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Outline

• Motivation and application.

• Threshold modelling using quantile regression.

• Implications of QR threshold for PP model parameterisation.

• Adjusting for spatial dependence.

• Results for application.

• Initial theoretical & simulation studies.

• Conclusions.



Motivation: Rational design of marine structures

• Covariate effects:
• Location, direction, season, ...
• Multiple covariates in practice.

• Cluster dependence:
• e.g. storms independent, observed (many times) at many

locations.
• e.g. dependent occurrences in time.

• Scale effects:
• Modelling H2

S gives different estimates cf. modelling HS .

• Threshold estimation; parameter estimation.

• Measurement issues:
• Field measurement uncertainty greatest for extreme values.
• Hindcast data are simulations based on pragmatic physics,

calibrated to historical observation.



Motivation: Rational design of marine structures

• Multivariate extremes:
• Waves, winds, currents, ...
• Componentwise maxima ⇔ max-stability ⇔ regular variation:

• Assumes all components extreme.
• ⇒ Perfect independence or asymptotic dependence only.

• Extremal dependence:
• Assumes regular variation of joint survivor function.
• ⇒ Asymptotic dependence, asymptotic independence (with

+ve, -ve association).

• Conditional extremes:
• Assumes, given one variable being extreme, convergence of

distribution of remaining variables.
• Allows some variables not to be extreme.

• Inference:
• ... a huge gap in the theory and practice of multivariate

extremes ... (Beirlant et al. 2004)

Aim: Useful models with rigourous assessment of model
performance, especially in extreme quantiles.



Motivation: Good threshold estimation critical

• Considerable empirical evidence from applications that
careful estimation of threshold including covariate effects
important for satisfactory modelling.

• Often reasonable to assume some (or all) extreme value
parameters are independent of (some or all) covariates
following good thresholding, greatly simplifying model form.

• Quantile thresholds as functions of covariate(s) produce near
constant rates of threshold exceedence (appealing from
design perspective).



Application: Marginal estimation of extreme HSP
S

• Data from hindcast of Y storm peak significant wave height
(in metres) in the Gulf of Mexico.
• Wave height, h: trough to the crest of the wave.
• Significant wave height, HS : the average of the largest 1/3

wave heights h in given period (usually 3 hours).
• Storm peak HSP

S : largest value of HS from a storm (cf.
declustering).

• 6 × 12 grid of 72 sites (≈ 14 km apart).

• Sep 1900 to Sep 2005 : 315 storms in total.

• Average of 3 observations (storms) per year, at each site.

Aim: Quantify the extremal behaviour of Y at each site, making
appropriate adjustment for spatial dependence.



Typical hurricane event in Gulf of Mexico



Spatial dependence
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Spatial non-stationarity
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Modelling approach

• Spatial non-stationarity:
• Model threshold as Legendre polynomial in longitude and

latitude using quantile regression.
• Model spatial variation of PP parameters as Legendre

polynomials in longitude and latitude.
• Lots of other suitable bases: splines, random fields ...

• Spatial dependence:
• Estimate parameters assuming conditional independence of

responses given covariate values.
• Adjust standard errors etc. for spatial dependence.

• Estimate extreme quantiles.



Extreme value regression model

Conditional on covariates xij exceedances over a high threshold
u(xij) follow a 2-dimensional non-homogeneous Poisson process.

If responses Yij , i = 1, . . . , 72 (space), j = 1, . . . , 315 (storms) are
conditionally independent:

L(θ) =
315∏
j=1

72∏
i=1

exp

{
− 1

λ

[
1 + ξ(xij)

(
u(xij)− µ(xij)

σ(xij)

)]−1/ξ(xij )
+

}

×
315∏
j=1

∏
i :yij>u(xij )

1

σ(xij)

[
1 + ξ(xij)

(
yij − µ(xij)

σ(xij)

)]−1/ξ(xij )−1
+

.

λ : mean number of observations per year.
µ(xij), σ(xij), ξ(xij) : PP parameters at xij .
θ : vector of all model parameters.



Covariate-dependent thresholds

Arguments for:

• Asymptotic justification for EV regression model : the
threshold u(xij) needs to be high for each xij .

• Design : spread exceedances across a wide range of covariate
values.

Set u(xij) so that P(Y > u(xij)), is approx. constant for all xij .

• Set u(xij) by trial-and-error or by discretising xij , e.g. different
threshold for different locations, months etc.

• Quantile regression (QR) : model quantiles of a response Y
as a function of covariates.



Constant threshold
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Quantile regression
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Simple quantile regression in outline

• Data {xi , yi}ni=1

• τ th conditional quantile function Qy (τ |x) = xφ(τ) estimated
by solving:

min
φ

n∑
i=1

ρτ (yi − xiφ)

where ρτ (r) = τ r − r I (r < 0), or (with ri = ri (φ) = yi − xiφ):

min
φ
{τ

n∑
ri≥0
|ri |+ (1− τ)

n∑
ri<0

|ri |}

• As a linear program:

min
φ,u,v
{τ1Tn u + (1− τ)1Tn v | xφ+ u − v = y}

where {ui} and {vi} are slack variables corresponding to
(absolute values of) positive and negative residuals.



Model parameterisation

Let p(xij) = P(Yij > u(xij)). Then, if ξ(xij) = ξ is constant,

p(xij) ≈
1

λ

[
1 + ξ

(
u(xij)− µ(xij)

σ(xij)

)]−1/ξ
.

If p(xij) = p is constant then:

u(xij) = µ(xij) + c σ(xij), for some constant c.

The form of u(xij) is determined by the extreme value model:

• if µ(xij) and/or σ(xij) are linear in xij : linear QR.

• if log(µ(xij) and/or log(σ(xij) is linear in xij : non-linear QR.



Adjustment for spatial dependence

• Independence log-likelihood:

`IND(θ) =
k∑

j=1

72∑
i=1

log fij(yij ; θ) =
k∑

j=1

`j(θ)

(storms) (space)

• If correct model specification:

θ̂ → N(θ0, I
−1)

• If model mis-specified, in regular problems, as k →∞:

θ̂ → N(θ0, I
−1 V I−1)

• I = Expected information: −E
(
∂2

∂θ2
`IND(θ0)

)
.

• V = var
(
∂
∂θ `IND(θ)

)
.



Adjustment of `IND(θ)

• Idea: Adjust `IND(θ) to have correct curvature near θ̂ using
sandwich estimate.

`ADJ(θ) = `IND(θ̂)

+
(θ − θ̂)′

(
−Î−1 V̂ Î−1

)−1
(θ − θ̂)

(θ − θ̂)′(−Î )(θ − θ̂)

(
`IND(θ)− `IND(θ̂)

)
,

• Estimate I by observed information at θ̂.

• Estimate V by
k∑

j=1

U2
j

(
θ̂
)

, Uj(θ) =
∂`j (θ)
∂θ .

• Vertical adjustment preserves asymptotic distribution of
likelihood ratio statistic.

• See Davison (2003), Chandler and Bate (2007).



Summary of modelling of wave height data

• Threshold selection:
• Choice of p: look for stability in parameter estimates.
• Based on µ (and u) quadratic in longtiude and latitude, σ and
ξ constant . . .

• Spatial model:

µ =

qx∑
i=0

qy∑
j=0

µi+jqyφxi (lx)φyj(ly )

where:

• φ·0(·) = 1.

• φx1(lx) = 1
5.5(lx − 6.5), φy1(ly ) = 1

2.5(ly − 3.5).

• φ·2(·) = 1
2(3φ21(·)− 1), for lx , ly ∈ [−1, 1].



Threshold selection : µ intercept
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Threshold selection : µ coefficient of latitude
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Threshold selection : ξ
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Summary of modelling of wave height data

• Choice of p: look for stability in parameter estimates.
Use p = 0.4.

• ξ̂ = 0.07, with 95% confidence interval (−0.05, 0.22).

• Estimated 200 year return level at (long=7, lat=1) is 15.8m
with 95% confidence interval (12.9, 22.3)m.

• Close agreement between parameter estimates for threshold u
and point process mean µ.



Marginal 200 year return levels
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Toy study 1

Data-generating process: for covariate values x1, . . . , xn:

Yi | X = xi
indep∼ GEV (µ0 + µ1 xi , σ, ξ).

Set threshold:
u(x) = u0 + u1 x .

For each u1, set u0 such that the expected proportion of
exceedances is kept constant at p.

• Calculate Fisher expected information for (µ0, µ1, σ, ξ).

• Invert to find asymptotic V-C of MLEs µ̂0, µ̂1, σ̂, ξ̂ and hence
var(µ̂1).

• Find the value of u1 that minimises var(µ̂1).



Findings of Toy study 1

Let ũ1 be the value of u1 that minimises var(µ̂1).

• If covariate values x1, . . . , xn are symmetrically distributed
then: ũ1 = µ1 (quantile regression).

• If x1, . . . , xn are positive (negative) skew then ũ1 < µ1
(ũ1 > µ1).

. . . but the loss in efficiency from using ũ1 = µ1 appears to be
small.



Simulation study 2

• 30 years of daily data on a spatial grid.

• Spatial dependence : mimics that of wave height data.

• Temporal dependence : moving maxima : extremal index 1/2
(no declustering)

• Spatial variation: location µ linear in longitude and latitude.

• ξ: −0.2, 0.1, 0.4, 0.7.

• Thresholds: 90th, 95th, 99th percentiles.

• SE adjustment: data from distinct years are independent.

• Simulations with no covariate effects and/or no spatial
dependence for comparison.



Findings of simulation study 2

• Estimates of regression effects from QR and PP models are
very close : both estimate extreme quantiles from the same
data.

• Uncertainties in covariate effects of threshold are negligible
compared to the uncertainty in the choice of threshold level.

• To a large extent fitting the PP model accounts for
uncertainty in the covariate effects at the level of the
threshold.

• Slight underestimation of standard errors : uncertainty in
threshold ignored.



Conclusions

Quantile regression:

• An intuitive and effective strategy to set thresholds for
non-stationary EV models.

• Works well in initial applications.

• Supported by initial theoretical and simulation studies.

Ideas:

• Kyselý, J., et al. (2010) use quantile regression to set a
time-dependent threshold for peaks-over-threshold GP
modelling of data simulated from a climate model.

• Simultaneous threshold and PP model would avoid iteration
(mixed-integer optimisation; see Beirlant et al. 2004).
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Thank you for your attention.


