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Abstract

The extremal dependence of stationary time-series at pairs of locations can be summarised using one

or more of a number of statistics. We illustrate the application of the coefficient of tail dependence,

the χ and χ̄ statistics, and the conditional extremes model of Heffernan–Tawn to estimate the

extremal dependence in time-series of 3-hour maxima of sea surface elevation across a spatial array

of measurement gauges at the US Army Corps of Engineers’ Field Research Facility on the Atlantic

coast of North Carolina. Although the original data are non-stationary, we induce stationarity on

a site-by-site basis using a non-parametric model to remove the mean trend. Subsequently, we

find that pairs of locations are generally asymptotically dependent. Parameter estimates for the

Heffernan–Tawn model, although uncertain, suggest that characteristics of conditional extremes

vary systematically with distance from the conditioning site.

Keywords: Extreme waves, extremal dependence, statistical models, non-stationarity, peaks over

threshold, generalised Pareto, conditional extremes

1. Introduction

In this paper, we discuss a variety of statistical approaches to quantify the extremal dependence

between measured sea surface elevations at pairs of locations, illustrated using measurements from

an Atlantic coastal location near Duck, North Carolina. Statistical models which accurately in-

corporate extremal dependence can provide more accurate estimates for site-specific return levels

than those provided from models fitted on a site-by-site basis. In addition, an understanding of the

extremal dependence structure between sea surface elevations at different locations is important

for the siting and maintenance of off-shore structures. In particular, it is useful to understand

whether or not particularly large waves are likely to occur concurrently at two (or more) sites. If

only two locations are to be jointly modelled, we refer to a bivariate model, and, more generally,
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to a multivariate model.

When modelling multivariate data, it is important to distinguish between two features of the data:

the marginal and dependence structures. By marginal behaviour, we refer to the characteristics

of the data at a given site. This might include non-stationarity in the mean and/or variance,

and within-series correlation. There may also be non-homogeneity in the extremal behaviour. By

dependence structure, we refer to the joint behaviour of the process at a pair of sites. In particular,

we are interested in the joint characteristics of large values. Our approach, follows a standard

two-stage procedure, first modelling the margins, and then, conditional on the marginal models,

modelling the dependence structure between pairs of sites.

Our main focus is on the extremal dependence between surface elevation at pairs of adjacent sites,

viewed as a pair of random variables. Extremal dependence is a specific mathematical feature

of all multivariate probability distributions. For pairs of random variables, it describes the joint

behaviour of two variables as one or other, or both, becomes large. Extremal dependence takes one

of two forms: asymptotic dependence and asymptotic independence. If variables are asymptotically

dependent, large values of the variables tend to occur simultaneously. If they are asymptotically

independent, large values never occur together. Even within these two classes, there are varying

strengths of association.

Identification of which class of extremal dependence structure a data set falls into is critical to the

correct choice of multivariate extreme value model. Further, if an incorrect assumption is made

on the form of the asymptotic dependence, then any inferences drawn from the model may be

invalid. For example, suppose that surface elevations at two sites were assumed to be asymptotically

dependent, when in fact they are asymptotically independent. Then the model would overestimate

the probability of a jointly extreme events at the two sites. Summary statistics, such as the χ and

χ̄ measures of Heffernan et al. (1999) and the coefficient of tail dependence (Ledford and Tawn,

1996, 1997), can tell us about which class of extremal dependence a data set falls in; and, given

the class, the strength of association. These statistics are discussed in Section 3.2.

A range of models for multivariate extreme values exists; selection of an appropriate model depends

on whether the data is asymptotically dependent or asymptotically independent. For asymptotically

dependent data, models based on the multivariate extreme value distribution, and associated point

process representation are appropriate (Coles and Tawn, 1991; Ledford and Tawn, 1997). However

such models are of not appropriate for asymptotically independent data, since they reduce the data

to the case of independence. Recent work by Heffernan and Tawn (2004) and Ramos and Ledford

(2009) attempts to redress this. We follow the approach taken by Heffernan and Tawn (2004); they

suggest a conditional representation, in which, given that one variable is large, the distribution of

the remaining variable(s) is modelled. Unlike the traditional models, this approach extends easily

to higher dimensional variables, and incorporates both classes of extremal dependence.

An outline of the paper is as follows. The data are introduced in Section 2. Section 3 discusses

the approach that we take to measuring and modelling the extremal dependence structure of sea

surface elevations at pairs of sites. The data analysis is presented in Section 4, with a discussion
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in Section 5.

2. Data

2.1. Description

Occurrences of large waves are typically caused by one or more of wind forcing (e.g due to spatial

differences in atmospheric pressure during in storm, hurricane or cyclone) and periodic tidal forcing

(generated by the gravitational interaction of the Sun, Moon and Earth). For an ocean engineer,

reliable structural design relies on adequate understanding of (extremes of) waves, winds and cur-

rents and their interactions. In this work we consider time–series of measured three-hour maximum

sea surface elevations from the 8m array at the Field Research Facility (FRF), the US Army Corps

of Engineers’ Atlantic coastal observatory near Duck, North Carolina, for the period January to De-

cember 2005. The 8m array provides 2Hz measurements of surface elevation (in units of mm here)

from 15 pressure gauges mounted approximately 0.5 m above the sea bed, approximately 900m

offshore, arranged approximately along two intersecting lines (one longshore, one cross-shore), as

illustrated in Figure 1 along with bathymetry. Spacings between gauges are irregular by design,

varying from a minimum of 5m in both longshore and cross-shore directions, to maxima of 255m

longshore and 120m cross-shore. Further details are available from USACE web page. Excellent

images of the location are available from USACE Field Research Facility web page. Figure 2 shows

time-series plots of 3–hour measured surface elevation at sites 4 and 7, and a scatter plot of the

data at these sites. The scatter plot suggests a strong dependence between surface elevation at the

two sites; the (Pearson) correlation is 0.97.

From Figure 2 it is also clear that the marginal behaviour is not straightforward. The data are

non-stationary; non-parametric smoothing of the mean using locally weighted regression (loess)

(Cleveland and Devlin, 1988), see Figure 2, shows that there are a number of cyclic trends present

in the mean surface elevation, with periods extending from approximately 12 hours to 1 month,

attributed to tidal effects.

The loess estimate requires selection of a smoothing parameter, which specifies the number of

neighbouring observations used to obtain an estimate of the mean at a given time point; we se-

lected this parameter to use 2% of the observations, since this value provided a reasonably smooth

moving mean together with approximately stationary residuals time–series. Non-stationarity in the

extremes is discussed in Section 4.1.

2.2. Within-series dependence

Due to tidal influences, the data show strong within-series correlation. For example, at site 4, the

correlations at lags 1, 2, 4 and 8 are 0.70, 0.43, 0.83 and 0.76. Note, lag 4(8) corresponds to a lag of

12(24) hours, so the strong correlations at these lags reflect lunar semi-diurnal tidal constituents.

Similar behaviour is observed at the other sites.

This marginal dependence extends to the extremes. If we consider extremes to be all exceedances

of a high threshold, the extremal index θ ∈ [0, 1] (Smith and Weissman, 1994) is a measure of
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within-series dependence in these extremes. Independent data have θ = 1, although θ = 1 does

not necessarily imply independence in the full data set, merely independence between extremes.

The closer θ is to zero, the stronger the dependence between extremes. For series in which the

extremes are not independent, the extreme points will tend to occur in independent clusters; the

mean cluster size is given by the reciprocal θ−1.

A number of methods are available to estimate the extremal index, including runs and blocks

estimators (Smith and Weissman, 1994), an automatic scheme proposed by Ferro and Segers (2003)

and the two-threshold approach suggested by Laurini and Tawn (2003). We use the simple runs

estimator: for some choice of run length m, threshold exceedances separated by a run of at least

m consecutive non-exceedances are considered to be (approximately) independent. Since the value

of m is user-defined, the sensitivity of the estimate of the extremal index to the choice of m should

be checked.

For our data, we consider extreme values to be exceedances above a site-specific threshold. For

each site, we set the threshold to be the empirical 90% quantile of the data at that site, giving

292 exceedances per site. Assuming that any exceedances separated by a run of 9 consecutive

non-exceedances are independent2, the extremal index is 0.09 at site 4 and 0.10 at site 7. Equiv-

alently threshold exceedances occur, on average, in clusters of sizes 11 and 10, respectively. This

corresponds to clusters of 33- and 30hrs respectively.

A common approach to dealing with extremal dependence is to extract clusters and analyse the

independent cluster maxima only. Although asymptotic theory states that the distribution of

the arbitrary and cluster maxima exceedances are the same (Leadbetter, 1991), recent work by

Fawcett and Walshaw (2007) has suggested a bias is obtained when estimating the distribution of

all threshold exceedances using the cluster maxima only. Eastoe and Tawn (2012) show why this

bias occurs, and suggest an alternative model for cluster maxima. Assuming independent extremes,

when in fact they are clustered, has implications on inference. In particular, standard errors of

parameter estimates will be under-estimated.

As we show below, pre-whitening our data to remove non-stationarity has the beneficial side-effect

of markedly reducing the within-series dependence. Thus we can avoid the issue of clustering.

2.3. Pre-whitening

Various methods for dealing with non-stationarity in models for extreme values have been proposed.

A common approach to handling non-stationarity is to include covariates in the extreme value model

parameters (Davison and Smith, 1990; Chavez-Demoulin and Davison, 2005; Mendez et al., 2006,

2008; Jonathan and Ewans, 2011). Instead, we follow a pre-whitening approach (Eastoe and Tawn,

2009), and remove the mean structure at each site, before modelling the dependence structure

between residuals at pairs of sites. Covariates can additionally be included in the extreme value

model, if this is thought to be necessary, i.e. if the extremes are thought to have some additional

2Estimates of the extremal index stabilised for run lengths greater than 9
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(e.g. directional) structure.

The intention of pre–whitening is to create a “residual” time-series which shows no variability with

respect to one or more covariates (such as time or wave direction in an ocean engineering context)

by subtraction of a “mean” time-series which is itself a relatively smooth function of the covariates

of interest. Extreme value analysis then proceeds on the residual time–series which can then be

assumed to be stationary. The pre-whitening approach has a number of advantages over the direct

covariate method; a full list is provided by Eastoe and Tawn (2009). In particular, since the physical

reasons for non-stationarity in the body of the data and the extremes are linked, the pre-processing

approach, which utilises all available information on non-stationarity, is more likely to identify the

appropriate form of non-stationarity. Additionally, it can be computationally simpler and more

efficient to fit a pre-whitening model; in particular, if a large number of covariates are required to

explain the non-stationarity.

Since environmental covariates are unavailable, we model the mean structure using the loess fits

shown in Figure 2, where time is a proxy for covariates. Figure 2 shows the residuals at sites 4

and 7 following removal of the mean trend. The auto-correlation functions (not shown) have been

considerably reduced; at site 4, the correlations at lags 1, 2, 4 and 8 are 0.23, -0.46, 0.61 and 0.61.

The extremes of the residuals also seem to cluster less, with average cluster sizes of 3.5 and 3.3 at

the two sites. Further, a scatter plot of the residuals suggests that the dependence between the two

sites is not much changed by considering the residuals only; the correlation remains high at 0.97.

We proceed with the rest of our analysis by considering the residuals only. We do this under

the assumptions that, at any given site, the residuals are independent in time and are stationary

in mean and variance. Although the independence assumption could be questioned, we wish to

avoid issues that arise from using marginally de–clustered data for multivariate analyses if possible.

In particular, since de–clustering occurs marginally, i.e. on a site by site basis, the resulting

multivariate data are unlikely to have been observed at concurrent time points. Therefore, since

dependence is quite weak, we feel justified in using the full data sets. Note that estimation of

return values using the pre–whitening approach described here would require simulation from and

aggregation of estimated “mean” and residuals, as explained for example in Jonathan et al. (2012).

3. Methods

Almost all methods for modelling the joint extremal behaviour of two or more random variables,

for example surface elevations at different locations, involve separate models for marginal and

multivariate features. In this section we discuss a possible approach for each of these steps.

3.1. Methods for univariate extremes

Given observations from a process {xt}, a common statistical assumption is that these observations

are taken from an independent and identically distributed sequence of random variables {Xt} with

common distribution function F . The distribution function completely characterises the behaviour

of the variables, in particular the upper tail of F tells us about the extremal behaviour. In practice,
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F is unknown and so must be estimated from the sample {xt}. The simplest estimate is the empirical

distribution function F̃ ; if x(i) is the ith largest observation, then F̃ (x(i)) = i/(n + 1), where n is

the length of the series.

Since we are specifically interested in the tail behaviour, and in particular we wish to extrapolate

beyond the highest observations, we would instead like a parametric model for F - or at least for

the upper tail. Extreme value theory provides us with exactly this. Asymptotic theory (Pickands,

1975) motivates the use of the generalised Pareto (GP) distribution as a model for the upper tail

of F . This model is suitable regardless of the true form of F and corresponds to modelling all

exceedances of some high threshold u by the GP distribution,

F̄u(x) = Pr[X > x|X > u] =

[
1 + ξ

(
x− u
ψ

)]−1/ξ
+

, x > u, (3.1)

where z+ = max{z, 0}. Note that this is a conditional distribution, with two parameters, referred

to as scale, ψ > 0, and shape, ξ. The shape parameter is determined by how fast the underlying

distribution F decays. Estimates of the parameters can be obtained using any method of statistical

inference, including maximum likelihood (Pawitan, 2001), L-moments (Hosking, 1990) or Bayesian

inference (Coles and Powell, 1996; Gelman et al., 2004).

Combining the GP model for the upper tail, with the empirical distribution for observations below

the threshold, gives an improved model F̂ for the distribution F ,

F̂ (x) =

{
1− φF̄u(x) x > u;

F̃ (x) x ≤ u.
(3.2)

Here φ = Pr[X > u] is required to undo the conditioning in equation (3.1) and is estimated by

the proportion of observations exceeding u. Once the full model for F has been obtained the data

can be transformed to have any marginal distribution by application of the probability integral

transform. In particular, in Section 3.2 we assume that data have a Gumbel distribution. Let y

denote the data on the Gumbel scale, then

y = − log[− log F̂ (x)]. (3.3)

3.2. Summary statistics for extremal dependence

Various summary statistics exist to assess whether two processes {Y1,t} and {Y2,t} on marginal

Gumbel scales are asymptotically dependent or asymptotically independent; for example χ and χ̄

(Heffernan et al., 1999) and the coefficient of tail dependence η (Ledford and Tawn, 1996, 1997).

Since they have a natural interpretation, we focus on the χ and χ̄ statistics. In fact, the coefficient

of tail dependence is related to χ̄ by

χ̄ = 2η − 1. (3.4)

We can exploit this relationship to estimate χ̄ (see below). The statistic χ is defined as

χ = lim
y→∞

Pr[Y2 > y|Y1 > y] =

{
0 if asymptotically independent;

c if asymptotically dependent,
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where 0 < c < 1. In practice, we estimate χ(y) = Pr[Y2 > y|Y1 > y] for a range of y and consider

the behaviour of χ(y) with increasing y. Increasing values of χ correspond to stronger asymptotic

dependence. Estimation is non-parametric, using sample proportions.

In the same way that χ tells us about the strength of asymptotic dependence, χ̄ tells us about the

strength of asymptotic independence between Y1 and Y2. The definition of χ̄ is not so straightfor-

ward, see Heffernan et al. (1999) for details, but its interpretation is as follows,

χ̄ =


1 if asymptotically dependent;

c1 if asymptotically independent with positive association;

0 if independent;

c2 if asymptotically independent with negative association,

where 0 < c1 < 1 and −1 < c2 < 0. Again, χ̄ is calculated at a range of levels y, and the

behaviour of χ̄(y) considered as y increases. We estimate χ̄, by first estimating the coefficient of

tail dependence η and then exploiting relationship (3.4). We use a model-based approach for the

estimation of η, as proposed by Ledford and Tawn (1996) (see Appendix A for details).

Uncertainty in both χ and χ̄ can easily be assessed using a non-parametric bootstrap (Davison and

Hinkley, 1997). Under the assumption that the multivariate data are independent and identically

distributed, we sample with replacement from the original multivariate data set, to create a boot-

strapped sample of the same size as the original data set. Estimates of χ and χ̄ are obtained for each

bootstrapped data set, and these estimates are treated as samples from the sampling distributions

of the respective parameters.

3.3. Modelling extremal dependence using the Heffernan–Tawn model

In an ocean engineering context, the Heffernan–Tawn conditional extremes model has been used by

Jonathan et al. (2010) and Jonathan et al. (2012) to model wave spectral parameters and current

profiles with depth respectively. In a hydrological context, the model has been used by Keef et al.

(2009) to model spatial dependence in extreme river flows and Mendes and Perrichi (2009) to model

flood risk across multiple rivers. We provide a summary of the model in the bivariate case. For

further details, and the extension to the multivariate setting, see Heffernan and Tawn (2004).

The Heffernan–Tawn model assumes Gumbel margins; since data are very rarely on Gumbel mar-

gins, the first step is to fit the model described in equation (3.2). The data can then be transformed

to the required margins using transformation (3.3).

Let the random variable Yj represent surface elevation at site j, 1 ≤ j ≤ p, on Gumbel margins.

Let vj be a high threshold for Yj . Then, conditional on Yj > vj being large, we assume that, for

i 6= j,

E[Yi|Yj = yj ] = αyj + µyβj ,

sd(Yi|Yj = yj) = σyβj (3.5)

where 0 ≤ α ≤ 1, β < 1 and σ > 0. The model is essentially a regression model, in which α tells us

how fast Yi grows with Yj , and β tells us how the variability of Yi changes as Yj increases. To express
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this in terms of extremal dependence, α tells us the overall strength of the extremal dependence

between Yi and Yj , whereas β tells us how the strength changes with Yj . The combination α = 1

and β = 0 corresponds to asymptotic dependence. The parameters µ and σ are considered to be

nuisance parameters.

This model makes no assumption on the distribution of the conditional variable Yi|Yj > yj , and

neither does it allow for a negative extremal association between the variables. If a negative

association exists, then α = 0 and β < 0 and an additional additive term, taking the form γ −
δ log(yj), is required in the expectation. The log(yj) term accounts for the fact that the lower tail

of the Gumbel distribution decays far more rapidly than the upper tail.

In order to estimate the parameters, first define the residuals

Zi =
Yi − αyj
yβj

. (3.6)

Heffernan and Tawn (2004) use the working assumption that, conditional on Yj > vj , the distri-

bution of Zi is Gaussian, with mean and variance given by µ and σ2 from equation (3.5). Implicit

in this is the assumption that the residuals are independent of the conditioning variable Yj . For

inferential purposes, independence is also assumed, both in time and between sites. This allows

the use of a straightforward maximum likelihood function to obtain parameter estimates.

Uncertainty in the estimates is obtained through a semi-parametric bootstrap, in order to account

for both dependence and marginal uncertainty. The basic scheme, for two variables, is as follows.

For each bootstrap sample,

Step 1 Sample with replacement from the bivariate data on the Gumbel scale, to obtain a sample of

the same size as the original.

Step 2 Take two independent samples from the Gumbel distribution; use these to replace the data in

the sample from step 1, but ensuring that the bivariate ordering remains the same. By this,

if in the original sample the largest value of variable 1 occurs with the fourth largest value of

variable 2, then the same should be true in the new sample, and so forth.

Step 3 Transform to the original margins, using the inverse of transformation (3.3).

Step 4 Refit the entire model to the bootstrapped data set.

This gives a set of parameter estimates which can be assumed to be taken from the sampling

distribution of the parameters.

To assess model fit, Heffernan and Tawn (2004) suggest checking that, for Yj > vj , the residuals

Zi defined in equation (3.6) are independent of the conditioning variable Yj . This can be assessed

through a simple plot of the residuals against the conditioning variable. In addition, as with all

threshold-based extreme value models, it might be desirable to assess how sensitive the model

parameters are to changes in the threshold vj used for the conditioning variable.
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4. Data analysis

To illustrate the methods discussed in Section 3, we first fit marginal models at each site. We then

model the bivariate extremal dependence between each of the sites and the ‘central site’, site 4.

4.1. Testing for homogeneity in the extremes

The pre-whitening method discussed in Section 2.3 does not guarantee that non-stationarity in

the extremes will be removed; as noted in Eastoe and Tawn (2009), the trends in the extremes of

a process may be quite different in form to those in the main body. Before fitting the marginal

model discussed in Section 3.1 we first use various ad hoc measures to check that the extremes are

homogeneous in time. A simple approach is to split the process into blocks according to the value

of the covariate of interest (here time), to assess whether or not the rate and size of exceedances

differs between blocks.

Consider site 4, with a 90% threshold, corresponding to 292 exceedances. Splitting the series into

12 blocks of consecutive observations (approximately months), we can calculate a point estimate

and confidence interval for the number of exceedances per month (see Appendix B). If exceedances

occur homogeneously in time, we would expect approximately 24 (15,34) exceedances per month;

figures in brackets give an asymptotic 95% confidence interval. In practice, the observed number

of exceedances per month all lie within the 95% confidence interval, varying from 15 to 29. This

suggests that the rate of exceedances is homogeneous, at least on a monthly scale. Further, there

are no obvious trends in the monthly exceedance counts.

To investigate trends in the size of extremes we considered running quantiles. Similar to a running

mean, for each time point one calculates the local quantile using only observations in the moving

time window of pre-specified size centred at the time point under consideration. Although there

is evidence of more variability in the quantiles as the level is increased, for example the running

95% quantile is more variable than the running median, no interpretable trends are discernible.

We therefore continue our analysis under the assumption that the extremes are time homogeneous,

both in rate and size.

4.2. Marginal models

We first fit model (3.2) at each site, using maximum likelihood inference for parameter estimation

(Pawitan, 2001). A site-specific threshold is used, corresponding to the 90% quantile calculated

individually for each site. Graphical diagnostics, such as probability and quantile plots (Coles,

2001), show that the generalised Pareto distribution fits well to the threshold exceedances, at all

sites. An example of the quantile plot for site 4 is shown in Figure 3. The points follow the 45◦

slope well, showing close agreement between model and data; further all the points lie within the

95% parametric bootstrapped confidence intervals.

For site 4, the GP parameter estimates, with 95% confidence intervals in brackets, are, ψ̂ =

160(130, 182) and ξ̂ = −0.038(−0.15, 0.078). Confidence intervals were obtained using an asymp-

totic property of the likelihood function (Pawitan, 2001). At all sites, the confidence interval for
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Site ψ ξ

1 154 (126,182) -0.010 (-0.15,0.13)

2 161 (134,188) -0.037 (-0.16,0.086)

3 160 (135,186) -0.039 (-0.15,0.073)

4 156 (131,182) -0.038 (-0.15,0.078)

5 130 (106,154) 0.076 (-0.073,0.22)

6 150 (123,177) 0.054 (-0.085,0.19)

7 158 (131,185) -0.074 (-0.20,0.052)

8 147 (122,172) -0.034 (-0.16,0.092)

9 146 (123,169) 0.081 (-0.029,0.19)

10 127 (105,148) 0.15 (0.016,0.28)

11 131 (109,154) 0.15 (0.025,0.28)

12 135 (113,157) 0.16 (0.040,0.27)

13 139 (115,162) 0.123 (-0.00037,0.25)

14 141 (116,166) 0.043 (-0.092,0.18)

15 130 (108,153) 0.10 (-0.029,0.23)

Table 1: Maximum likelihood estimates of generalised Pareto parameters, with 95% confidence intervals in brackets.

Confidence intervals calculated using asymptotic properties of the likelihood function.

the shape parameter contains zero, suggesting that it is not significantly different to zero, except at

sites 10, 11 and 12, where ξ is significantly positive (see Table 1). At the sites with shape not signif-

icantly different to zero, we could instead fit an exponential or Weibull model. This would reduce

the number of parameters and thus remove some model complexity, however we prefer to retain

the greater flexibility of the generalised Pareto model fit. Further, as Table 1 shows, there is not

one pair of sites for which the 95% confidence intervals for ψ (or ξ) do not overlap. Consequently,

we prefer to fit the same model at all sites.

Combining the fitted GP models with the empirical distribution function for non-exceedances, we

transform the data to Gumbel margins on a site-by-site basis, using equations (3.3). Figure 3 shows

a scatter plot of the data at sites 4 and 7 on these margins. This plot emphasises the usefulness of

the Gumbel scale in magnifying the joint tail behaviour.

4.3. Extremal dependence

The extremal dependence of sites 4 and 7 can be seen in Figure 4, which shows plots of χ(y) and χ̄(y)

for y ∈ [0.37, 3.2], i.e. from the 50% to the 95% quantile of the Gumbel distribution. Smaller sample

sizes corresponding to higher thresholds did not allow reliable estimation of summary statistics.

Confidence intervals were obtained using 200 bootstrapped samples. Since the 95% confidence

intervals for χ(y) do not contain 0, it would appear that the sites are asymptotically dependent.

However, χ(y) decreases as y increases, with no evidence of attaining a limiting value. More

conclusive evidence on the limiting behaviour of χ(y) would require a larger sample, so that we
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Site α β

1 0.82 (0.69,0.84) (0.00,0.94) 0.65 (0.60,0.82) (0.44,0.95)

2 0.95 (0.91,0.97) (0.82,1.0) 0.29 (0.29,0.48) (0.10,0.66)

3 1.0 (0.99,1.0) (0.91,1.0) 0.13 (0.21,0.64) (0.09,0.95)

5 0.95 (0.90,0.96) (0.81,1.0) 0.49 (0.48,0.69) (0.24,0.84)

6 0.90 (0.82,0.91) (0.49,0.98) 0.57 (0.56,0.75) (0.33,0.91)

7 0.38 (0.01,0.80) (0.00,0.95) 0.93 (0.82,0.96) (0.61,1.0)

8 0.66 (0.27,0.78) (0.00,0.92) 0.82 (0.75,0.93) (0.61,1.0)

9 0.69 (0.45,0.75) (0.00,0.91) 0.63 (0.63,0.86) (0.41,0.98)

10 0.87 (0.85,0.91) (0.76,0.99) 0.34 (0.40,0.59) (0.17,0.81)

11 0.84 (0.81,0.92) (0.60,1.0) 0.57 (0.55,0.73) (0.33,0.93)

12 0.85 (0.84,0.91) (0.74,0.99) 0.31 (0.33,0.57) (0.08,0.88)

13 0.91 (0.89,0.97) (0.76,1.0) 0.50 (0.47,0.74) (0.21,0.97)

14 0.99 (0.96,1.0) (0.88,1.0) 0.47 (0.44,0.67) (0.11,0.86)

15 0.89 (0.80,0.93) (0.56,1.0) 0.59 (0.57,0.79) (0.40,1.0)

Table 2: Point estimates for α and β for each site, conditional on site 4 exceeding the 85% quantile. Figures in

brackets are interquartile ranges and 95% confidence intervals (both bootstrapped).

could consider higher y. The point estimate of χ̄(y) is close to 1 for all y. At higher values of y the

95% confidence interval contains 1, suggesting clear evidence of asymptotic dependence.

It is also interesting to consider how χ and χ̄ vary with distance. Since site 4 is the central site,

we estimate the extremal dependence between this site and each of the remaining 14 sites. Plots

of χ(y) (Figure 5) show that dependence decays with distance, and is weaker in the longshore than

the cross-shore direction.

We now obtain point estimates for both χ and χ̄, using the 95% quantile of the Gumbel distribution,

and consider how these estimates change with distance and direction. Plots of these estimates are

given in Figure 6. The estimates of χ fall in the range 0.73 to 0.88, suggesting reasonably strong

asymptotic dependence between site 4 and the remaining sites. Bootstrapped confidence intervals

(not shown) suggest that χ is significantly greater than zero for all of the pairs. A less clear pattern

emerges from the estimates of χ̄, which also have greater uncertainty. Given that the estimates of

χ suggest asymptotic dependence, we would expect the χ̄ estimates to fall around 1. In fact, this

is not always the case, with a range of χ̄ between 0.22 (the furthest site to the west of site 4) and

0.88 (intuitively, the closest site to site 4). The upper bound for the confidence interval is 1 for all

sites except sites 9-12 (where it varies from 0.66 to 0.93).

4.4. Heffernan-Tawn model

Conditioning on site 4 being large, we fit the Heffernan-Tawn model to the remaining fourteen

sites. We consider only the bivariate extremal dependence structure, that is we fit fourteen separate

models.
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Let us first consider the model fit for site 1, conditional on site 4 being large. For the conditional

model, we use the 85% quantile as a threshold for site 4, resulting in 438 observations being used

for inference. The choice of threshold requires the usual trade-off between bias (if the threshold

is taken too low, the asymptotic motivation fails to hold) and variance (if the threshold is too

high, there will be too few observations to make sensible inference). Additionally, a lower threshold

(equivalently more data) is generally required to estimate dependence parameters than would be

required to estimate marginal parameters, hence our move from the 90- to the 85% quantile. At

this threshold, point estimates are α̂ = 0.82 and β̂ = 0.65. We would expect α to be close to one,

given that the estimate of χ for this pair was 0.73, suggesting asymptotic dependence.

Figure 7 shows the sampling distributions of the two parameters obtained using the bootstrap

scheme described in Section 3.3 with 200 bootstrapped replicates. These plots show consider-

able uncertainty in both parameters. Further, the joint sampling distribution shows that the two

parameters are not independent.

From the marginal sampling distributions we can derive 95% confidence intervals of (0.00, 0.94)

for α and (0.44, 0.95) for β. These confidence intervals, in particular those for α, are not highly

informative. This is in part due to the fact that, when β = 1, α becomes unidentifiable. The reason

for this can be seen by substituting β = 1 into equation (3.5). Then the conditional expectation for

Yi(i 6= 4) becomes (α + µ)y4, so that α and µ are redundant, explaining the wide range of values

taken by α when β is close to 1 in Figure 7.

Retaining the 85% threshold for the conditional modelling, Figure 8 shows the estimates of α and

β for each site, conditional on site 4 being large. As expected, since it measures the overall strength

of extremal dependence, α is highest for those sites closest site 4. In fact, α = 1 for the closest

site, site 3, at β = 0.13, strongly suggesting asymptotic dependence. However, for the remaining

sites, the estimates of β are not particularly close to zero. Table 2 gives interquartile ranges and

95% confidence intervals for each of the estimates of α and β. Figure 9 shows convex hulls for

the sampling distributions of α and β, conditional on site 4 being large, in longshore and cross-

shore directions. There is some suggestion that estimates for β are larger at sites 7, 8 and 9 than

elsewhere.

For all fourteen models, plots (not shown) of the residuals against the conditioning variable showed

no evidence of any trends in the residuals with the conditioning variables. This shows that the

modelling assumption that the residuals are conditionally independent of the conditioning variable

is satisfied. Although, for all sites, estimates of α and β were found to vary across thresholds there

were no large inconsistencies with respect to threshold.

5. Discussion

For all 15 sites, marginal generalised Pareto models fit well. The estimated shape parameters

ξ are generally slightly negative, but bootstrapped 95% confidence intervals include zero. The

exceptions are sites 10, 11 and 12, at which ξ is significantly positive (see Table 1). This suggests

that the marginal tails are relatively heavy, consistent with a Weibull distribution (or ever heavier).
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Physical considerations suggest that there are upper limits to the size of sea waves due to steepness

constraints, and for shallow waters due to water depth (see, e.g., Battjes and Groenendijk (2000),

however it is unlikely that either of these constraints is active for the current measurements. For

example, the largest wave heights in the data are approximately 3m in 8m of water, yielding a ratio

of 0.375, considerably smaller that the Miche limit (Battjes and Groenendijk, 2000), with limiting

ratio of approximately 0.8). Similarly, there is no evidence of (steepness-induced) wave breaking

in the measurements. It is interesting to note that the 8m array was established to estimate

directional wind-wave spectra, under the assumption that the wave field is spatially homogeneous.

The current analysis suggests that are no clear spatial trends in marginal extreme characteristics

of residual 3-hour maxima surface elevation.

Estimates of the extremal dependence χ statistic conditional on site 4 being large are significantly

different from zero over the range of thresholds examined, suggesting that all pairs of locations

involving site 4 exhibit asymptotic dependence. Uncertainty bands for estimates of χ̄ are generally

sufficiently close to unity that asymptotic dependence is also plausible. These findings are of

practical significance in that they support the application of multivariate extreme value models

assuming asymptotic dependence, e.g. composite likelihood methods motivated by consideration

of component-wise maxima for these data. There is no strong indication that the values of χ or χ̄

show distance- or direction- related trends, except perhaps that χ values are larger for cross–shore

dependence with site 4 than long–shore.

For the conditional extremes model of Heffernan–Tawn, notwithstanding the fact that estimates of

α and β are generally subject to considerable uncertainty, in part due to issues with identifiability,

estimates of β shown in Figure 8 appear to increase as a function of distance from conditioning site

4, with the possible exception of site 9. This concords with physical intuition with equation (3.5)

in mind: variability of conditional extremes increases with distance from the conditioning site.

Similarly intuitively pleasing trends are observed in estimates of α shown in Figure 8 and Table 2.

These are lower for the more longshore distant sites 7, 8 and 9 than for nearer neighbours. The

bootstrapped 95% confidence bands for α in Table 2 include zero for sites 7, 8 and 9 and the most

distant of the remaining sites longshore (site 1) and cross-shore (site 11). There is no indication

that the characteristics of conditional extremes vary systematically with direction.

The methods demonstrated in the current work are generally applicable to characterise extremal

dependence in the ocean environment (see, e.g. discussion of Jonathan et al. (2010)). In particular,

the Heffernan–Tawn model provides a means to simulate arbitrarily-long samples of characteristics

of extreme ocean environments. Interesting further applications would be to quantify the extremal

dependence of (a) more distant locations (which might be expected to be asymptotically indepen-

dent), (b) coastal locations with varying water depth, and (c) significant wave heights across an

ocean basin (particularly when storms events are localised in space and/or strongly directional).
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Figure 1: Locations of data collection sites and contours of water depth.
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Figure 2: Top : 3–hour measured surface elevation at sites 4 (left) and 7 (centre); scatter plot of surface elevation

at the two sites (right). Gray lines show loess estimate of the mean. Bottom : Residual surface elevation at sites 4

(left) and 7 (centre); scatter plot of residual surface elevation at the two sites (right). Residual surface elevation is

surface elevation after removal of the loess mean.

Figure 3: Left: quantile plot to illustrate fit of GP distribution to the exceedances of a 90% threshold at site 4.

Dashed lines show 95% bootstrapped confidence intervals. Right: Scatter plot of residual surface elevation at sites 4

and 7, on the Gumbel scale.
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Figure 4: Plots of χ(y) (left) and χ̄(y) (right) for sites 4 and 7, as a function of y on Gumbel scale. Full lines show

point estimates, dashed lines 95% bootstrapped confidence intervals. The dotted line on the plot of χ̄(y) indicates

asymptotic dependence.

Figure 5: Variation of χ(y) with value of Gumbel y for each site conditional on site 4, in longshore (left) and

cross-shore (right) directions. The value of χ(y) for longshore location 3 is particularly large.
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Figure 6: Plots of χ (left) and χ̄ (right) for site 4 with all remaining sites. All estimates were calculated using the

95% Gumbel quantile.
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Figure 7: For the Heffernan-Tawn model fit to site 1, conditional on site 4 being greater than the 85% quantile, plots

of the marginal sampling distributions for α (top left) and β (top right) as well as for the joint sampling distribution

of (α, β) (bottom). The sampling distributions were obtained using 200 bootstrap replicate data sets.
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Figure 8: Plots of α (left) and β (right) for each site conditional on site 4 exceeding the 85% quantile.

Figure 9: Convex hulls of α and β for each site conditional on site 4 exceeding the 85% quantile, in longshore (left)

and cross-shore (right) directions.
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Appendix A. Estimating the coefficient of tail dependence

Ledford and Tawn (1996) base their estimation of the coefficient of tail dependence on the following

model for the joint survivor function of two unit Fréchet random variables. Suppose that XF
1 and

XF
2 have unit Fréchet margins, such that Pr(XF ≤ x) = e−1/x for XF

1 and XF
2 , then for large x,

Pr[XF
1 > x,XF

2 > x] ∼ L(x)x−1/η, (A.1)

where L(·) is a slowly varying function at infinity and 0 ≤ η ≤ 1 is the coefficient of tail dependence.

If η = 1, the variables are asymptotically dependent.

To estimate η, Ledford and Tawn use the ‘structure variable’ T = min(XF
1 , X

F
2 ). From equa-

tion (A.1), Pr[T > x] ∼ L(x)x−1/η. Consider then the conditional probability Pr[T > u+ t|T > u];

for large u, this reduces to

Pr[T > u+ t|T > u] ∼ L(u+ t)

L(u)

(u+ t)−1/η

u−1/η
∼
(

1 +
t

u

)−1/η
,

since L(·) is slowly varying. In other words, exceedances of u, by T , follow a generalised Pareto

distribution with scale and shape parameters given by ηu and η respectively. Hence, to estimate η,

we fit a generalised Pareto distribution to the exceedances by T of some high threshold and use the

estimated shape parameter to give an estimate for η. To estimate η(x), we use the shape parameter

obtained from fitting the generalised Pareto distribution to the exceedances by T of x.

Transforming between Gumbel and Fréchet marginals is straight forward. If Y is Gumbel–distributed,

then XF = log(Y ) is Fréchet–distributed.

Appendix B. Assessing homogeneity in the rate of threshold exceedances

Suppose that a series of length n is divided into B blocks each of length l. Let nu represent the

total number of exceedances of a threshold u. Assuming that exceedances occur homogeneously in

time, the proportion of exceedances in a given block is the same as the proportion p in the complete

series. This can be estimated by the observed proportion p̂ = nu/n.

Now consider NB,u, the random variable representing the number of exceedances of u in a given

block. Then

NB,u ∼ Binomial(l, p),

with expectation E[NB,u] = lp and variance Var(NB,u) = lp(1 − p). Provided that l is reasonably

large and p is small, we can use the asymptotic approximation of the Gaussian to the Binomial

distribution, with mean and variance given by the above expression, replacing p with p̂, to obtain

confidence intervals for NB,u.
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