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Abstract

We present an empirical approach to modelling the vertical (vector) profile of large ocean currents,
based on a conditional extremes model (Heffernan and Tawn 2004) from the statistics literature. Observed
vector currents at each of a number of water depths are expressed as components with respect to major-
and minor-axis of current variation at that depth using Principal Components Analysis. Each current
component is then independently decomposed into the sum of (deterministic periodic) tidal and (random)
non-tidal currents using a local harmonic model. The marginal and dependence structure of extremes
of hourly maxima and minima of non-tidal components is characterised using the conditional extremes
model. We simulate under this model to estimate characteristics of extreme current profiles corresponding
to arbitrary return periods, and quantify the uncertainty of those estimates. For a sample collected over
a 2.5- year period in 250m water on the outer shelf of North Western Australia, the model predicts
monthly instantaneous extreme conditional profiles well. We also estimate marginal and conditional
current profiles corresponding to a 10-year return period.

1 Introduction

There is scientific and engineering interest in understanding the structure of ocean current profiles, vertically
through the water column. Carollo et al. [2005a,b] provide references to analysis of vertical current structure
in the oceanographic literature. From an engineering perspective, current-induced structural loading is
an important consideration in offshore and coastal design. Understanding dependence between extreme
values of current at different positions in the water column is critical to reliable estimation of extreme loads
on oil and gas installations in the deep ocean. Planned measurement programmes were rare until recent
years (Griffiths 1996). With more recent widespread adoption of ADCP devices, complete water column
measurements of current profile sometimes over several years are available. Reliably estimating extreme
current events corresponding to return periods required for engineering design remains a major challenge.

Currents are vector quantities which can be represented as the sum of tidal and non-tidal components.
Tidal forcing is essentially deterministic in nature, generated by the gravitational interaction of the Sun,
Moon and Earth. Hence tidal currents are periodic with a net velocity of zero over the tidal cycle. Non-tidal
currents include permanent currents in the ocean’s general circulatory systems and surge currents arising
from local meteorological variability of wind and pressure fields. Circulatory currents can be viewed as
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slowly varying deterministic components. Surge currents however are essentially stochastic in nature but
show strong seasonal variation. Local bathymetry and vertical stratification of temperature and salinity also
influence characteristics of vertical current profiles. Statistical modelling of extreme ocean currents typically
proceeds by first removing slowly-varying and periodic components, before applying extreme value methods
to residual (surge) current (e.g. Robinson and Tawn 1997). In this way, the extreme value characteristics of
(scalar) current components (or speed) can be estimated. Design values corresponding to arbitrary return
periods are estimated by simulation, assuming an additive model for total current. By treating current
direction as a covariate, a joint model for current speed and direction can also be developed (Robinson and
Tawn 1997).

Regarding statistical analysis of extreme vertical current profiles, underlying physics suggests that oc-
currences of a large current (speed or component) at one depth will be associated with particular current
characteristics at other depths. Carollo et al. [2005b] report dependence between extremes for close vertical
layers, attributed to vertical propagation of flow. Modelling dependence structure of extreme vertical current
profiles is essential, therefore, in general, whereas performing independent extreme value analyses per depth
would not be appropriate. Extending the Robinson and Tawn [1997] model for current speed and direction
for multiple current depths is regrettably not straight forward.

Principal components analysis (PCA, see e.g. Joliffe [2002] sometimes referred to as empirical orthogonal
function (EOF) analysis, see e.g. Hannachi et al. [2007]) is commonly used for exploratory data analysis
in oceanography (e.g. Liu and Weisberg 2007). Some authors propose using this approach to preprocess
residual current prior to statistical analysis. Briefly, a sample of values of two orthogonal residual current
components at each of p depths (yielding 2p variables) is re-expressed in terms of projections (or ′scores′) onto
the set of 2p orthonormal principal component vectors. Each principal component is a linear combination
of the original 2p variables. The first principal component is the best one-dimensional summary of the
original sample in terms of variance explained (i.e. it is the major axis of the data cloud). Subsequent
principal component vectors are defined analogously, such that the first and second principal components
provide the best two-dimensional summary, etc. Extreme value analysis can then be performed on the more
informative principal component scores variables. Strictly, all principal component scores variables should be
analysed to avoid loss of information. Return values estimated again assuming additivity of scores variables.
Critically however, scores variables (established using the full sample) are not generally independent in
the extremes. Hence, joint modelling of scores variables would still be necessary to characterise extremal
behaviour adequately.

Direct joint modelling of extremes of two or three variables is sometimes possible, with limitations
(see Jonathan et al. 2010). Heffernan and Tawn [2004] present a conditional extreme value model. Using
asymptotic arguments, they derive a parametric equation for the form of one or more variables conditional
on a large value of another, valid for extremes from a wide class of multivariate distributions, providing a
practical basis for joint modelling of extremes in high dimensions.

Any reasonable approach to modelling vertical residual current profiles must accommodate (a) the vector
nature of currents at each depth, and (b) the dependence between currents at different depths. In this
work, we choose to model maxima and minima for current components in orthogonal directions over short
intervals of time, rather than instantaneous orthogonal current components (or speed and direction). That
is, we summarise the variation in orthogonal current components ca(t), cb(t), t ∈ interval T , using the quartet
c+ak, c

−
ak, c

+
bk, c

−
bk, where ′+′ represents the maximum observed during interval T , and ′−′ the minimum, for

the corresponding variable. This summary representation provides a pragmatic approach to joint modelling
of extremes of a set of two-dimensional vectors, which we demonstrate does not compromise the quality of
inference unduly for appropriate choice of interval length.

The layout of the paper is as follows. In section 2, we introduce the motivating example for the current
work and illustrate the pre-processing steps undertaken. We outline the local harmonic model used to
remove slowly-varying and periodic current components, and the effect of sampling hourly maxima and
minima. In section 3, the conditional extremes model is outlined, and results of its application to residual
currents reported. In section 4, we report the results of a simulation study to generate extreme conditional
profiles, and compare simulation with measurement. Section 5 provides a brief discussion and conclusions.
The purpose of this paper is to demonstrate the application of the conditional model for estimation of
extreme vertical profiles of residual current. Emphasis is therefore placed on extreme value analysis. For
completeness, however, we also illustrate how results from different modelling stage are combined to provide
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estimates of extreme vertical profiles of total current.

2 Data and pre-processing

2.1 Location, measurement and current regime

Measurements were made in approximately 250m water depth in the Browse Basin on the northwest conti-
nental shelf of Western Australia. The location of interest lies in the shelf break region, close the continental
slope, with steeply sloping bathymetry. The slope is oriented approximately NE-SW in the vicinity of the
measurements. The current meter mooring comprised 8 CM04 single-point acoustic current meters, posi-
tioned at 40m intervals through the water column, with the exception of the near-bed current meters, which
were positioned at 3m and 1.m above seabed. The instruments sampled current velocity and sea water tem-
perature at 2 Hz, with a vector-average current velocity calculated at 1-minute intervals. The mooring was
deployed for a period of just over 21/2 years, with service visits at approximately 6-monthly intervals. We
consider resulting 1-minute measurements of Easterly and Northerly current components at depths D1-D8,
respectively 27m, 67m, 107m, 147m, 187m, 227m, 254m and 255m below the surface.

In the Browse Basin, tides are predominantly semidiurnal. Accordingly, barotropic tide typically exhibits
four current reversals (and four current speed peaks) each day. There is a strong semidiurnal tidal signal in
the current direction. Currents rotate anti-clockwise from west, south, east through north in the upper water
column. At the seabed, current directions are constrained to the ebb and flood directions, which are roughly
northwest and southeast, perpendicular to the axis of the continental slope. Browse Basin waters are also
typically strongly temperature-stratified in summer, so that baroclinic tide is important. The importance of
baroclinic tide is enhanced by steeply sloping bathymetry, and the positioning of the measurement location
in the shelf break region.

Local wind-forcing is usually most pronounced under severe tropical cyclones. After cyclone passage,
inertial currents with inertial period of approximately 50 hours may be initiated. Since the wind regime
is distinctly seasonal, near-surface currents may display similar seasonality, with summer easterly to north-
easterly currents, and winter westerly to south-westerly currents. Local wind-driven surface currents may
attain maximum speeds of 0.7ms−1 during extreme monsoonal or Trade Wind surges. More typical speeds
would be in the range [0.2, 0.4]ms−1. The direction of flow would be slightly to the left of the line of
forcing due to the Coriolis effect, but generally along the bathymetric contours. During severe tropical
cyclones, forcing would be much stronger, with local current direction depending upon the relative location
of the centre of the storm. Tropical cyclone generated current speeds will typically exceed 1.0ms−1 and can
approach or even exceed 2.0ms−1, for the near-surface layer.

Regional circulation involves the general anticlockwise gyre of the Indian Ocean, seasonal influences such
as prevailing mean wind, other regional influences such as the Pacific-Indian Ocean through-flow, and any
contribution from continental shelf waves. The Indian Ocean anticlockwise gyre involves a westward flowing
South Equatorial Current with speeds attaining 0.4ms−1 at the location. Source water for the Pacific-Indian
Ocean through-flow is relatively warm, low salinity water amassed against the eastern boundaries of the
Indonesian Archipelago by the Trade Winds of the Pacific Ocean. This water filters through the archipelago,
feeding the South Equatorial Current and flooding the continental shelf of Western Australia. Since the
volume of available source water is strongly correlated with El Nio Southern Oscillation (ENSO) events,
the currents at the measurement location are expected to show some inter-annual variability on the same
timescale as for ENSO events.

Due to the proximity of the measurement location to the shelf slope and steep bathymetry, high frequency
currents associated with the passage of solitons are anticipated. These are characterised by speed spikes in
the range [0.5, 0.7]ms−1, particularly near the seabed, and temperature spikes at the thermocline. Soliton
events occur more frequently in and around April, when thermal stratification is most intense.

2.2 Components along major- and minor-axis of current ellipse

At each depth Dk, k = 1, 2, ..., 8, consider resolved values of current along the major and minor axes of the
total current ellipse, cMk and cmk respectively. Figure 1 shows the direction of the major axis as a function of
depth. The major axis is approximately perpendicular to the shore line. We also observe an anti-clockwise
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Figure 1: Direction of major axis of current ellipse for each of 8 depths D1 − D8. The major axis is
approximately perpendicular to the slope line. Note anti-clockwise rotation of major axis with increasing
depth for D1 −D5.

rotation of the major axis of total current with increasing depth from 27m to 187m. It is tempting to
conclude that this might indicate an Ekman drift effect, and that mean current flow has a strong wind drift
component. However, Larsen et al. [2000] report a clockwise rotation of the major axis of the tidal current
ellipse with depth for observations in the Iceland-Scotland ridge. As the currents at our location are similarly
tidally dominated, we are in fact observing, perhaps topographic, steering of tidal components with depth.
Figure 2 shows the variation of cM4 in time for the first 100 days of observation; tidal effects are obvious in
the major-axis components cM• at each depth, but less clear for the minor axis components cm• (shown in
Figure 3 for D4). Note that henceforth we use components cM4 (and cm4) as ′typical′ examples to illustrate
discussion as necessary.

Figure 4 shows that current variance reduces as a function of increasing water depth, for total current,
c, and current components cM , cm. Component cM explains approximately 3/4 of current variance at each
water depth.

Note that, in this work, principal components analysis is used independently at each depth to identify
resolved current components corresponding to the major and minor axes of current variation.

2.3 Tidal and residual currents

We decompose each of cjk, j = M,m, k = 1, 2, ...8, into tidal (subscript ′T ′) and residual (subscript ′R′)
components (cTjk, cRjk) using a local harmonic model. After some exploration, we found that an additive
model of the form:

cjk(t) = a(t) + b1 sin((24/T1)t+ φ1) + b2 sin((24/T2)t+ φ2)

was sufficient to explain tidal effects over a moving 2-day window, with T1 = 12.42 hours (principal
lunar constituent, M2) and T2 = 12 hours (principal solar constituent, S2). Figure 5 illustrates the result of
decomposition of component cM3. Major tidal variation has been captured in the tidal component. We note
that slowly-varying current is captured by the local intercept term, a(t), important in the case of cm3 (see
Figure 6).

Note that, in this work, a simple local harmonic model is found to explain deterministic variation in
current components well. In general, other model forms (see, e.g., Robinson and Tawn 1997, Pawlowicz
et al. 2002) might be more appropriate.
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Figure 2: Time-series of major-axis component at depth D4, cM4 for first 100 days of observation. Periodic
tidal effects obvious.

Figure 3: Time-series of minor-axis component at depth D4, cm4 for first 100 days of observation. Periodic
tidal effects less prominent than for cM4.
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Figure 4: Current variance with water depth, for total current c (solid), major-axis component cM• (dark
grey) and minor-axis component cm• (light grey). Current variance reduces with increasing depth, with cM•
explaining approximately 3/4 of current variance at each depth.

Figure 5: Decomposition of major-axis current at depth D4, cM4, into tidal (including slowly-varying) and
residual currents for first 100 days of observation. Major tidal variation is captured by local model.
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Figure 6: Decomposition of minor-axis current at depth D4, cm4, into tidal (including slowly-varying) and
residual currents for first 100 days of observation. Local model captures slowly-varying term.

2.4 Hourly extreme currents

Hourly maxima c+ijk and minima c−ijk for each component cijk, i = {T,R}, j = {M,m}, k = 1, 2, ..., 8 were
isolated. Hourly extremes of residual current are used for extreme value analysis. Hourly extreme of tidal
current are necessary for recombination with extreme hourly residual currents during simulation to estimate
return values in section 4. Figure 7 shows time-series of hourly maxima and (negative) minima for cTM3

and cRM3. Note that ”hourly minima” are defined using c−• = max{−c•} over the hour interval, so that
we are always interested in large positive values of extremes. Since the major-axis of the current ellipse is
approximately perpendicular to the slope, we can therefore think of c+• as the ′hourly maximum onshore′

component and c−• as the ′hourly maximum offshore′ component. An interval of one hour provides sufficient
current observations to estimate component maxima and minima reasonably, whilst allowing characterisation
of the variation of these quantities in time.

Figure 8 shows a Spearman rank correlation map of the hourly maximum / minimum residual currents.
The Spearman rank correlation between values for two variables in a sample is the correlation between
the sorted values of those variables; rank correlation is less sensitive to individual ′outlier′ points than it’s
conventional (Pearson) equivalent. Positive rank correlations are shown in the North-West section of the map,
negative rank correlations in the South-East. Hourly maxima c+RMk are positively inter-correlated for k ≥ 5,
as are c−RMk, c+Rmk and c−Rmk. These inter-correlations are indicative of dependence structure which needs
to be modelled adequately, especially if also evident in extremes of the variables. Hourly maxima c+Rjk and

minima c−Rjk are also positively correlated for given component j (= {M,m}) and k (= 1, 2, ..., 8), suggesting
that hours with large maxima residuals also have large values of (negative) minima. Other inter-correlations
appear to be relatively small.

Some or all non-negligible inter-correlations in Figure 8 could point to local non-tidal influences, including
effects of wind- and pressure-fields, temperature, salinity and bathymetry. They could also indicate inade-
quate harmonic analysis. The usual approach (Pugh 1987) is to perform a full harmonic analysis on cM and
cm components per depth independently, perhaps using of a pre-filter (Graff 1986) to eliminate long-period
variations. Here, we have used a local harmonic model to capture major local harmonic effects, also fitted
independently per variable. It is apparent that lack of fit of a harmonic model of data from dependent vari-
ables (especially if applied independently per variables) will give rise to inter-correlated residual currents.
We suspect therefore that correlation maps similar to that shown in Figure 8 would arise as the result of a
typical harmonic analysis of dependent ocean current data. Regardless, it is important that the modelling
approaches adopted accommodate dependence structure adequately.
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Figure 7: Time-series of hourly maxima and (negative) minima for major-axis currents at depth D4, corre-
sponding to tidal (including slowly-varying) and residual components. From top to bottom: c+TM4, c−TM4,
c+RM4 and c−RM4

Figure 8: Spearman rank correlation map for hourly maxima and (negative) minima of residual current
components. Positive rank correlations are shown in the North-West, negative rank correlations in the
South-East. Remaining correlations are predominantly positive by construction.
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We are interested in quantifying extreme current profiles in the water column. Assuming tidal components
to be effectively deterministic, we concentrate on characterising the joint extremes of hourly extreme residual
currents. We assume, for arbitrarily long return periods, that realisations of tidal components can be added
to realisations of residual components (from appropriate extreme value models) to estimate extremes of the
sum of tidal and residual components. The conditional extremes model introduced in section 3 provides a

natural framework for joint modelling of the full set c
+/−
Rjk , j = {M,m}, k = 1, 2, ..., 8 of 32 hourly extreme

residual currents.

3 Conditional extremes model

This section describes the conditional extremes model for jointly modelling extreme residual currents. For a
vector Y (= {Yj}pj=1) of random variables with marginal Gumbel distributions, Heffernan and Tawn [2004]
derive a parametric form for the conditional distribution of the remaining variables Y−k (= {Yj}pj=1,j 6=k)
given a large value yk of the variable Yk, at least as large as threshold vk , k = 1, 2, ..., p. This parametric
form, motivated by the assumption of a particular limit representation for the conditional distribution (see
e.g., discussion section of Jonathan et al. [2010]) is appropriate to characterise the conditional behaviour of
a wide range of theoretical examples of multivariate distributions for extremes. Model form for positively
dependent variables Y takes a particularly simple form:

(Y−k|Yk = yk) = akyk + ybk

k Zk, where yk ≥ vk, for k = 1, 2, ..., p (1)

where ak (= {ajk}pj=1,j 6=k) and bk (= {bjk}pj=1,j 6=k) are vectors of location and scale parameters respec-
tively to be estimated, with element ajk ∈ [0, 1] and bjk ∈ (−∞, 1), and yk large, for j = 1, 2, ..., p, j 6= k, and
k = 1, 2, ..., p, and component-wise multiplication is understood (i.e. for p-dimensional vectors r = {ri}pi=1

and s = {si}pi=1, then rs = {risi}pi=1). Zk is a vector random variable, independent of Yk, converging with
increasing yk to a non-degenerate limiting distribution Gk. For each k, k = 1, 2, ..., p, joint tail behaviour
conditional on Yk is characterised by ak, bk and Gk. The form of distribution Gk is not specified by theory.
When two variables Yj , Yk are negatively dependent (i.e. ajk = 0, bjk < 0), the form of the conditional
relationship is slightly different, but still amenable to empirical modelling:

(Y−k|Yk = yk) = ck − dkloge(yk) + ybk

k Zk, where yk ≥ vk, for k = 1, 2, ..., p (2)

where ck (= {cjk}pj=1,j 6=k) and dk (= {djk}pj=1,j 6=k) have elements such that cjk ∈ (−∞,∞) and djk ∈
[0, 1]. In the current work, the vast majority of pairwise dependencies between variables is positive. For
a sample {yij}n,pi=1,j=1 of values from Y with values of conditioning variate Yk exceeding an appropriate
threshold vk, the values of ak, bk and Gk are estimated using regression. For simplicity and computational
ease during model fitting, Gk is assumed to be a multivariate normal distribution with mean µZk and
diagonal variance-covariance matrix with elements σ2

Zk treated as nuisance parameters, for k = 1, 2, ..., p.
These assumptions resolve the modelling procedure into fitting of p − 1 pairwise models for pairs (Yj , Yk),
j = 1, 2, ..., p, j 6= k, for each of p conditioning variates Yk, k = 1, 2, ..., p. Fitted residuals:

ẑijk =
(yij − âjkyik)

y
b̂jk
ik

, i = 1, 2, 3, ..., n, j = 1, 2, ..., p, j 6= k, k = 1, 2, ..., p

provide a dependent sample from the multivariate distribution Gk, which is then resampled (with re-
placement) in subsequent simulations. The adequacy of model fit can be assessed by (1) demonstrating
that the values {ẑijk}ni=1 and {yik}ni=1 are not obviously dependent (thus violating a modelling assumption),

(2) exploring the effect of varying vk on âjk, b̂jk and subsequent estimates (e.g. of probabilities associated
with extreme sets), and (3) bootstrap resampling to estimate the uncertainty of estimates for ak, bk and
subsequent estimates for a given threshold choice vk (see e.g. Jonathan et al. [2010]).

3.1 Marginal modelling

The generalised Pareto (GP) form is appropriate for modelling marginal distributions of peaks over threshold,
rather than the Gumbel distribution. Therefore to use the conditional model above we need to first model
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the original variables X (= {Xj}pj=1) marginally using GP, then transform from GP to Gumbel using the
probability integral transform as follows. Suppose we fit the GP distribution (to the sample from Xk without
loss of generality, k = 1, 2, ..., p):

FGP (x; ξk, βk, uk) = 1− (1 + ξk
βk

(x− uk))
− 1
ξk

+

and estimate cumulative probabilities {FGP (xik; ξ̂k, β̂k, uk)}ni=1. Now the standard Gumbel distribution
has cumulative distribution function:

FG(x) = exp(− exp(−x))

Thus if we define the transformed sample {yik}ni=1 such that FG(yik) = FGP (xik; ξ̂k, β̂k, uk) or:

yik = − log(− log(FGP (xik; ξ̂k, β̂k, uk))) for i = 1, 2, 3, ..., n

the transformed sample will correspond to a Gumbel distribution. Similarly, given any value y (of Gumbel
variate), we can calculate the corresponding value x on the original GP scale. It is essential to demonstrate
the adequacy of GP marginal fits, e.g. by using the mean residual life plot and stability of marginal shape
parameter and suitable extreme quantiles as a function of threshold.

3.2 Conditional simulation

To simulate a random drawing {xsj}pj=1 from the conditional distribution X−k|Xk > uk, the following
procedure can then be followed:

1. draw a value ysk of Yk at random from the standard Gumbel distribution,

2. draw a set of values {zsjk}pj=1,j 6=k of Z−k at random from the set {ẑijk}n,pi=1,j=1,j 6=k generated during
model fitting,

3. calculate that value of ysj |ysk = âjkysk + y
b̂jk
sk zsjk for j = 1, 2, ..., p, j 6= k,

4. transform {ysj}pj=1 to {xsj}pj=1 using the probability integral transform and the estimated GP marginal
model parameters.

To use this scheme to generate a multivariate dependent sample, we must first estimate the relative
frequency with which to condition on each variable Yk (or Xk), k = 1, 2, ..., p, in turn. This is achieved as
follows. Note that the sample {yij}n,pi=1,j=1 corresponds to a subset E of the original sample, for which the
value of at least one variable (for each observation) exceeds its corresponding threshold (vk for variable k).
We can therefore partition E into the union of sets {Ek}pk=1:

Ek = {{yij}n,pi=1,j=1 s.t. yik > yij ; j = 1, 2, ..., p, j 6= k; i = 1, 2, ..., n}

so that for observations in set Ek, the value of variable k is more extreme in its marginal distribution
than the value of any other variable. Since the conditional extremes model is motivated asymptotically, it is
most appropriately applied to the conditioning variate whose value is most extreme in its distribution. We
therefore use the relative frequency of observations in the sets {Ek}pk=1 to determine the rate at which we
condition on each variable Yk, k = 1, 2, ..., p, during conditional simulation. See Heffernan and Tawn [2004]
for further discussion.

This simulation procedure is used to generate multivariate time-series of the 32 hourly extreme residual

currents c
+/−
Rjk , j = {M,m}, k = 1, 2, ..., 8 with the appropriate marginal extreme and conditional extreme

dependence structures.
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4 Application

4.1 Modelling approach

The approach to modelling extremes of vector current with depth can be summarised as follows:

1. Time series of vector currents at each depth are resolved into uncorrelated major- and minor-axis
components (as illustrated in section 2.2) using principal components analysis.

2. Each major- and minor-axis component is decomposed into ′deterministic′ tidal (including slowly
varying) and ′random′ residual time-series, as explained in section 2.3.

3. It is assumed that the tidal components of current (estimated from the original sample using local
harmonic analysis) are sufficient to characterise the (joint) distributions of these components (but
see discussion in section 5). No further modelling of tidal components is therefore necessary; the
distribution of (hourly extreme) tidal components corresponding to arbitrarily long return periods can
be estimated by resampling with replacement from the estimated tidal component data.

4. Hourly extreme residual series from major- and minor-axis components are estimated empirically (as
discussed in section 2.4).

5. Series for hourly extreme residuals are observed to be approximately stationary and homogeneous
in time. Some series exhibit positive interdependence (as seen in Figure 8). This suggests that we
model the full set of hourly extreme residuals (for major- and minor-axis components at all water
depths) using the conditional extremes model introduced in section 3. (A straight forward application
of the conditional extremes model to oceanographic data is given in Jonathan et al. [2010]). We can
then simulate under the estimated model to characterise the distribution of hourly extreme residuals
corresponding to arbitrarily long return periods.

6. Realisations of residual and tidal currents are added to estimate hourly extreme currents in terms of
maxima and (negative) minima of major- and minor-axis components.

4.2 Applying the conditional extremes model

In this section, we apply the conditional extremes model to hourly extreme residual current series for major-
and minor-axis components for measurements from the outer shelf of North Western Australia introduced
in section 2. We perform conditional simulations using the model to estimate the characteristics of marginal
and conditional profiles corresponding to a 10-year return period. We also compare estimates of conditional
profiles corresponding to monthly maxima from simulation and observation.

Firstly, threshold exceedences of each of the 32 hourly extreme residual currents c
+/−
Rjk , j = {M,m}, k =

1, 2, ..., 8 are modelled in turn using the GP distribution introduced in section 3.1. It was found that a
threshold corresponding to a non-exceedence probability of 0.95 yielded reasonably stable results in all
cases (assessed, e.g., by inspecting the variation of the estimated GP shape parameter (ξ) as a function of
threshold for thresholds near that chosen). Estimated values for ξ and GP scale parameter (β) are illustrated
in Figure 9 as a function of depth. We observe that estimated values of ξ are generally negative, indicating the
existence of finite upper limit for the estimated distribution. The high values of ξ for near-bottom currents
and the implied longer tail of the distribution are indicative of the occurrence of relatively infrequent but
high intensity current events near to the bottom. We speculate that these are associated with near-bottom
enhancement of solitons induced by internal tides under certain conditions at spring tide.

Using the estimated GP models, sample data for each of the 32 hourly extreme residual currents were
transformed to Gumbel scale using the probability integral transform (see section 3). Then, conditioning
on each of the 32 variates in turn, the conditional extremes model was estimated. Again, a threshold
corresponding to a non-exceedence probability of 0.95 yielded reasonably stable results in all cases. The
variability of estimated values of model coefficient, a, and exponent, b in each case to small changes in
threshold (near that chosen) was found to be small in most cases. The precision of estimation for given
threshold can be estimated using bootstrapping (as illustrated in Jonathan et al. [2010]) if required. In
this work, diagnostic plots (as suggested in 3) were inspected to assure general adequacy of fit. Figure 10
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Figure 9: Estimated values for parameters of marginal generalised Pareto models for hourly extreme residual
currents with depth (k = 1, 2, ..., 8): (a) shape parameter, and (b) scale parameter. Lines give estimates
for maxima and (negative) minima of major- and minor-axis components. A threshold corresponding to
non-exceedence probability of 0.95 was selected throughout.

shows estimates for a and b as a function of water depth, for c+RM4 as conditioning variate. Note that the
estimates for a are generally positive, indicated that extremes are positively associated, but that most values
are < 0.2 indicating that association is weak. The estimates for b are within a relatively narrow interval (of
approximately (−0.2, 0.5)). Qualitatively similar results were obtained for the other 31 conditioning variates.

4.3 Estimation of return values

The estimated marginal and conditional extremes models provide a basis for simulating arbitrarily long
time-series of hourly extreme residual currents, with the appropriate marginal and conditional dependence
structures. Using the procedure outlined in section 3.2, we simulate 100 years of hourly extreme residual

currents c
+/−
Rjk , j = {M,m}, k = 1, 2, ..., 8. Figure 11 gives marginal 10-year return values for hourly extreme

residual currents c+RMk, c+Rmk, c−RMk and c−Rmk with depth (k = 1, 2, ..., 8) estimated by simulation, sum-
marised in terms of the median, 25%ile and 75%ile values. For comparison (and partial validation of the
simulation procedure), corresponding values calculated from theory using fitted marginals are also shown.
It is interesting that the values of c+RMk are larger at depths 4 and 5, but these estimates should not be
over-interpreted in isolation of tidal (and slowly-varying) components.

Figure 12 shows conditional values of c+RMk, c+Rmk, c−RMk and c−Rmk with depth (k = 1, 2, ..., 8) for
exceedences of the 10-year return level of c+RM4. It appears that other components are not strongly dependent
on the conditioning variate. Results for conditioning on exceedences of the 10-year return level of c+RM1 (not
shown) indicate stronger dependence between depths D1, D2 and D3.

A simulation of 100 years of hourly extremes tidal (and slowly-varying) components c
+/−
Tjk , j = {M,m}, k =

1, 2, ..., 8 was generated using the procedure outlined in section 4.1, its realisations combined with those from
the conditional simulation of residual components to yield a simulation of 100 years of hourly extreme total
current components. This simulation is the basis for all estimates of marginal and conditional return values
below. Figure 13 gives marginal 10-year return values for hourly extreme total currents c+Mk, c+mk, c−Mk and
c−mk with depth (k = 1, 2, ..., 8), summarised in terms of the median, 25%ile and 75%ile values. We see that
the value of each total current component reduces with increasing depth. The 10-year marginal return value
of c+Mk at depths D1−D4 is approximately 1.0 ms−1, whereas for depths D5−D8 its value is approximately
0.8 ms−1.

Figure 14 shows conditional values of c+Mk, c+mk, c−Mk and c−mk with depth (k = 1, 2, ..., 8) for exceedences
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Figure 10: Estimates for conditional extremes model parameters a and b (see Equation 2) for hourly extreme
residual series with c+RM4 as conditioning variate with depth (k = 1, 2, ..., 8). Positive dependence (a > 0) is
typically observed for all conditioning variates. A threshold corresponding to non-exceedence probability of
0.95 was selected throughout.

Figure 11: Median marginal 10-year return values for hourly extreme residual currents with depth (k =
1, 2, ..., 8) estimated from conditional extremes simulation (solid black) and theory using fitted marginals
(solid grey), for (a) c+RMk, (b) c+Rmk, (c) c−RMk and (d) c−Rmk, k = 1, 2, ..., 8. Also shown are corresponding
25%iles and 75%iles (dashed).
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Figure 12: Median (solid) conditional hourly extreme residual current profiles with depth (k = 1, 2, ..., 8)
for exceedences of the 10-year return level of c+RM4, estimated from conditional extremes simulation for (a)
c+RMk, (b) c+Rmk, (c) c−RMk and (d) c−Rmk, k = 1, 2, ..., 8. Also shown are corresponding 25%iles and 75%iles
(dashed).

Figure 13: Median marginal 10-year return values for hourly extreme total currents with depth (k = 1, 2, ..., 8)
estimated from full conditional extremes simulation (solid black) and theory using fitted marginals (solid
grey), for (a) c+Mk, (b) c+mk, (c) c−Mk and (d) c−mk, k = 1, 2, ..., 8. Also shown are corresponding 25%iles and
75%iles (dashed).

14



Figure 14: Median (solid) conditional hourly extreme total current profiles with depth (k = 1, 2, ..., 8) for
exceedences of the 10-year return level of c+M4, estimated from full conditional extremes simulation for (a)
c+Mk, (b) c+mk, (c) c−Mk and (d) c−mk, k = 1, 2, ..., 8. Also shown are corresponding 25%iles and 75%iles
(dashed). Note that difference y-axis scales are used .

of the 10-year return level of c+M4. We note that conditional values for other major-axis maxima (c+Mk, k =
1, 2, ..., 8, k 6= 4) are relatively large, with medians of 0.6 ms−1 at D1 falling to 0.4 ms−1 at D8. In contrast,
values of (negative) major-axis minima (c+Mk, k = 1, 2, ..., 8) are themselves negative, indicating that even the
minimum of this current component is in the direction of the (positive) major axis at each depth. Conditional
minor-axis maxima and (negative) minima are relatively small and similar in values. For comparison with
Figure 14(a), Figure 15 shows the conditional profiles of c+Mk with depth (k = 1, 2, ..., 8) for exceedences of
the 10-year return level of c+M1, c+M4 and c+M8. The dependence between components at depths D1−D3 (for
conditioning on c+M1), and depths D7 and D8 (for conditioning on c+M8) is apparent.

Figures 16 and 17 present estimates of marginal and conditional monthly maxima of current components,
estimated both from conditional simulation and directly from measured data. Note that values from a
simulation of hourly extremes cannot be directly compared with values from measurements (sampled at 1-
minute intervals). Nevertheless, we might expect that hourly extremes would provide bounds for the values
from minute measurements, as discussed below. Figure 16 illustrates conditional total current profiles cMk

with depth (k = 1, 2, ..., 8) for monthly maxima of cM1, cM4, cM6 and cM8. Agreement between (hourly)
simulation and (minute) measurements is good in terms of general profiles in each case. Moreover, simulation
appears to provides an upper bound for measured profile. This can be rationalised as follows: the measured
profile, conditional on a monthly maximum at a particular depth, quantifies the profile observed during that
minute of observation. In contrast, the corresponding simulated profile quantifies the profile of the maximum
values observed during the hour corresponding to the occurrence of the monthly maximum. Figure 17 gives
conditional total current minor-axis profiles with depth for the same conditioning variates as Figure 16,
estimated from conditional simulation and measured minute profiles. We can use simulated profile {c+mk}8k=1

as an upper bound for the measured profile, and simulated profile {−c−mk}8k=1 (not negative sign) as a lower
bound.

5 Discussion and conclusions

In this paper, we consider an approach to modelling the vertical (vector) profile of large ocean currents,
using the conditional extremes model introduced to the statistical literature by Heffernan and Tawn [2004].
The key steps in the analysis are summarised in section 4.1. Observed vector currents at each of 8 depths
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Figure 15: Median (solid) conditional hourly extreme total current profiles along major axis, c+Mk, with
depth (k = 1, 2, ..., 8) for exceedences of 10-year return level of (a) c+M1, (b) c+M4 and (c) c+M8, estimated from
conditional extremes simulation. Also shown are corresponding 25%iles and 75%iles (dashed).

Figure 16: Median (solid) conditional total current profiles along major axis, cMk, with depth (k = 1, 2, ..., 8)
for monthly maxima of (a) cM1, (b) cM4, (c) cM6 and (d) cM8 estimated from conditional simulation of hourly
extremes (black) and measurements of measured profiles (grey). Also shown are corresponding 25%iles and
75%iles (dashed). Conditional profiles from simulation provide an upper bound for the instantaneous profile.
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Figure 17: Median conditional total current profiles along minor-axis, cmk, with depth (k = 1, 2, ..., 8) (thick
lines) for monthly maxima of (a) cM1, (b) cM4, (c) cM6 and (d) cM8 estimated from conditional simulation of
hourly extremes of c+mk (black solid) and −c−mk (black dashed), and measurements of minute profiles (grey).
Also shown are corresponding 25%iles and 75%iles (dashed). Conditional profiles from simulation provide
useful bounds for the measured profile.

are expressed as components with respect to major- and minor-axis of current variation at that depth
using principal components analysis. Resolved currents are then each decomposed into tidal and non-tidal
components. Marginal and dependence structure of extremes of hourly maxima and minima of non-tidal
components is then characterised using the conditional extremes model. We simulate under this model to
estimate characteristics of extreme current profiles corresponding to arbitrary return periods, and quantify
the uncertainty of those estimates. We demonstrate that the model predicts monthly instantaneous extreme
conditional profiles well for the sample of Western Australian data considered, and provide marginal and
conditional current profiles corresponding to a 10-year return period corresponding to that location.

Modelling the marginal and dependence structure of extremes of vector currents over multiple depths is a
complex issue, not readily amenable to statistical analysis. For offshore design, estimation of extreme current
profiles has been approached in a number of ways. In shallower water, it has been assumed that current profile
through depth follows some nominal profile, approximated by a 1/7th power law or logarithmic function (e.g.
ISO [2005]). In deeper water, current measurements through the water column are generally more readily
available, allowing empirical modelling from these observations. One approach is to assume that currents at
each depth are independent of the remainder of the profile, and then apply extreme value analysis at each
depth. Forristall and Cooper [1997] apply Principal Component Analysis (Empirical Orthogonal Functions)
and the First Order Reliability Method (FORM) analyse current profiles in West Africa and the Atlantic
margin; this approach has become standard for determining extreme current profiles in deeper water in the
oil and gas industry. In practice, the approach has been to use just the first two or three modes to arrive
at the extreme conditions, but in many situations this is insufficient (see, e.g. Meling et al. 2002, Jeans and
Cooper 2005).

The modelling approach provides a basis for simulating (multivariate) time-series of currents with repre-
sentative marginal and dependence structures. These can be used to address oceanographic and engineering
issues. For example, results of the modelling approach have been summarised here in terms of conditional
current profiles. From a structural design perspective, simulated current time-series can be used to esti-
mate current design profiles corresponding to long return periods, or extreme characteristics of structure
variables such as structural response to current forcing (see, e.g., Heffernan and Tawn 2004, Ewans and
Jonathan 2008). The analysis may be framed in terms of economics if appropriate cost (or loss) functions
are available.
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Figure 18: Illustration of median conditional total current components with depth (k = 1, 2, ..., 8) for
exceedences of 10-year return level of c+M1 from conditional simulation of hourly extremes. The interval
(−c−Mk, c

+
Mk) is projected onto the positive major-axis (black), and (−c−mk, c

+
mk) is projected onto the posi-

tive minor-axis (grey), at each depth k. The figure suggests systematic rotation of currents clockwise with
respect to unconditioned currents at depth D4, but anti-clockwise rotation at larger depths.

We believe that the approach introduced in the present article represents an interesting pragmatic ad-
dition to the modeller’s toolbox. In particular, use of localised harmonic analysis circumvents difficulties
in accommodating temporal variability of the ocean’s flow response to tidal forcing, and the use of hourly
maxima of components along the principal and orthogonal axis provides useful engineering parameters whilst
preserving temporal dependence. The main advantage of the method is that the extreme value estimation
is theoretically underpinned by the conditional extremes model, providing a rational framework for mod-
elling extremes in high-dimensions. In common with any statistical modelling, we assume that the sample
of current data for analysis is representative, so that estimates of extreme conditions are also representative,
particularly with respect to rare events (e.g. tropical cyclones). As presently implemented, the approach
makes a number of further assumptions.

Firstly, we assume that it is appropriate to consider analysis of current components (at each depth) cor-
responding to major- and minor- axes of current variation at each water depth. Modelling with uncorrelated
components at each depth would seem desirable statistically, as would examining component corresponding
to major axis of current variation at each depth (in the spirit of principal components analysis). Physical
considerations of on-offslope and along-slope currents might also support this. However, other choices of
current components might be considered reasonable. Since in general the estimates of extreme currents
made using the approach will depend on this choice, it should be made with care, and the sensitivity of
estimates with respect to the choice assessed. It may be the case that the orientation of principal axes
at a given depth itself changes as a function of current magnitude. Figure18 shows median conditional
total current components with depth (k = 1, 2, ..., 8) for exceedences of 10-year return level of c+M1 from
conditional simulation, constructed by projecting the interval (−c−Mk, c

+
Mk) onto the (positive) major axis

direction, and (−c−mk, c
+
mk) onto the (positive) minor-axis, at each depth k. The figure suggests that the

minor-axis conditional extremes are approximately symmetric about zero at depths D1 −D3. At depth D4

however, there is systematic rotation of current components in a clock-wise direction, with respect to axis
directions defined using unconditioned sample at this depth. At depths D5 − D8, this trend is reversed;
rotation is in an anti-clockwise direction. Similar behaviour is observed when conditioning on exceedences
of 10-year return level of c+M1 (Figure 19). Subsequent inspection of original data confirms that this effect
is present. It may therefore be appropriate to select current components with respect to principal axes for
vector currents whose magnitude exceeds some threshold.
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Figure 19: Illustration of median conditional total current components with depth (k = 1, 2, ..., 8) for
exceedences of 10-year return level of c+M4 from conditional simulation of hourly extremes. The interval
(−c−Mk, c

+
Mk) is projected onto the positive major-axis (black), and (−c−mk, c

+
mk) is projected onto the posi-

tive minor-axis (grey), at each depth k. The figure suggests systematic anti-clockwise rotation of currents
with respect to unconditioned currents at larger depths.

Secondly, decomposition of each current component as the sum of tidal (including slowly-varying) and
(non-tidal) residual currents using a local harmonic model involves a number of approximations. We assume
that independent decomposition of components is appropriate. Once estimated, no further modelling of
tidal currents is performed; they are merely (jointly) sampled with replacement during simulation. For
estimation of return values of tidal current corresponding to a return period (e.g. 1 month) much shorter
than the period of the data sample (e.g. 2.5-years), this might be a reasonable approach. However for
return periods longer than the period of the data, longer-term tidal forcing not adequately characterised
by the local harmonic model will assume increasing importance. In this situation, it may be useful to add
the corresponding incremental tidal current effects to the estimated tidal currents, before sampling during
simulation.

Thirdly, the present approach assumes that tidal and residual current components are independent.
Hence it is valid to simulate from the (joint) tidal current estimates and the (joint) residual current model
independently, before adding the values to obtain an estimate of total current (per component per depth).
However, inadequacy and/or uncertainty in the initial decomposition of current components might result in
dependence between tidal and residual estimates, invalidating the assumption of independence. Fourthly,
since current direction varies considerably, we need to understand marginal and dependence structure of both
maxima and minima residual current components. We therefore choose to apply the conditional extremes
model to hourly maxima and hourly (negative) minima of residual current components. Yet we seek to
estimate effectively instantaneous extreme current profiles. As argued in section 4.3, we expect the model
(based on hourly extremes) to provide upper bounds for instantaneous extreme current profiles. Comparison
of model estimates with observations of 1-month return periods supports this.

In applying the present approach we should bare in mind that the conditional extremes model is motivated
by asymptotic theory. To be strictly valid, it should be applied to modelling the extreme tails of multivariate
distributions. Various diagnostic tools discussed in section 3 can be used to seek to justify its adequacy
in any application. Threshold selection (from marginal and each pairwise dependence model) is critical.
In principle, different threshold choices might be appropriate in each case. For an application involving
p variables, this amounts potentially to p2 different threshold selections. Automatic threshold selection
becomes inevitable; in the present work, we have taken a threshold corresponding to a constant small marginal
exceedence probability, which appears reasonable from inspection of a random selection of diagnostics plots.
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Nevertheless, a more satisfactory procedure would be highly desirable.
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