Challenges in practical data science

Philip Jonathan

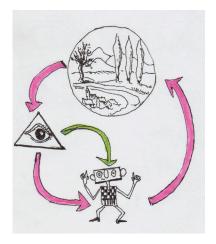
Lancaster University, Department of Mathematics & Statistics, UK. Shell Research Ltd., London, UK.

Seminar, Data Science Institute (slides at www.lancs.ac.uk/~jonathan)

Practical data science

Outline

- The digital transformation
- Representative applications
- Assessing empirical models
- Assurance in data science
- Acknowledgement
 - Colleagues in Shell
 - Academic partners



A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Big picture

Jonathan

▲ E ▶ E シスペ March 2019 3 / 33

Delivering a 'digital transformation'

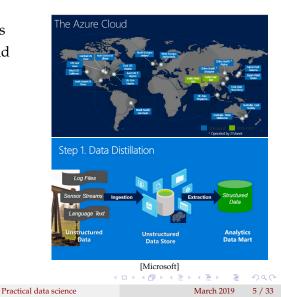
Digital roadmap

- All parts of organisation involved (e.g. upstream, downstream, retail, finance, HR)
- Convergence to common way of working
- Agile system development
 - Self-organising, cross-disciplinary teams
 - Common platform, governance, replication
 - Fail fast
- Delivery model
 - New technologies and R&D
 - Proof of concept studies, minimum viable products
 - Accelerators
 - Replication

What's changed?

Basics

- Scale, speed, connectedness
- Numeric, text, image, sound
- Parallelism, cores, clusters, cloud
- Freeware (PYTHON)
- Data engineering systems Cross-discipline
 - Software engineering
 - Computer science
 - Data engineering
 - Statistics & data science
 - Communication



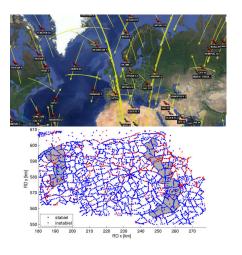
Typical applications

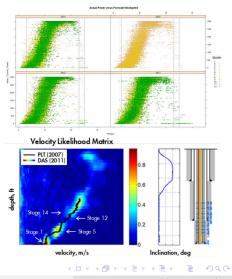
Jonathan

Practical data science

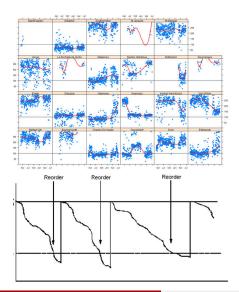
March 2019 6 / 33

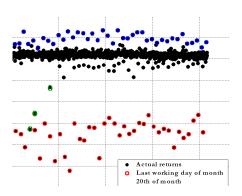
Physical environment





Business, finance





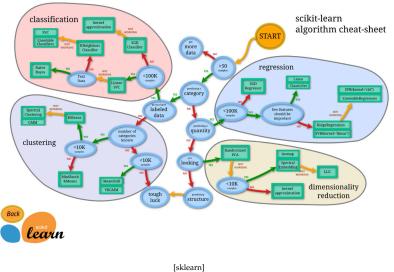
(日)

Jonathan

Practical data science

▶ ▲ ≣ ▶ ≣ ∽ ९ ୯ March 2019 8 / 33

Standard toolkit



[sklear

		- 1 - 1	-)40-
Jonathan	Practical data science	March 2019	9 / 33

ノート ノヨト ノート ノート

-

Typical process application

- Liquified natural gas (LNG)
 - $\circ~$ Source gas \rightarrow Liquid for transport \rightarrow Gas for use
- World-wide facilities
 - Brunei, Oman, Nigeria, Australia, Qatar, Russia, Trinidad&Tobago, Egypt
- Nigerian plant
 - Six processing units
 - Total processing capacity: 22 million tonnes of LNG p.a.
 - Accounted for approximately 7% of global LNG supply in 2017

(Information from www.shell.com)

Typical process application

- \circ System: input \rightarrow process \rightarrow output
 - Flows, Temperatures, Pressures, Compositions, Valve settings, Level settings
 - Recycles, automatic control, constraints
- Data
 - Multivariate time-series, $\log_{10}(p) \in (2, 4)$, X(t), Y(t), $t \in T$
 - Some of *X* manipulable (X'), others not (X'')
 - $T \approx 5$ years, sampling ≈ 1 Hz, $\log_{10}(n) \in (3, 8)$
- Goal: optimisation

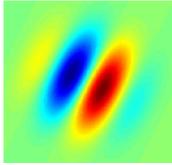
•
$$f_1(X'_{\mathcal{T}}, X''_{\mathcal{T}}) = 0, Y_{\mathcal{T}} = f_2(X'_{\mathcal{T}}, X''_{\mathcal{T}}), X''_{\mathcal{T}} = f_3(X'_{\mathcal{T}})$$

• Issues:

- Data quality (redundancy, reconciliation)
- Complex time-series dependence structure (models are 'static')
- Existing models at play (APC, engineering: $f = f_{ENG} + f_{Emp}$)
- In-situ performance
- Most popular models (linear & regularised regression)

Computer vision, NLP

- Raw input (images, text, sound) X₀
- Multiple filters $X = F(X_0, \theta)$
- Inference on processed *X*
- Optimal choice of filter (kernels) for prediction
- Sparse + low rank
- Higher criticism (Donoho)

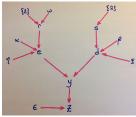


Gabor filter [wiki]

イロト イポト イヨト イヨト

(More illustrations at www.shell.ai)

Uncertainty quantification, emulation



A simple system model

- Flexible framework, **Bayes** linear
- Optimal design
- Probabilistic ODEs, **Bayesian** optimisation

Obs : $z(x) = y(x) + \epsilon$ Sys : y(x) = e(x) + d(x)Emul: $e(x) = \alpha' g(x) + r(x, \omega) + \eta$ Disc : $d(x) = \beta' h(x) + s(x) + \xi$

- *e* : emulator or 'process' model
- d : discrepancy model
- g,h: bases for covariate space
- : Gaussian process residuals r,s
- Priors
- Data
- Estimation

- : all Gaussian
 - : emulator E, measured Z
- : $f(\alpha, \beta, \{\ell_r\}, \{\ell_s\}, \omega | E, Z)$ Prediction : f(y(x)|E,Z)

Robotics, automatic decisions

Markov decision = 'Reinforcement learning'

- 'Agent' observes state s_t
- Takes action a_t
- Leads to state s_{t+1} with $\mathbb{P} p(s_{t+1}|s_t, a_t)$
- Agent receives reward $r_t = r(s_{t+1}, a_t, s_t)$
- Policy $\pi(a|s)$ governs behaviour
- History $h = [s_1, a_2, s_2, a_2, ..., s_T, a_T]$
- Discounted return $R(h) = \sum_{t} \gamma^{t} r_{t}, \gamma \in [0, 1)$

•
$$p_{\pi}(h) = [\prod_{t} p(s_{t+1}|s_t, a_t) \pi(a_t|s_t)] p(s_1)$$

• Optimal
$$\pi^* = \underset{\pi}{\operatorname{argmax}} \mathbb{E}_{p_{\pi}(h)} R(h)$$

 Boston Dynamics (dogs opening door, robot somersault; YouTube)

イロト イポト イヨト イヨト

March 2019 14 / 33

Assessing empirical models

Jonathan

Practical data science

March 2019 15 / 33

3

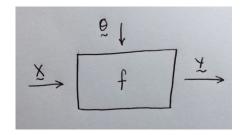
< D > < 🗗

Fundamentals

- Think stand-alone empirical modelling (not robotics)
- Data not from a designed experiment
 - Interpolation (failure to fit)
 - Extrapolation (failure to generalise)
 - Curse of dimensionality: often can't tell one from the other
- Data preparation and preprocessing
- Naive presumptions
 - IID, ignore dependence structure, time-series!
- Use cases
 - Non-expert users
 - Automatic, embedded predictions

Assessing predictive algorithms

- $\circ Y = f(X, \theta)$
- Black-box
 - Manipulate inputs, X
 - Manipulate some tuning parameters, θ
- Predictive performance
- Prediction uncertainty
- Exceptionality



글 🕨 🖌 글

In-vitro performance

- Competitions
 - e.g. Makridakis (M3, M4) forecasting, Kaggle, NN3, imagenet
 - $\circ~$ e.g. Fernandez-Delgado (~ 200 classifiers), OpenML (~ 100 classifiers)
 - e.g. MLaut regression and classification (Kiraly), AutoML (Freiburg)
- Findings for time-series (M3) and general prediction (Kiraly): ensemble methods best, GPs/SVMs close, ML (inc. 'deep learning') poor
- Lazy focus on 'predictive R^{2} ' not prediction uncertainty

Type of Application	Rules are known and do not change	The environment is known and stable	Predictions can influence the future	Extent of Uncertainty (or amount of noise)	Examples
Games	Yes	Yes	No	None	Chess, GO
Image and speech recognition	Yes	Yes	No	Minimal (can be minimized by big data)	Face Recognition, Siri, Cortana, Google AI
Predictions based on the Law of large numbers	Yes	Yes	Minimally	Measurable (Normally distributed)	Forecasting the sales of beer, coffee, soft drinks, weather etc.
Autonomous Functions	Yes	Yes	No	Can be assessed and minimized	Self-Driving Vehicles
Strategy, Competition, Investments	No	No	Yes, often to a great extent	Cannot be measured (fat tails)	Decisions, Anticipations, Forecasts
Combinations of the above	It may be the ultimate challenge moving towards GAI (General AI) but also increasing the level of complexity and sophistication of algorithms				Eventually it can cover everything

Table 10. Features of various Artificial Intelligence (AI) applications.

Jonathan

March 2019 18 / 33

In-vivo performance

- Interpretability
 - Functional form for \hat{f}
 - Variable importance (easy for regression, trees; difficult for others)
- Parsimony
 - Variable selection not regularisation
- 'Human in the loop'
 - 'What legal scholars should learn about machine learning' (Lehr, Ohm)
 - Algorithms making decisions with no human supervision
 - Business- and safety-critical
 - Reinforcement learning of 'human experience' (Faisal)
- High level architectures enable but constrain
 - e.g. Azure DataBricks (database)
 - e.g. TensorFlow (images)
- Solution maintenance
 - Version control
 - Documentation

Performance, uncertainty, exceptionality

- Predictive performance
 - Cross-validation, $\hat{\theta} = \operatorname{argmin}_{\theta} L(\theta)$
 - Preserve dependence, choice of partition, bias, nested
 - Problem : does not provide $var(\hat{\theta}) \Rightarrow$ use BS also
- Prediction uncertainty
 - Bootstrapping (BS), $p_{\text{BS}}(\hat{\theta})$
 - Preservation of dependence structure
 - Problem : not inherently out-of-bag \Rightarrow use CV also
- Exceptionality
 - Randomised permutation (RP) testing

•
$$E = \mathbb{P}_{p_{\mathrm{RP}}} \left[L(\hat{\theta}) \le L(\hat{\theta}_{\mathrm{RP}}) \right]$$

- Model-agnostic assessment ('wrapper')
- c.f. Bayes: posterior, evidence, posterior predictive, estimate or minimise generalisation loss
- Huge model-specific applied literature
- Conformal inference (CMU)

Assurance in data science

Jonathan

Practical data science

March 2019 21 / 33

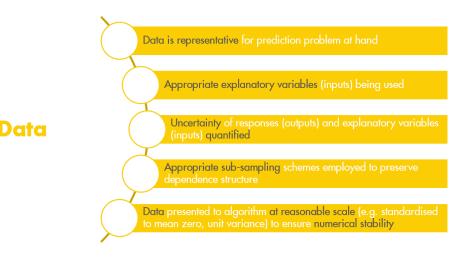
Fundamentals

Accreditation, Competence, Excellence

Jonathan	Practical data science	March 2019	22 / 33

イロト イボト イヨト イヨト 一日

Data

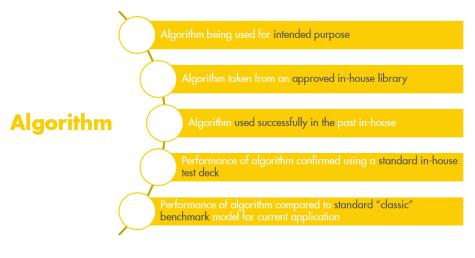


Assessing the data

Practical data science

March 2019 23 / 33

Algorithm



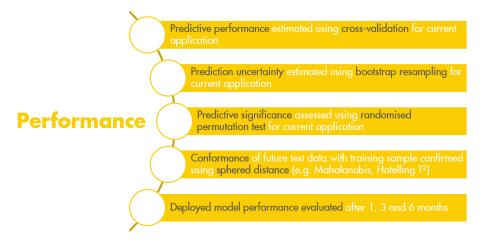
Assessing the algorithm

		1	
on	at	ha	m

Practical data science

March 2019 24 / 33

Performance



Assessing performance

on		

Practical data science

March 2019 25 / 33

Long-term

- Good governance
- Standardisation
 - Approved algorithms
 - Test decks
 - Reporting framework
- Continuous improvement
 - Monitoring of applications in development
 - Monitoring of deployments
- Learning
 - Data scientists
 - Expert reviewers
- Impact from data science

ト < 三 ト < 三 ト</p>

Reasons for concern, optimism

Jonathan

Practical data science

March 2019 27 / 33

3

글 🕨 🖌 글

Concern

- Data-driven models everywhere
 - Don't collect data until you know why you're collecting it
- Bias and uncertainty
- o 'Lazy' application, just because it's possible
 - Current criticism of 5G
- Intrusive application
 - Spam emails, phone-calls, inadvertent discrimination
 - Snooping by third parties, phishing, cameras, voice monitoring
 - Terrorism, autonomous weapons
- Erroneous application
 - Boeing 737Max8
 - Autonomous vehicles
- Uncontrolled application
 - 'Black Mirror', AI / AGI takes over (Berners-Lee on www: 'downward plunge to dysfunctional future')
 - Nascent ethical, legal, governmental frameworks
 - Moral choices, dilemmas; intelligence vs. wisdom

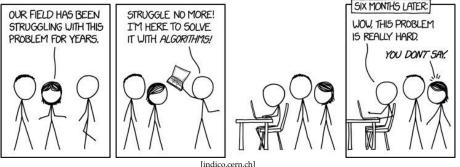
Optimism

- Data-driven models everywhere
 - Broad range of application complexity
- Bias and uncertainty
 - What statisticians and data scientists know how to do well

• Game-changing

- Better science
- Better systems (bigger, faster, more accurate, more integrated, more efficient, less wasteful)
- Better management of global resources (food, water, energy, people time, personalised health care)
- Healthier, longer, more enriching lives (Morris, 'News from nowhere")

Hofstadter's Law: It always takes longer than you expect, even when you take into account Hofstadter's Law



Diolch yn fawr!

Practical data science

March 2019 30 / 33

Backup

Jonathan

Practical data science

March 2019 31 / 33

イロト イポト イヨト イヨト

æ

Thanks

Regression

Linear regression: $y = X\beta + \epsilon$

- $\epsilon \sim N(0, \sigma^2 I)$, prior: $\beta \sim N(0, \Sigma)$, *X* is $n \times p$
- Negative log posterior: $(y X\beta)^2 / \sigma^2 + \beta' \Sigma^{-1} \beta$
- $\circ \mathbb{E}[\boldsymbol{\beta}|\boldsymbol{y}] = (\boldsymbol{X}'\boldsymbol{X}/\sigma^2 + \boldsymbol{\Sigma}^{-1})^{-1}\boldsymbol{X}'\boldsymbol{y}/\sigma^2$
- Prediction: $\mathbb{E}[X_*\beta|y] = X_*(X'X/\sigma^2 + \Sigma^{-1})^{-1}X'y/\sigma^2 = Sy$
- Regression is a **smoother**, invert $p \times p$ matrix X'X
- But: $(X'X/\sigma^2 + \Sigma^{-1})\Sigma X' = X'(X\Sigma X' + \sigma^2 I)/\sigma^2$
- Prediction: $\mathbb{E}[X_*\beta|y] = X_*\Sigma X'(X\Sigma X' + \sigma^2 I)^{-1}y$
- Invert $n \times n$ matrix $X\Sigma X'$. *n* can be big, $> 10^5$

Kernel regression: $y = \Phi(X)'\beta + \epsilon$

• Inner product $X_* \Sigma X'$ generalised to $\Phi(X_*)' \Sigma \Phi(X)$, where $\Phi(X)$ is a **kernel function**

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Thanks

Kernel

- Kernel trick: Never write kernel functions explicitly. Only need 0 inner-product expression $k(X_*, X) = \Phi(X_*)' \Sigma \Phi(X)$
- Arbitrary (smooth) relationships can be estimated using kernel regression
- Product form: $k(X_*, X) = \prod_{i=1}^p k_i(X_{*i}, X_i)$ for covariate j
- Squared exponential: $k_i(x_{*hj}, x_{ij}) = \exp(-(x_{*hj} x_{ij})^2/(2\ell_j^2))$
- Correlation lengths: $\{\ell_i\}_{i=1}^p$ must be estimated using cross-validation. Also estimate nugget variances
- Slick leave-one-out cross-validation available (cf 'hat matrix') 0
- Slick Kronecker product form (fast inverse!) when X is of blocked 0 form: $k(X, X) = k(X_1, X_1) \otimes k(X_2, X_2)$ ◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶