (2005) suggest that whilst higher order
n-gram BLEU scores can be used as an indirect mea-
sure of grammatical well-formedness, METEOR di-
rectly measures this. If the model were trained on
a larger dataset, we expect this would be improved.

Comparing our results to previous experiments
(RQ1.2), Table 2 shows an improvement in both
Smoothed BLEU-4 and ROUGE-L scores when
compared to Mahmud et al. (2021). These met-
rics suggest that our model has been improved in
its ability to generate source code summaries by the
improvements in Figure 1 in the preprocessing of
the dataset used, with an improvement in Smoothed
BLEU-4 of 7.67 and an improvement in ROUGE-L
of 12.11.

We compared the performance of our model to
previous experiments using the Smoothed BLEU-4,
ROUGE-L, and METEOR metrics - as these metrics
were presented by both Ahmad et al. (2020) and
Mahmud et al. (2021). A possible future work
would be to test these models against a wider range
of n-gram-based metrics and LLM-based metrics.

In answer to RQ2: when comparing traditional

n-gram-based natural language generation metrics
to FrugalScore (Kamal Eddine et al., 2022) for
the task of neural source code summarisation, our
model scored an average FrugalScore value of
65.76, as shown in Table 1. The distribution of
these can be seen in Figure 2, and more clearly in
Figures 3-6 in Appendix B. The distribution of Fru-
galScore is a bimodal distribution, with both peaks
to the right of the graph, and most results between
40 and 80. These second peak represents where
FrugalScore measures the machine-generated sum-
mary as being identical or near-identical to the orig-
inal human-written summary, which could poten-
tially show some degree of overfitting in the model.

It is notable that - when compared to traditional
metrics - FrugalScore gives far fewer “bad” results
(for example, 31.308% of Smoothed BLEU-4 re-
sults were above 30, compared to 99.998% of Fru-
galScore results). FrugalScore also gives fewer
“perfect” or “near-perfect” results than traditional
metrics (for example, 6.571% of Smoothed BLEU-
4 results were above 99, compared to 4.215% of
FrugalScore results). The difference between these
results suggests that FrugalScore gives more credit
to summaries which other metrics rank poorly and
less credit to summaries which other metrics rank
highly, with higher median and mean values. This
should be taken into account when directly com-
paring FrugalScore to traditional metrics.

Our results show that - on average - FrugalScore
ranks summaries more highly than traditional met-
rics. This is likely either due to the ability of LLM-
based metrics to take the semantics of a sentence
into account, where n-gram-based metrics do not,
or due to a possible overestimation of results. To
determine this would require further human evalua-
tion, as mentioned in the Limitations Section.

5 Related Work

5.1 Neural Source Code Summarisation Using
Transformer Models

The Transformer model was initially proposed by
Vaswani (Vaswani et al., 2017) and initially tested
on the WMT 2014 English-to-German translation
task. CodeBERT (Feng et al., 2020) and Neural-
CodeSum (Ahmad et al., 2020) both use the Trans-
former architecture to form a model for neural
source code summarisation, with NeuralCodeSum
being a simple Transformer model, and CodeBERT
being a larger bidirectional model, built on BERT
(Devlin et al., 2019) and RoBERTa (Liu et al.,

Table 2: Comparison of metrics against those reported by previous papers.

Model Smoothed BLEU-4 METEOR ROUGE-L
Ahmad et al. (2020)* 44.58 26.43 54.76
Mahmud et al. (2021) 21.50 27.78 33.71
Our Model 29.17 19.93 45.82

* Ahmad et al.’s (2020) original experiment used a different dataset for training, so there is little relevance in directly comparing
results.

Figure 2: Frequency Distribution of Metrics

2019).
Mahmud et al. (Mahmud et al., 2021) compare

both of these models, as well as the Code2Seq
(Alon et al., 2019) model when trained on the Fun-
com dataset (LeClair and McMillan, 2019).

5.2 Metrics for Evaluating Automatic Natural
Language Generation Systems

Whilst there are many metrics for evaluating nat-
ural language generation tasks BLEU (Papineni
et al., 2002) has become a common metric, with
other metrics, such as ROUGE (Lin, 2004) and
METEOR (Banerjee and Lavie, 2005) designed to
be used alongside it, addressing potential flaws in
BLEU itself. METEOR has been updated multiple
times, with the current version being METEOR 1.5
(Denkowski and Lavie, 2014). Other metrics, such
as ORANGE (Lin and Och, 2004) also suggest tech-
niques which can be used to improve BLEU, such
as the application of smoothing techniques.

Recent work in using language models as met-
rics to evaluate natural language generation tasks
have presented a potential leap forwards in our

ability to automatically evaluate such models.
BERTScore (Zhang et al., 2020) is one such met-
ric, as is MoverScore (Zhao et al., 2019). These
metrics use large language models which require
vast amounts of compute power, and may lead to
ethical concerns due to the impact of training large
language models on the environment. FrugalScore
(Kamal Eddine et al., 2022) aims to go some way
to solving this dilemma by reducing the environ-
mental impact of the metric, whilst maintaining
accuracy.

6 Conclusion

In testing a NeuralCodeSum model trained on a
dataset of source code which has been parsed and
had developer comments accurately removed, with
accurate tokenisation of both source code and sum-
maries, we have demonstrated the effect of ensur-
ing a higher quality of training data has on im-
proving the quality of a model - with our model
outperforming that of Mahmud et al. (2021). In
evaluating our model with FrugalScore alongside
traditional metrics, we have shown how the two

can be used alongside each other to provide an im-
proved method of evaluating a model for neural
source code summarisation.

Limitations

The first limitation to our research is that we have
only tested the summarisation of Java source code
in English. Whilst this research was limited in this
aspect, it opens the possibility for future research,
not only in the evaluation of neural source code
summarisation, but also cross-language summari-
sation in general.

In this study, we used FrugalScore as a metric
using a language model. Other metrics, such as
BERTScore (Zhang et al., 2020) could be applied
to compare language model-based metrics for this
task, but this would require a far larger amount
of GPU resources, as FrugalScore is designed as a
lightweight metric. For this reason, we chose to use
FrugalScore instead of other LLM-based metrics.
Generating FrugalScore for our outputs took over
2 days and 18 hours using the HuggingFace imple-
mentation of the metric. Using more robust large
language models also has a larger impact on ethics
as the effect on the environment of these large lan-
guage models would be greater. The use of further
LLM-based metrics (potentially on smaller sam-
ples of data to reduce environmental impact and
processing time) in an effort to show how these
metrics compare to both n-gram-based metrics and
human evaluation of neural source code summari-
sation is possible future work to expand upon this
research.

The use of FrugalScore showed the possibility
for the use of LLM-based metrics in analysing neu-
ral source code summarisation. The difference in
distribution between FrugalScore and traditional
metrics suggests that further analysis is needed to
compare FrugalScore and traditional metrics with
human evaluation. Only then can we determine
whether FrugalScore better aligns with human eval-
uation or overestimates the quality of summaries.

This study also focused on the NeuralCodeSum
model (Ahmad et al., 2020), as one example of a
cutting edge model. However, other models, such
as Code2Seq (Alon et al., 2019), or CodeBERT

(Feng et al., 2020) have the potential to yield dif-
ferent results, something which could be explored
in future.

The use of NeuralCodeSum also limited us in
that to build the official implementation of the

model required us to use old versions of Python
(Python 3.6) and PyTorch (PyTorch 1.3), which
are now deprecated. As time passes, the use of
deprecated systems will produce an increased limi-
tation on the reproducibility of our results.

Ethics Statement

The primary ethical considerations of our research
are twofold: the environmental impact of our re-
search, and the use of a large dataset of code we
have not generated.

The dataset comes from LeClair and McMillan
(2019) and consists of methods and Javadoc com-
ments from publicly available Java source code.

Whilst in our research, we have taken precau-
tions to limit our environmental impact (the se-
lection of FrugalScore as a language model-based
metric due to its lower environmental impact com-
pared to BERTScore or MoverScore, and the selec-
tion of NeuralCodeSum as our test model, rather
than a larger model with more parameters, such
as CodeBERT), any research involving the train-
ing and evaluation of neural networks will have an
environmental impact.

References
Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and

Kai-Wei Chang. 2020. A transformer-based ap-
proach for source code summarization. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 4998–5007, On-
line. Association for Computational Linguistics.

Uri Alon, Shaked Brody, Omer Levy, and Eran Ya-
hav. 2019. code2seq: Generating sequences from
structured representations of code. In International
Conference on Learning Representations.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65–72, Ann Arbor,
Michigan. Association for Computational Linguis-
tics.

Michael Denkowski and Alon Lavie. 2014. Meteor
universal: Language specific translation evaluation
for any target language. In Proceedings of the Ninth
Workshop on Statistical Machine Translation, pages
376–380, Baltimore, Maryland, USA. Association
for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of

https://doi.org/10.18653/v1/2020.acl-main.449
https://doi.org/10.18653/v1/2020.acl-main.449
https://openreview.net/forum?id=H1gKYo09tX
https://openreview.net/forum?id=H1gKYo09tX
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://doi.org/10.3115/v1/W14-3348
https://doi.org/10.3115/v1/W14-3348
https://doi.org/10.3115/v1/W14-3348
https://doi.org/10.18653/v1/N19-1423

deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
BERT: A pre-trained model for programming and
natural languages. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1536–1547, Online. Association for Computational
Linguistics.

Moussa Kamal Eddine, Guokan Shang, Antoine Tix-
ier, and Michalis Vazirgiannis. 2022. FrugalScore:
Learning cheaper, lighter and faster evaluation met-
rics for automatic text generation. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1305–1318, Dublin, Ireland. Association for
Computational Linguistics.

Alexander LeClair and Collin McMillan. 2019. Rec-
ommendations for datasets for source code summa-
rization. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
3931–3937, Minneapolis, Minnesota. Association for
Computational Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Chin-Yew Lin and Franz Josef Och. 2004. ORANGE: a
method for evaluating automatic evaluation metrics
for machine translation. In COLING 2004: Pro-
ceedings of the 20th International Conference on
Computational Linguistics, pages 501–507, Geneva,
Switzerland. COLING.

Peter Liu. 2022. rouge-score 0.1.2.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Junayed Mahmud, Fahim Faisal, Raihan Islam Arnob,
Antonios Anastasopoulos, and Kevin Moran. 2021.
Code to comment translation: A comparative study
on model effectiveness & errors. In Proceedings
of the 1st Workshop on Natural Language Process-
ing for Programming (NLP4Prog 2021), pages 1–16,
Online. Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the

40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Danny van Bruggen, Federico Tomassetti, Roger How-
ell, Malte Langkabel, Nicholas Smith, Artur Bosch,
Malte Skoruppa, Cruz Maximilien, ThLeu, Panayio-
tis, Sebastian Kirsch, Simon, Johann Beleites, Wim
Tibackx, jean pierre L, André Rouél, edefazio, Daan
Schipper, Mathiponds, Why you want to know, Ryan
Beckett, ptitjes, kotari4u, Marvin Wyrich, Ricardo
Morais, Maarten Coene, bresai, Implex1v, and Bern-
hard Haumacher. 2020. javaparser/javaparser: Re-
lease javaparser- parent-3.16.1.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

Wei Zhao, Maxime Peyrard, Fei Liu, Yang Gao, Chris-
tian M. Meyer, and Steffen Eger. 2019. MoverScore:
Text generation evaluating with contextualized em-
beddings and earth mover distance. In Proceedings
of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 563–578, Hong
Kong, China. Association for Computational Lin-
guistics.

A Appendix A

Listing 2: Mahmud et al.’s (2021) method for removing
comments: official python implementation

d e f remove_comments_ ins ide_mthd (
mthd : s t r) −> s t r :

l i n e s = mthd . s p l i t (" \ n ")
e a c h L i n e = []
f o r l i n e i n l i n e s :

i f " / / " i n l i n e :
c o n t i n u e

e l s e :
e a c h L i n e . append (l i n e)

r e t u r n " \ n " . j o i n (e a c h L i n e)

B Appendix B

Below, we have provided histograms showing 1-
to-1 comparisons of the frequency distribution of
the FrugalScore metric against BLEU-1, Smoothed
BLEU-4, METEOR, and ROUGE-L.

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2022.acl-long.93
https://doi.org/10.18653/v1/2022.acl-long.93
https://doi.org/10.18653/v1/2022.acl-long.93
https://doi.org/10.18653/v1/N19-1394
https://doi.org/10.18653/v1/N19-1394
https://doi.org/10.18653/v1/N19-1394
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://aclanthology.org/C04-1072
https://aclanthology.org/C04-1072
https://aclanthology.org/C04-1072
https://pypi.org/project/rouge-score/
https://doi.org/10.48550/ARXIV.1907.11692
https://doi.org/10.48550/ARXIV.1907.11692
https://doi.org/10.18653/v1/2021.nlp4prog-1.1
https://doi.org/10.18653/v1/2021.nlp4prog-1.1
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.5281/zenodo.3842713
https://doi.org/10.5281/zenodo.3842713
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://doi.org/10.18653/v1/D19-1053
https://doi.org/10.18653/v1/D19-1053
https://doi.org/10.18653/v1/D19-1053

Figure 3: Frequency Distribution of BLEU-1 vs FrugalScore

Figure 4: Frequency Distribution of Smoothed BLEU-4 vs FrugalScore

Figure 5: Frequency Distribution of METEOR vs FrugalScore

Figure 6: Frequency Distribution of ROUGE-L vs FrugalScore

