
LATEX TikZposter

Inference for directional ocean wave models

Jake Grainger, Adam Sykulski, Philip Jonathan
Lancaster University

Inference for directional ocean wave models

Jake Grainger, Adam Sykulski, Philip Jonathan
Lancaster University

What does a stochastic model for ocean
waves look like?

We want to model the displacement of the surface of the ocean over space
and time. The frequency-direction spectrum, S(ω, ϕ), is the typical quan-
tity of interest for second-order statistics of ocean waves. The frequency-
direction spectrum can be written as

S(ω, ϕ) = f (ω)D(ω, ϕ)

where f (ω) is the marginal spectral density function and D(ω, ϕ) is the
spreading function. For example:

Fig. 1: Example S(ω, ϕ) (left) decomposed into f (ω) (centre) and D(ω, ϕ) (right)

For wind-sea waves, these components can be modelled by
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where
ϕm1(ω) = ϕm + β exp{−ν ·min(ωp/|ω|, 1)}/2
ϕm2(ω) = ϕm − β exp{−ν ·min(ωp/|ω|, 1)}/2
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As a result, we have

• location parameters: ωp, ϕm

• shape parameters: α, γ, r, β, ν, σl, σr.

Parameter estimation in this setting is challenging, as there are many
parameters, and they are non-stationary over time.

What kind of data do we get?

It is usually not practical to record the full random field. Instead, we can
record time series of the 3D displacement of a buoy. Though this process
evolves continuously in time, we can only record it discretely. An example
of such a series is shown below:

Such data can be described by the spectral density matrix function:
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where c(τ ) is the autocovariance of the 3D displacement process.

How does this displacement data relate to the
model for the surface?

The frequency-direction spectrum and spectral density matrix function

are related by a transfer function G(ω, ϕ) =
[
1 i cosϕ i sinϕ

]T
so

f (ω) =

∫ 2π

0
G(ω, ϕ)G(ω, ϕ)HS(ω, ϕ)dϕ.

Fig. 3: Example of the relation between S(ω, ϕ) (left) and f (ω) (right).

What about inference?
Current techniques use non-parametric estimates of the frequency-
direction spectrum alongside least squares curve fitting to estimate model
parameters. In contrast, we propose a novel likelihood-based method
which fits directly to the data, bypassing the need to estimate S(ω, ϕ)
non-parametrically.
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3D data
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New technique

Model for S(ω, ϕ)
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using transfer function

Fit model for f (ω) directly
to 3D data using the

debiased Whittle likelihood

Comparison via simulation studies

The table below shows the results of a simulation study comparing our
technique against the best of the current techniques, showing percentage
relative bias and standard deviation (std). Parameters are grouped into
location and shape and the bias and std are averaged to improve clarity.

parameter current new

location bias 0.02% 0.01%

location std 1.41% 0.68%

shape bias 28.61% 0.51%

shape std 30.25% 7.70%

• Improvement is minor for location parameters, but major for shape.

• Our novel method is statistically more powerful and resolves more
parameters thus providing a better characterisation of the ocean.

• Such results can be further used for better forecasting and decision
making in ocean engineering and environmental monitoring.
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