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Abstract

We estimate uncertainties in ocean engineering design values due to imperfect knowledge of the ocean
environment from physical models and observations, using Bayesian uncertainty analysis. Statistical em-
ulators provide computationally efficient approximations to physical wind–wave environment (i.e. “hind-
cast”) simulators and characterise simulator uncertainty. Discrepancy models describe differences between
hindcast simulator outputs and the true wave environment, where the only measurements available are
subject to measurement error. System models (consisting of emulator–discrepancy model combinations)
are used to estimate storm peak significant wave height (henceforth HS), spectral peak period and storm
length jointly in the Danish sector of the North Sea. Using non-stationary extreme value analysis of
system output HS , we estimate its 100-year maximum distribution from two different system models,
the first based on 37 years of wind–wave simulation, the second on 1200 years; estimates of distributions
of 100-year maxima are found to be in good general agreement, but the influence of different sources
of uncertainty is nevertheless clear. We also estimate the distribution of 100-year maximum HS using
non-stationary extreme value analysis of storm peak wind speed, propagating simulated extreme winds
through a system model for HS ; we find estimates to be in reasonable agreement with those based on
extreme value analysis of HS itself.

Keywords: Bayesian uncertainty analysis, emulation, discrepancy, extreme, significant wave height,
non-stationary.

1. Introduction

Estimation of characteristics of extreme ocean environmental variables is critical in marine and coastal
structural design. This typically requires extreme value analysis of historical data from measurements
and hindcasts, characterising the environment over some period of time, typically of the order of 30
to 100 years. The use of extreme value analysis is motivated by asymptotic arguments concerning the
forms of tails of probability distributions (e.g. Beirlant et al. 2004). Inference involves estimating the
maximum value that might be observed in a time period considerably longer than that of the historical
sample, typically of the order of 1000 or 10000 years (or analogous extreme quantiles of the distribution
of the annual maximum). Estimation is complicated by numerous sources of systematic and random
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variation, including temporal (e.g. Chavez-Demoulin and Davison 2012) and spatial (e.g. Davison et al.
2012) dependence of both typical and extreme values, non-stationarity with respect to multiple covariates
(e.g. Mendez et al. 2006, Mendez et al. 2008, Mackay et al. 2010, Vanem 2015), and measurement scale
or convergence uncertainty (Guedes-Soares and Scotto 2001, Wadsworth et al. 2010, Reeve et al. 2012,
Papastathopoulos and Tawn 2013). There are also sources of procedural uncertainty, such as threshold
selection in peaks over threshold analysis (e.g. Scarrott and MacDonald 2012, Northrop et al. 2017 ),
and block length for block maxima analysis. Bayesian inference provides a natural framework for bias
and uncertainty quantification in extreme value analysis; recent articles (e.g. Cooley et al. 2006, Tancredi
et al. 2006, Sanchez-Archilla et al. 2008, MacDonald et al. 2011, Reich and Shaby 2012, Randell et al.
2016) illustrate the propagation of uncertainty from threshold choice to distributions of extreme values
such as the N -year maximum.
There is a large literature investigating different sources of uncertainties related to estimation of extreme

values; Wada and Waseda (2018) provides a recent discussion. These sources can be classified as natural
(inherent or aleatory) or sampling (model or epistemic) uncertainties. Aleatory uncertainty refers to the
fundamental natural randomness of the phenomenon being considered and cannot be avoided or reduced by
more measurements; an example is the variability of wave height within a sea state. Epistemic uncertainty
refers to lack of information due to limitations in the size and quality of data, inadequate models and so
on. Epistemic uncertainty can be reduced by increasing the sample size, improving the accuracy of the
measurements, and improving our models. Coles and Simiu (2003) suggests that quantifying uncertainty
is an essential component, arguably the most important component, of any extreme value analysis.
Model and measurement inadequacy is considered by some authors. Coles and Simiu (2003) and Brooker

et al. (2004) consider the effect of hindcast uncertainty on estimation of extreme value distributions from
hindcast data. Jonathan and Ewans (2007) considers the effect of measurement error in extreme value
estimation. Perhaps because current practice in extreme value analysis is already problematic, relatively
little effort has been devoted to quantifying fully the effects of uncertainties in the underlying historical
sample on extreme value inferences. Limited sample size is noted by some authors as a key source
of epistemic uncertainty. For example, Forristall et al. (1996) suggests that estimates for storm peak
significant wave heights made from measurements with finite record lengths can exhibit positive biases
due to epistemic sample variability, and that consequently unbiased hindcast-based estimates might be
judged to be biased low from comparison with measurement. Orimolade et al. (2016) considers estimation
of extreme significant wave heights and associated uncertainties for data from the NORA10 hindcast for
the Barents Sea. They explicitly seek to quantify aleatory uncertainty, and epistemic uncertainty due to
sample size using bootstrapping re-sampling, for estimates based on analysis of peaks over threshold and
annual maxima. Bootstrap re-sampling (e.g. Davison and Hinkley 1997) is probably the most popular
and useful technique for quantification of epistemic uncertainty when Bayesian inference is not preferred.
When Bayesian inference is used, however, it automatically provides a balanced, comprehensive and
transparent framework for specification and estimation of uncertainty.
The fundamental motivation for this work is the acknowledgement that safety- and economically-critical

decisions regarding the design and reassessment of marine structures are vunerable to multiple sources of
uncertainty. Any rational attempt to make these decisions well must accommodate effects of uncertainties
from all components of the decision process in a mathematically coherent fashion. Historically, the
mathematical, physical modelling and computational tools to achieve optimal decisions were not available;
for this reason, the basis for design was a combination of observations, simple statistical and physical
modelling approaches, safety factors and good engineering judgement. Specifically, uncertainties were not
and could not be accommodated systematically and coherently. By the current day, however, the situation
is changing rapidly: workable statistical and computational methodologies exist so that thorough, coherent
uncertainty analysis can be performed in marine design. The most prominent methodology in the statistics
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literature to achieve this is Bayesian uncertainty analysis (see e.g. Berger 1985). This article seeks to
show how Bayesian uncertainty analysis can be applied to practical marine design situation of considerable
current interest. Bayesian uncertainty analysis offers the practising marine engineer greater confidence
in the process of estimation of marine risk. Estimates for the characteristics of extreme environments
from a Bayesian uncertainty analysis may happen to be similar to those obtained using more conventional
approaches. This is good news, providing the engineer with confidence that conventional approaches are
appropriate in particular cases. However, in general, Bayesian uncertainty analysis provides a better
approach to structuring and quantifying uncertainty and hence risk, and should therefore be the preferred
framework for estimating uncertainty well.
In ocean engineering applications, this sample typically corresponds to output from a hindcast simulator

for the ocean environment at the location of interest over some historical time period. The hindcast
simulator is a physical model for the environment, calibrated by some procedure to observations from
that environment. (The term “simulator” is used in the statistical literature on uncertainty quantification
to refer to a numerical model of a physical system; we will use it here also for clarity.) We do not know in
general (a) to what extent the hindcast simulator adequately represents the physics of the environment,
and its extremes in particular, (b) the bias and uncertainty in offshore measurements used for simulator
calibration, and (c) whether calibration of the hindcast simulator to these observations is made reasonably,
for subsequent extreme value inferences in particular.
The need to incorporate uncertainties due to underlying simulator assumptions and imperfect data for

simulator calibration is well understood in many fields (e.g. Vernon et al. 2010 for galaxy formation,
Oyebamiji et al. 2017 for evolution of microbial communities). It would seem rational and desirable to
consider effects of such sources of uncertainty on estimates for extreme quantiles of distributions used in
ocean engineering also. This paper seeks to achieve this in application to extreme quantile inference in
the Danish sector of the North Sea. Specifically, we seek to construct a joint model for the significant
wave height and spectral peak period for the sea state corresponding to the peak of a storm, and the
number of waves in a storm. This full “system model” can be thought of as consisting of two parts, as
described below.
The first part of the system model is a statistical model known as a “hindcast emulator” (or simply

“emulator”) for the hindcast simulator, with which to predict hindcast simulator outputs for any combi-
nation of hindcast inputs. Hindcast inputs include (a) physical covariates (such as wind field variables,
geographic location and water depth), (b) hindcast simulator tuning parameters (which quantify effects
which cannot be represented adequately in the physical model, such as the extent of bottom friction), and
(c) hindcast set-up parameters (such as algorithmic parameters required to run the hindcast simulator,
for instance the choice of hindcast spatial and temporal grid resolutions). The purpose of the emulator
is to provide computationally rapid estimates for hindcast outputs given specified inputs. Emulators are
typically estimated using regression; here we use Gaussian process regression and Bayes Linear analysis
as described in Section 3. Emulators are already used in a coastal engineering context e.g. to provide
computationally-efficient approximations for near-shore wave transformation (Malde et al. 2018).
The second part of the system model is a statistical model known as a “discrepancy model” which

predicts the difference between hindcast simulator outputs and the true wave environment, as a function
of physical covariates (such as those described under (a) in the previous paragraph). Discrepancy models
are estimated in a similar manner to emulators.
The full system model provides a means for rapid joint estimation of system outputs, reflecting uncer-

tainty regarding imperfect knowledge of the physical environment and its description using the hindcast
simulator. Extreme value analysis of samples of system outputs then provides estimates for distributions
of N -year maxima.
Outputs of system models can be used as inputs to extreme value models, motivating a variety of different
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estimators for the distribution of 100-year maximum HS . In this work we consider estimates based on
extreme value analysis of measured and hindcast HS as base cases. But given the importance of good
wind field characterisation in wave hindcasting (Cardone et al. 1995, Cardone and Cox 2009), we also
estimate the distribution of 100-year HS using first non-stationary extreme value analysis of storm peak
wind speed (henceforth u), propagating simulated extreme winds through a system model for HS .
The article is structured as follows. In Section 2 we describe the application motivating this work,

namely estimation of N -year maxima for storm peak significant wave height (HS) and related variables
at locations in the Danish sector of the North Sea offshore Jutland. In Section 3 we introduce the system
model and describe in outline how hindcast emulator and discrepancy model are estimated using Bayesian
inference; mathematical details of Bayes linear inference are relegated to Appendices A and B. Section 4
then provides details of system model estimation in for two related sources of data. The first data set
(referred to as “Case A” for clarity) is comprised of wind field, wave hindcast and wave measurements
corresponding to a period of 37 years in the recent past. The second data set (referred to as “Case
B”) consists of extreme wind fields from a global high-resolution climate model (Shaffrey et al. 2009),
for a period of approximately 1200 years, and corresponding wave hindcast and all relevant recent wave
measurements. In Section 5 we outline how non-stationary extreme value analysis is used to estimate the
tail of the distribution of HS and u, given appropriate covariates. In Section 6, we combine outputs of
system models for Case A or B with extreme value models for HS or u to make different estimates for
the distribution of 100-year maximum HS . Section 7 provides discussion and conclusions.

2. Motivating application

This work is motivated by the need to estimate distributions of N -year maxima for the ocean environment
at a neighbourhood of locations approximately 220km offshore the west coast of Jutland, Denmark in the
North Sea, at a water depth in the region of 40m. There is particular interest in estimating the effect of
different sources of uncertainty (from wave hindcast models and offshore measurements) on estimates of
distributions for N -year maxima.
We consider two samples of data. The first (Case A) is based on wind fields and corresponding wave

hindcast simulator outputs, and wave measurements for a period of 37 years from 10th January 1979 to
30th December 2015 for the neighbourhood. CFSR wind fields (Saha et al. 2014) are input to a MIKE21
spectral wave simulator model (Sorensen et al. 2005) for a number of different combinations of hindcast
tuning and set-up parameters, specified using a Latin hypercube design, to generate multiple sets of wave
hindcast outputs. These are then filtered to isolate storm peak wind and wave characteristics for storms
in the period using the procedure similar to that outlined in Ewans and Jonathan (2008): storm events are
identified as exceedances of a threshold non-stationary with respect to season and direction, and therefore
may not necessarily correspond to “storms” as defined from a meteorological perspective. A total of 2187
storm events is isolated. Partial measurements of the wave environment for these storm periods at 7
offshore locations in the neighbourhood are also available.
For illustration, Figure 1 shows the Case A sample for a specific (and reasonable) choice of hindcast

tuning and set-up parameters at a specific central location (termed “C” for convenience). Storms are
characterised in terms of hindcast storm peak significant wave height (HS) and wave direction (φ), spectral
peak period (TP ) at the storm peak, storm peak wind speed (u) and wind direction (θ) and the number
of individual waves σ in a storm. Some measured storm peak significant wave heights (HS measured) are
also available. Note that wind and wave direction are defined as the direction from which events emanate,
measured clockwise from north in degrees. Variation of hindcast HS and u with direction typical for the
region is evident, as is the strong relationship between hindcast HS and u. Hindcast HS and measured HS

are generally in good agreement, and there is no appreciable bias between them in particular. The typical

4



HS-TP relationship for wind waves is also observed in the hindcast. Hindcast storm length (log10(σ))
reduces with increasing HS , but this relationship is relatively weak. Note that, in addition to the sample
illustrated in Figure 1, Case A hindcast simulator outputs are available for a subset of storms and locations
for each of 128 different combinations of hindcast tuning and set-up parameters obtained from a designed
computer experiment. As described in Section 4, these data are critical for estimation of the hindcast
emulator for Case A.
The second data source (Case B) is based on wind fields (from a climate model) corresponding to the

most extreme waves over a period of 1200 years (as described in Section 1 and Shaffrey et al. (2009)) for
the same spatial neighbourhood. The corresponding sample of wind speed, direction and wave hindcast
variables (obtained using the same hindcast tuning and set-up parameters as for Case A in Figure 1) are
illustrated in Figure 2. The figure is generally similar to Figure 1. But note that the hindcast Hs − TP
relationship, for example, is influenced by the selection process of severe events, and is different to that
typically observed in data corresponding to a continuous period of observation or hindcast. It appears
that isolation of the most extreme wind fields, identifies some storm events with very long peak periods,
and other (typically less intense) storms exhibiting a linear relationship between HS and TP . The largest
value of hincast HS for Case B is approximately 11.5m, corresponding to a storm from the north.
Samples for Cases A and B are used in Section 4 to estimate system models, in Section 5 for extreme

value analysis, and in Section 6 to estimate distributions for the 100-year maximum HS .

3. Bayesian uncertainty analysis

Here we describe in general terms how an emulator for a hindcast simulator and a discrepancy model for
the difference between emulator and measurement are specified (Section 3.1) and estimated (Section 3.2).
The full procedure is referred to as Bayesian uncertainty analysis. A detailed description of the inference
for Cases A (in detail) and B (in outline) is then given in Section 4.
In this work, models are estimated using Bayes Linear inference rather than fully probabilistic Bayesian

inference. For completeness, a brief introduction to Bayes Linear analysis is provided in Appendix A;
further mathematical details for the Bayes Linear analysis are also provided there. Since some readers
may be more familiar with the corresponding fully probabilistic Bayesian inference, we also outline this
approach in Appendix B for comparison.
We specify the system model using the following symbols: f (and F ) refers to the output of a hindcast

simulator, a deterministic function taking physical covariates x and hindcast tuning parameters ω as
inputs. δ (and D) refer to the output of a discrepancy model, a deterministic function taking physical
covariates x as inputs. System output y is then the sum of simulator and discrepancy model outputs,
which we seek to relate to measurements z (and Z) of the system. For the current work, y refers to storm
peak HS , storm peak TP and storm length σ, and x to physical covariates including location, storm peak
wind speed u and storm peak wind direction θ. Further details are given in Section 4.

3.1. Model specification

Relating hindcast simulator, discrepancy and system

The set of system outputs under study is denoted by y (x) = {y1 (x) , . . . , yny (x) }, where x is a vector
of known physical covariates affecting the behaviour of y. Suppose that a hindcast simulator f (x, ω) =
{f1 (x, ω) , . . . , fny (x, ω) } has been constructed to model the behaviour of y, where ω = {ω1, . . . , ωnω} is
a set of hindcast simulator tuning parameters that must be selected to run the hindcast simulator (but
which do not correspond to physical covariates). The hindcast simulator f is linked to the system by
means of a “best input” assumption: we assume that there is a setting ω∗ of tuning inputs ω, such that
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if the simulator was to be run at this setting, we would obtain all of the information available from the
simulator about the system. Under this assumption, the hindcast simulator is related to the system as

yi (x) = f∗i (x) + δi (x) , (1)

where f∗i (x) = fi (x, ω∗) is the simulator evaluated at the best input, and δi (x) is the discrepancy
between the simulator and the system at this setting of the tuning parameters. δ is assumed to be un-
correlated with {f, ω∗}.

Modelling discrepancy

We choose to specify the discrepancy as the sum of a regression component representing global behaviour
with respect to covariates, and a residual component representing local deviations from this behaviour

δi (x) =
∑
p

αiphp (x) + wi (x) + ξi . (2)

Here h (x) = {h1 (x) , . . . , hnh (x) } is a set of pre-specified basis functions, and α is a corresponding set of
unknown regression weights to be estimated. w (x) = {w1 (x) , . . . , wny (x) } is a set of unknown residual
functions, assumed to be correlated across the covariate domain, to be estimated. ξ = {ξ1, . . . , ξny} is
a set of unknown unstructured (“nugget”) residuals to be estimated, assumed uncorrelated across input
space, used to capture unstructured variation in the discrepancy.

Relating system and measurements

Sets of system measurements are denoted z = {z1, . . . , znz}, where zk = {z1k, . . . , znyk}. We assume that
zik is a noise-corrupted measurement of the underlying system value yi (xk) made at known system input
setting xk

zik = yi (xk) + εik , (3)

where ε is a corresponding set of noise terms, assumed uncorrelated with each other, and with system
value.

Emulating the simulator

Simulators for physical systems often consist of numerical solvers for sets of coupled differential equa-
tions on spatio-temporal grids. Such numerical solvers are generally computationally demanding. A
computationally-slick approximation for the simulator is therefore practically very appealing. A common
strategy is to approximate f using a statistical model known as an emulator. An emulator can be used
to generate fast predictions for f at input settings where it has not yet been evaluated, allowing more
detailed investigation of simulator behaviour. An emulator is typically specified as the sum of a regression
surface, a structured residual component, and an unstructured residual component

fi (x, ω) =
∑
p

βipgp (x, ω) + ri (x, ω) + ηi . (4)

Here, g (x, ω) = {g1 (x, ω) , . . . , gng (x, ω) } is again a set of pre-specified basis functions, and β is a
corresponding set of regression weights to be estimated. The regression component of the model captures
the global structure of the simulator. r (x, ω) = {r1 (x, ω) , . . . , rny (x, ω) } is a set of unknown, zero-
mean residual processes, assumed correlated across input space, to be estimated. These capture local
deviations from the global structure. η = {η1, . . . , ηny} is a set of nugget residuals to be estimated,
assumed uncorrelated across input space, used to capture unstructured variation in simulator output.
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3.2. Bayes Linear analysis

Using the model specified above, Bayesian uncertainty analysis is performed within a Bayes Linear
(second-order) framework by the procedure described here. A Bayes Linear analysis proceeds in two
steps. First, a second-order prior belief specification is made for all uncertain quantities, typically using
data available initially. Then, beliefs are updated using further data.

Estimating the hindcast emulator

Referring to Equation (4), we first specify basis functions {gp (x, ω) }. Typically in the absence of other
information, these correspond to linear, squared and interaction terms in the elements of x and ω; where
possible, they should be chosen to reflect the underlying physical relationship between hindcast simulator
inputs and outputs if known.
Next we estimate prior moments for all emulator components from Equation (4). Specifically, we estimate

expectations {E [βip] } for regression weights; and covariances {Cov [βip, βjq] } and {Cov [ri (x, ω) , rj (x′, ω′) ] }
between pairs of regression weights and residual processes. We note that the set {Cov [ri (x, ω) , rj (x′, ω′) ] }
is specified in terms of covariances {Cov [ri (x, ω) , rj (x, ω) ] } between residuals for outputs evaluated at
the same input setting (x, ω), and correlations {Corr [ri (x, ω) , rj (x′, ω′) ] } between different input set-
tings (x, ω) and (x′, ω′) (with x′ 6= x, ω′ 6= ω). We also typically set all covariances between regression
weight, residual process and nugget {ηi} components to zero. The procedure for prior specification is
described in detail in Appendix A.1.
Then, we adjust emulator moments using Bayes Linear adjustment for a further set of hindcast simulator

evaluations. The adjusted moments are then used to compute adjusted predictions {EF [fi (x, ω) ] } and
{CovF [fi (x, ω) , fj (x′, ω′) ] } at input settings where the simulator value has not been observed. The
procedure for computing adjusted simulator predictions is described in detail in Appendix A.1. Finally,
as also explained in Appendix A.1, we set nugget covariances {Cov [ηi, ηj ] } manually.
Typically in a Bayesian uncertainty analysis, we assume that there is an unknown setting ω∗ (called

the “best input setting”) of tuning inputs ω, such that if the simulator was to be run at this setting, we
would obtain all of the information available from the simulator about the system. As will be discussed in
Section 4, for the current work, we find that hindcast emulator performance (an approximation for hindcast
simulator performance) varies within the domain of ω specified prior to analysis, but that this variability
is not large. That is, the whole domain of ω corresponds effectively to good simulator performance. For
this reason, we assume that ω∗ is uniformly distributed on the full domain of ω. Incorporating uncertainty
about the choice of ω∗ in the best input emulator is discussed in the next section.
In passing we note that the procedure described here and in Appendix A are also used to make a prior

specification for the discrepancy model, required for Bayes Linear adjustment of the system model.

Propagating uncertainty about tuning inputs

The fitted emulator is used to compute beliefs about the best input emulator f∗. Specifically, we

compute {E [f∗i (x) ] } and {Cov
[
f∗i (x) , f∗j (x′)

]
} by propagating uncertainty about ω∗ through the fitted

emulator. Details of this calculation are provided in Appendix A.2.

Estimating the system model

Referring to Equation (1) and Equation (2), beliefs about the system y (x) are computed by updating
f∗ (x) and δ (x) jointly. The procedure is similar to that for fitting the emulator. First, basis functions
{hp (x) } are selected, then prior beliefs {E [αip] }, {Cov [αip, αjq] } and {Cov [wi (x) , wj (x′) ] } specified.
Additionally, a second-order prior uncertainty specification is made for the measurement error compo-
nents, consisting of expectations {E [εik] } and covariances {Cov [εik, εjl] }. The system measurements
{zik} are then used to jointly adjust beliefs about f∗ (x) and δ (x) ; these updated beliefs can then be
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used to compute adjusted predictions {Ez [yi (x) ] } and {Covz [yi (x) , yj (x′) ] } for the system at unob-
served input settings. Finally, we use an independent test set to tune the nugget covariances {Cov [ξi, ξj ] }
manually. The procedure for computing adjusted system predictions is described in detail in Appendix
A.3.

4. Model estimation

In this section we discuss the estimation of system models for Case A and Case B. Since model estimation
for Case B follows the same steps as for Case A, we choose to describe Case A in detail (in Section 4.1-4.3)
and overview Case B briefly (in Section 4.4).
Data for Case A are introduced in Section 2. This consists of hindcast simulation inputs and outputs,

and offshore measurements, at multiple locations in the Danish Sector of the North Sea offshore Jutland
for a recent period of 37 years. Our objective is to estimate a useful system model for the present day
wave environment there. We note in particular that we have access to multiple sets of hindcast simulator
outputs, corresponding to different choices of hindcast tuning inputs ω.
Modelling proceeds as follows. Step 1.1 of the analysis is described in Section 4.1.1. We fit an emulator

to a set of hindcast simulator outputs corresponding to a limited number of offshore locations but a large
number of combinations of tuning inputs ω. The fitted emulator is used to explore the effect of tuning
input setting on simulator outputs, to be used subsequently to evaluate the hindcast simulator for a much
larger number of locations. In Step 1.2 of the analysis (Section 4.1.2), we fit a second emulator to a larger
set of data for hindcast simulator inputs and outputs (for all geographic locations, with a specific choice
of tuning inputs ω†). We use this emulator to explore physical covariate effects. We next combine the
emulators, adding terms describing tuning inputs taken effects from the Step 1.1 emulator to the Step
1.2 emulator, so that the final emulator describes the effects of both physical covariate and simulator
tuning inputs. In Step 2 of the analysis (Section 4.2), we discuss how uncertainty about tuning inputs is
transferred into uncertainty about system outputs. In Step 3 (Section 4.3), we jointly update beliefs about
the emulator and a discrepancy model to create a model for system behaviour, using data for hindcast
emulator inputs, outputs and corresponding offshore measurements at a limited number of locations.

4.1. Step 1: Emulation

4.1.1. Step 1.1: First emulator for limited number of locations but multiple ω

The first emulator is based on hindcast simulator inputs and outputs for 6 representative offshore loca-
tions. Terms in the emulator model are listed in Table 1 for completeness.
The hindcast simulator was executed at each of 128 different combinations of tuning input settings
ω generated according to a Latin hypercube design on a domain of plausible tuning inputs, specified
following consultation with hindcast experts at the Danish Hydraulics Institute. After the removal of
a small number of suspect evaluations, a sample of simulator output for 20717 storm peak events was
retained for subsequent analysis. Analysis is performed in three stages, using a random partition of the
sample into three subsets: (a) 15000 storm peak events to fix the prior uncertainty specification for the
components; (b) A further 5217 storm peak events to estimate the correlation structure of the residual
processes, and to perform Bayes Linear adjustment as described in Appendix A.1; and (c) the remaining
500 storm peak events to validate model performance.
We estimate the hindcast emulator using the model structure from Equation (4) and the procedure

described in Section 3.1, separating regression components corresponding to physical covariate and tuning
inputs

fi (x, ω) =
∑
p

β
(x)
ip g

(x)
p (x) +

∑
q

β
(ω)
iq g(ω)q (ω) + ri (x, ω) + ηi . (5)

8



Emulator term Symbol Description

g
(x)
1 (x) u Storm peak wind speed

g
(x)
2 (x) cosφ Cosine of storm peak wind direction, φ

g
(x)
3 (x) sinφ Sine of storm peak wind direction

g
(x)
4 (x) cos s Cosine of storm season, s

g
(x)
5 (x) sin s Sine of storm season

g
(x)
6 (x) , g

(x)
7 (x) , . . . , g

(x)
11 (x) - Indicators for 6 locations

g
(ω)
1 (ω) - C dissipation

g
(ω)
2 (ω) - D dissipation

g
(ω)
3 (ω) - Percentage current

g
(ω)
4 (ω) - Kn

g
(ω)
5 (ω) - Indicator for triad interaction (on/off)

y1 HS Storm peak significant wave height
y2 TP Storm peak wave period
y3 log10(σ) log10(storm duration)

Table 1: Emulator terms for hindcast simulator physical covariate (x) and tuning (ω) inputs, and (y) outputs.

Mathematical details of the estimation procedure are relegated to Appendix A.1. Here we describe in
words how the emulator is estimated.
We specify basis functions {g(x)p (x) } and {g(ω)q (ω) } as reported in Table 1. Then we make a prior belief

specification for the uncertain components of the model, by performing an initial Bayesian linear regression

using sub-sample (a). The prior moments for the regression coefficients (
{

E
[
β
(x)
ip

]}
,
{

Cov
[
β
(x)
ip , β

(x)
jr

]}
,{

E
[
β
(ω)
iq

]}
,
{

Cov
[
β
(ω)
iq , β

(ω)
jr

]}
and

{
Cov

[
β
(x)
ip , β

(ω)
jq

]}
) are fixed using the posterior parameters from

this initial regression, and the marginal output covariances {Cov [ri (x, ω) , rj (x, ω) ] } are fixed to the
covariances of the regression residuals.
We then estimate prior covariances {Cov [ri (x, ω) , rj (x′, ω′) ] } between residual processes at different

input settings (x, ω), (x′, ω′). This is done by means of a Gaussian process regression, setting correlation
lengths to values which provide good predictive performance under leave-one-out cross-validation for
sub-sample (b). Once prior specification is complete, we jointly update beliefs about the regression and
residual components again using sub-sample (b). We then generate adjusted emulator output for sub-
sample (c), and compare emulator with simulator outputs. Figure 3 shows predictions for sub-sample (c)
generated under the prior linear regression fit and the fully updated emulator. Whereas the initial linear
regression does relatively well for storm peak HS , the fully-adjusted emulator predicts very well for all
outputs.
We use the second regression component of the fully-adjusted emulator (see Equation 5) to represent

uncertainty about the global effect of the tuning inputs in the emulator developed at Step 1.2 (for which
simulator outputs corresponding to only a single combination of tuning inputs was available).

4.1.2. Step 1.2: Emulator for all locations and single ω†

We find that hindcast simulator performance (as approximated by the emulator for Step 1.1) varies
within the domain of ω specified prior to analysis, as illustrated in Figure 4. It can be seen that the effect
of varying tuning inputs (over the complete Latin hypercube design) on expectations and 95% credible
intervals of predictions is small with respect to the effect of covariate u. For this reason, to reduce
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computational burden, we decided to gather further hindcast simulator output corresponding to all 23
locations of offshore platforms, with a single central choice ω† of tuning inputs chosen in consultation with
hindcasting experts. Again, we used CFSR wind inputs corresponding to time periods of 2187 historical
storms observed the 37-year period. This resulted in a sample of 50301 storm peak simulator outputs
available to explore the effects of physical covariates.
The resulting sample was partitioned at random into three different sub-samples ((a), size 40000), ((b),

size 9301) and ((c), size 1000), used as before for prior specification, Bayes Linear adjustment and vali-
dation. The model for fitting is

fi (x, ω) =
∑
p

β
(x)
ip g

(x)
p (x) +

∑
q

β
(ω)
iq g(ω)q (ω) + ri (x) + ηi , (6)

where {β(ω)iq } and {g(ω)q (ω) } are borrowed from Step 1.1, and the residual process does not depend

on the tuning parameters, since all simulator evaluations are obtained at the same setting ω† of ω.
Regression basis functions are chosen to be the same as for Step 1.1. Subsequent model fitting follows
the description in Section 4.1.1. The predictive performance of the fully-updated emulator is evaluated
by making predictions on sub-sample (c). Predictions generated using both the initial regression fit and
the fully-updated emulator are shown in Figure 5. Describing the effects of physical covariates is clearly
more challenging over 23 locations. The final emulator adopted following Step 1.1 and Step 1.2 is then
Equantion 6, where the second term on the right-hand side is borrowed from the emulator at Step 1.1,
and all other terms correspond to the emulator at Step 1.2.

4.2. Step 2: Propagating best input uncertainty

Following Section 3.2, we make a best input assumption (see section 3.1) to relate beliefs about f (x, ω)
to beliefs about y (x) at the corresponding system input x. Then we propagate uncertainty about the
best input ω∗ through the simulator. Uncertainty about ω∗ is summarised by a probability distribution
p (ω∗) ; in this analysis, we consider that we have no reason to favour any setting of ω∗ over any other,
and so we assume that p (ω∗) is a product of independent uniform distributions for the components of ω∗

over the original input domain for ω specified. The procedure for computing expectations {E [f∗i (x) ] }
and covariances {Cov

[
f∗i (x) , f∗j (x′)

]
} is summarised in Appendix A.2.

4.3. Step 3: Estimating the system model

Following Section 3.2, here we combine the emulator developed in Section 4.1 and Section 4.2 with a
prior specification for discrepancy components between simulator and offshore measurement, and update
these components jointly to estimate a final system model for real ocean wave environments offshore
Denmark. The procedure used is again similar to that for emulator fitting.
Measurements from 7 of 23 platforms were available for at least some interval during the 37 years for

which storm characteristics were simulated. Time intervals for which storm measurements were available
differ between platforms, with occasional missing and dubious measurements. All three storm peak
characteristics corresponding to simulator outputs of interest were observed for a sample of 4615 storm
peak events in total. This sample is used to estimate the system model.
We partition the sample at random into 3 sub-samples and use them as follows: sub-sample (a) consists

of 1000 measurements, to fix prior specification for discrepancy components; sub-sample (b) consists of
3315 measurements, to update all components of the system model jointly; and sub-sample (c) consists
of 300 measurements, to estimate predictive performance of the fitted system model.
Referring to Equation 1 and Appendix A, linear regression on sample discrepancies D = {Dik},

where Dik = zik − E [f∗i (xk) ] for each storm measurement zik from sub-sample (a) is used to obtain
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a prior specification for discrepancy components. Linear regression mean and covariance parameters
{E [αip] } and {Cov [αip, αjq] } are adopted as prior regression parameter moments, and residual correla-
tions {Cov [wi (x) , wj (x) ] } are fixed empirically using covariances of regression residuals.
We then estimate prior covariances {Cov [wi (x) , wj (x′) ] } between residual processes at different input

settings x, x′. This is done by means of a Gaussian process regression, setting correlation lengths to
values which provide good predictive performance under leave-one-out cross-validation for sub-sample (b).
Having made a prior specification for moments, we then jointly update both simulator and discrepancy
moments using sub-sample (b).
Finally, sub-sample (c) is used to assess predictive performance. Figure 6 shows predictions for sub-

sample (c) generated under the prior linear regression fit and under the fully-adjusted system model.

4.4. Modelling Case B

Inference for Case B, introduced in Section 2, follows the same procedure as that described above for
Case A. For Case B, hindcast simulator output was only made available for one setting ω† of tuning inputs
ω. Hence, the effect of tuning input variation is again approximated by including the linear regression
component estimated for Case A in Section 4.1.1. Hindcast simulator evaluations are available for 345
storms with high storm peak wind speeds over a 1200 year period at 18 locations. A sample of 6210
simulator evaluations was therefore available for modelling. Emulator estimation was based on a random
partitioning of this sample into 1500 individuals for initial regression (sub-sample (a)), 4510 to estimate
residual correlation structure and jointly update regression and residual components (sub-sample (b)),
and 200 to assess predictive performance (sub-sample (c)). The associated system model was similarly
estimated, using the same measured data as for Case A.

5. Extreme value analysis

Emulator and system models developed in Section 4 allow the simulation of wave environments (in
terms of storm peak HS , TP and storm length σ) offshore Jutland. Our aim now is to use these models
to estimate the distribution of the 100-year maximum storm peak significant wave height HS .
A number of different estimators are feasible, based directly on extreme value analysis of measured or

simulated HS , or indirectly on extreme value analysis of storm peak wind speed u propagated through
a system model for HS in terms of u and other physical covariates. In all cases, a method of extreme
value analysis accommodating covariate variation is required. Here we describe a simple approach to
non-stationary extreme value analysis following Ross et al. (2018) applicable to peaks over threshold of a
variable y conditional on covariate x, such as HS (measured or hindcast) with wave direction φ, or storm
peak wind speed u with wind direction θ.
We adopt a piecewise stationary extreme value model as a particularly simple description of non-

stationarity of y with respect to x. For each observation (xi, yi) in the sample {xi, yi}ni=1, the value
of covariate xi is used to allocate the observation to one and only one of m covariate intervals {Ck}mk=1

by means of an allocation vector A such that k = A(i). For each k, all observations in the set {yi′}A(i′)=k
with the same covariate interval Ck are assumed to have common extreme value characteristics.
Threshold exceedances of y are assumed to follow the generalised Pareto distribution with shape ξ ∈ R

and scale ζk > 0, with cumulative distribution function

FGP (y; ξ, ζk, ψk) = 1− (1 + (ξ/ζk) (y − ψk))−1/ξ

for y ∈ (ψk, y
+
k ) where y+k = ψk− ζk/ξ when ξ < 0 and∞ otherwise. Since estimation of shape parameter

is particularly problematic, ξ is assumed constant (but unknown) across covariate intervals, and the
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reasonableness of the assumption assessed by inspection of diagnostic plots. Threshold parameters {ψk}
are estimated empirically per covariate bin as the bin quantile with given non-exceedance probability
τ ∈ [0, 1]. The joint posterior distribution of parameters ξ, {ζk} is estimated using Markov chain Monte
Carlo with a Metropolis-Hastings-within-Gibbs algorithm. Uniform prior distributions on intervals Iξ,
{Iζk} are assumed for ξ and {ζk}, and the value of τ is sampled using a Gaussian random walk restricted
to interval Iτ judged reasonable from inspection of diagnostic plots. For the analysis reported here, we set
Iξ = [−0.5, 0.1], Iζk = [0.01, 100] and Iτ = [0.9, 0.95]. Further details of the piecewise stationary model
are given in Ross et al. (2018). We choose to outline a typical extreme value analysis using the storm
peak wind speed u and direction θ data from Case B, noting that the equivalent analysis was undertaken
for all sources of storm peak wind and significant wave height for Cases A and B.
Inspection of diagnostic plots for u on θ in Case B suggested that partitioning the sample by θ into four

directional quadrants (with cardinal directions as boundaries) is reasonable. Figure 7 shows parameter
estimates for extreme value threshold {ψk}, generalised Pareto scale {ζk} and shape ξ.
Figure 8 compares the tails of u per covariate interval with estimates under the fitted model. There

is good agreement between empirical and model-based tails. From the figure we also see that tails
corresponding to θ ∈ (180, 270] and (270, 360] are considerably longer than elsewhere. We would expect
these features to be reflected in Figure 9, illustrating posterior predictive estimates for the distribution
of the 100-year maximum storm peak HS per covariate interval of storm peak wind speed θ, and “omni-
directionally” over all covariate intervals. The omni-directional 100-year maximum is dominated by the
most severe quadrants as expected.

6. Estimation of distributions of N-year maxima

The purpose of this section is to compare different estimates for the distribution of the 100-year maximum
storm peak HS at central location C. A total of 7 estimates are made. Estimates correspond to different
combinations of data source (Cases A and B), and analysis type (e.g. extreme value analysis of measured
or hindcast HS , or extreme value analysis of u propagated through a system model for HS).
The first estimate (“Measured” in Figure 10) is obtained by extreme value analysis of the measured data

available at C. With FH(h|φ,G) representing generalised Pareto cumulative distribution function for storm
peak HS given wave direction φ for generalised Pareto parameters G = ({ψk}, {σk}, ξ), the cumulative
distribution function FH100 of the 100-year maximum HS is a generalised extreme value distribution (e.g.
Jonathan and Ewans 2013)

FH100(h|φ,G) = exp [−ρ100(φ)(1− FH(h|φ,G))] ,

where ρ100(φ) is the expected number of occurrences of storm peak events in 100 years for covariate value
φ, and the corresponding posterior predictive distribution for covariate interval Iφ is

FH100(h|φ ∈ Iφ) =

∫
Iφ

FH100(h|φ,G)f(G|φ)f(φ) dφdG .

From Figure 10, we see that the median value of the 100-year maximum is approximately 11.3m, but that
the 95% credible interval is very wide, and certainly includes [9.7, 14]m. The second estimate (“Hindcast
A” in Figure 10) is obtained by extreme value analysis of the hindcast data at C for Case A, in the same
way. The median value is approximately 11.0m, with a much narrower 95% credible interval.
The third estimate (“Emulator A”) is obtained by performing extreme value analysis on winds for Case A

(as illustrated in Section 5), estimating the distribution of 100-year maximum wind (as for the “Measured”
estimate), then using the emulator developed in Case A to estimate the corresponding distribution of 100-
year wave. Writing the cumulative distribution function of storm peak HS from the emulator, given storm
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peak wind speed u, wind direction φ and season s, as FH(h|u, φ, s), the posterior predictive distribution
for the 100-year storm peak HS becomes

FH100(h|φ ∈ Iφ) =

∫
Iφ

FH(h|u, φ, s)fU100(u|φ,G)f(G|φ)f(φ|s)f(s) dsdφdGdu ,

where fU100(u|φ,G) is the probability density function for the 100-year maximum wind speed. The prob-
ability density function for G|φ is estimated in the extreme value analysis. Probability density functions
for φ|s and s are estimated empirically from the original sample. The median 100-year maximum storm
peak HS using this estimator is approximately 12.1m, with a distributional width similar to that of the
“Hindcast A” estimator. The fourth estimate (“System A”) is similar to the third, but that the full sys-
tem model for Case A (consisting of emulator and discrepancy model) is used, rather than the emulator
model alone. The median 100-year maximum value estimate is now approximately 11.8m.
The remaining estimates “Emulator B” and “System B” are the analogues of “Emulator A” and “System

A” estimates using data from Case B rather than Case A. Median estimates are 11.0m, 11.4m and 11.6m
respectively.
In assessing the results in Figure 10, one key comparison is between estimates for the distribution of the

100-year maximum event from measurements only (solid black) and from system models (red). We also
include estimates from Emulators A and B (which are components of the corresponding system models)
and from Hindcast A for interest only. The distribution of the 100-year maximum event from measured
data is relatively wide due to the small sample size of measurements available, and consequent relatively
large epistemic uncertainty. Specifically, a total of 496 measurements was available, corresponding to a
sampling period of approximately 16 years. To incorporate the effects of threshold uncertainty in extreme
value inferences, a random extreme value threshold corresponding to a quantile with non-exceedance prob-
ability drawn at random from a uniform distribution on Iτ = [0.6,0.9] was necessary. Hence, on average,
a total of only approximately 120 observations was used in the extreme value analysis of measurements.
We judge this to be a small sample size. As a result, in this sense, the width of the measured distribution
might be expected to be biased high due to sampling variability. If a larger sample was available, we
expect that the width of the distribution would reduce.
The corresponding system model estimates (in red) agree well with each other, and are located to the

right of the distribution from measurements (at least up to the quantile with non-exceedance probability
0.7). The width of distributions from system models in cases A and B is slightly narrower than that
estimated directly using the measured data. Recall that, in a system model, extreme value analysis is
actually performed on wind speed (rather than on HS directly), and that an emulator and discrepancy
model are subsequently used together to convert extreme wind realisations to those of HS , facilitating
estimation of the cumulative distribution of the 100-year maximum HS event.
For Emulator A, a total of 1220 observations with threshold Iτ = [0.6,0.9], corresponding to an average

number of observations for modelling of approximately 300 and a period of 37 years, is used for extreme
value analysis of wind speed. For Emulator B, a total of 46034 observations with threshold Iτ = [0.9,0.95],
corresponding to a average number of observations for modelling of approximately 3,450 and a period of
1200 years, is used for extreme value analysis of wind speed. We judge the relatively narrow width for
the distribution of Emulator B to be in part due to the large number of wind observations available for
extreme value analysis, and in part to the fact that Case B represents a period of observation of 1200
years (much larger than the 100-year period over which maxima are estimated). Therefore, Emulator B
requires a lesser degree of extrapolation of the wind extreme value model and the wind-wave emulator.
Since each system model is composed of the sum of emulator and discrepancy model components, we
might expect that the width of the distribution from an emulator alone would be no larger than that from
a full system model; Figure 10 supports this finding.
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It is interesting further to note that the estimated distribution from Emulator A is located to the left of
the corresponding system model, by some 0.4m at the median quantile level. In contrast, the estimated
distribution from Emulator B shows quite a different shape to that based on the corresponding system
model. These observations illustrate the importance of the discrepancy model, estimated over multiple
locations, in adjusting the emulator towards observations.
We note that the distribution width of hindcast-based estimate Hindcast A in Figure 10 is smaller

than that based directly on measurements. The number of observations used to estimate the extreme
value model for Hindcast A is 1220 with threshold specification Iτ = [0.6,0.9], and hence on average
approximately 300 observations are used for extreme value analysis. Therefore, all other things being
equal, we expect a lower sampling uncertainty for the distribution of the 100-year maximum from Hindcast
A than for the distribution estimated using measurements only; this is observed in the figure.

7. Discussion

In this work, we use Bayesian uncertainty analysis to propagate uncertainties due to approximate phys-
ical simulators of extreme wave environments, and uncertainties due to imperfect measurements of that
environment, into estimates for the distribution of 100-year maximum storm peak significant wave height
HS . Statistical emulators, discrepancy and system models are estimated using Bayes Linear inference,
and coupled to Bayesian non-stationary extreme value analysis. Using hindcast simulator data and off-
shore measurements for two scenarios (Case A and Case B), six different estimates for the median 100-year
maximum storm peak HS (see Figure 10) are found, all of which lie in the interval [11.0,12.1]m. Estimates
for the median 100-year maximum storm peak HS based directly on extreme value analysis of hindcast
waves (i.e. “Hindcast A” and “Hindcast B” estimates in Figure 10) are lower than the corresponding
estimates based on extreme value analysis of wind speed. There is good agreement between System A
and System B estimates, despite the fact that Emulator A and Emulator B estimates are rather different.
Overall, we conclude that, for this application, there is little difference in estimates from measurements,
from HS hindcasts or from extreme value analysis of u propagated through emulator or system models
for HS , for Case A and Case B.
We only report extreme value analysis of storm peak HS in Section 5 and Section 6. Similar marginal

analysis has been conducted for storm peak period TP and storm length σ. We also note that outputs of
system models estimated here provide the basis for joint characterisation of extreme wave environments,
for example using the conditional extremes model of Heffernan and Tawn (2004) as reported further in
Hansen et al. (2018).
We recommend the adoption of a system model approach to estimate the distribution of N -year max-

ima (and of N -year return values) in metocean design. This approach provides a rigorous, rational,
scalable statistical framework for quantifying the relationships between physical models for wind fields,
resulting wave fields and measurement characteristics. Uncertainties associated with different model and
measurement components are represented explicitly, and can be inferred from the available data in an
unambiguous, systematic fashion. The system model combines information from different locations in
a coherent manner to improve estimation of the N -year maximum at any of the locations. The system
model can be used to estimate the distribution of N -year maxima at locations in an ocean basin, other
than those at which measurement or hindcast data are available. The system model estimate should
therefore be preferred in general over that obtained from a limited sample of measurements.
In the current application, two different system models (corresponding to different data sources, referred

to as Cases A and B) yield estimates of the distribution of the 100-year maximum event showing good
agreement. They suggest that the corresponding distribution estimated directly from extreme value
analysis of a limited set of measurements (corresponding to approximately 16 years of observation) is
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underestimated by approximately 0.5m at quantile levels with non-exceedance probabilities of exp(−1)
and 0.5.
There are numerous extensions and improvements which should be considered. It would be interesting

to perform direct emulation of the wave hindcast simulator, rather than of its storm peak characteristics.
This might allow us to investigate the possibility of particular (potentially not the most extreme) wind field
occurrences generating extreme wave events. This would then allow for a more detailed characterisation
of the relatively well-understood wind-wave physics involved, and possibly increase the importance of
characterising the wind field and its uncertainty. The resulting emulator and system models might be
more complex, but would focus attention on what the wave hindcasting community already knows: that
the wind field description is key to accurate hindcasting. Further, there is scope to perform a full history-
matching to more fully characterise the domain of plausible ω, and hence the probability distribution
of best tuning input ω∗. In the work reported here, the full domain of tuning parameters ω considered
corresponds to relatively good emulator performance. More generally, had this domain been defined
more loosely, history matching would have been necessary to identify sub-domains corresponding to good
emulator performance. Finally, there is considerable scope for improving emulator quality for the worst
storms. In the current work, the emulator was estimated based on a sample of physical covariates (e.g.
wind speed and direction) corresponding to actual historical occurrences (or estimates thereof). We
could have estimated the hindcast emulator using hindcast simulator output for a space-filling design of
physical covariates on an extended domain, exploring unusual combinations of covariates, and in particular
including large (even potentially unphysically large) winds to improve our emulator approximation for
the most extreme storms.
In light of the comparisons made in Section 6, it is interesting to consider, in general terms, whether it

is better (a) to perform extreme value analysis on storm peak wind speed u (non-stationary with respect
to storm peak wind direction θ and possibly other covariates) and propagate predicted extreme winds
through a system wave model to estimate a distribution for the 100-year maximum of storm peak HS ,
or (b) to propagate a sample of storm peak winds (and directions) through the system wave model, and
perform extreme value analysis on the resulting sample of storm peak HS . We investigate this further here
using a simple “toy” example motivated by the models estimated in Section 6, assuming for simplicity that
storm peak u and HS are stationary with respect to covariates. Specifically, we assume from inspection
of Figure 7 that in reality u ∼ GP(ξ, ζ, ψ) where shape ξ = −0.09, scale ζ = 1.8 and threshold ψ = 20.
We further assume that in reality h = aub + ν where, from inspection of Figure 4, a = 0.05, b = 1.6 and
ν ∼ N(0, 1). We then simulate 5 realisations of samples of size n = 2200 (corresponding to 37 years of
recent extreme storms in Case A, shown in solid black in the left hand panel of the tail plot in Figure 11),
and 5 realisations of size n′ = 2.2 × 107 (corresponding to 370,000 years of extreme storms in Case A,
shown in solid black in the right hand panel of Figure 11).
The effect of sampling uncertainty on tail location is clear in the left hand panel, but is negligible to a

tail probability of 10−7 in the right hand panel. The dashed red lines in the left hand panel correspond
to approach (a), using tail estimates obtained by performing extreme value analysis on u for threshold
exceedances of the 90% sample quantile for a sample of size n. The fitted generalised Pareto model is
then used to simulate a further sample of size n/10 which is propagated through the wave model. The
analogous dashed red lines in the right hand panel are obtained by using n′ instead of n. The dashed
grey lines in the left hand panel correspond to tail estimates obtained using approach (b), by simulating
a sample of u of size n, then propagating the sample through the wave model to obtain a sample of
HS . Extreme value analysis is then performed on threshold exceedances of the 90% sample quantile for
this sample, and the fitted generalised Pareto model used to simulate a further sample of size n/10 for
plotting. The dashed grey lines in the right hand panel are again obtained using n′ not n. It can be seen
that the variability between realisations of the dashed red (approach (a)) and grey (approach (b)) tails is
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comparable in the left and right hand panels. Further, tail estimates show the same degree of bias with
respect to true (solid black) tails. This suggests, for the model and parameters considered, there is little
difference between approaches (a) and (b).
This work constitutes an illustration of Bayesian uncertainty analysis applied to met-ocean design.

Whereas the current research should be considered preliminary in many respects, we hope it provides a
reasonable demonstration that uncertainty analysis is possible and useful in providing rational estimation
and comparison of estimates for extreme events such as the N -year maximum.
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Appendix A. Estimation using Bayes Linear analysis

This appendix provides a mathematical outline of the estimation of the hindcast emulator, the dis-
crepancy model and hence the system model using Bayes Linear analysis. We start by describing the
fundamentals of a Bayes Linear analysis. Following Goldstein and Wooff (2007), suppose we want to
learn about quantities A = {A1, . . . , Ana} and B = {B1, . . . , Bnb}. Our knowledge of these quantities is
summarised through expectations E [Ai] , E [Bi] , and (co-) variances Var [Ai] , Var [Bi] and Cov [Ai, Bj ] of
components, referred to as moments. A Bayes Linear analysis proceeds in two steps. First we make a prior
specification for these moments. This can be achieved by analysis of an initial sample of data, or from other
prior information about the characteristics of the quantities. Secondly, when new data D = {D1, . . . , DnD}
become available, we update or adjust our beliefs about A and B, given D. Specifically, we adjust all the
moments above, using expectations E [Di] and (co-) variances Var [Di] , Cov [Ai, Dj ] and Cov [Bi, Dj ] as
follows. The adjusted expectation of A given D is

ED [A] = E [A] + Cov [A,D] Var [D]−1[D − E [D] ] ,

where E [A] i = E [Ai] , Var [D] ij = Cov [Di, Dj ] etc. The adjusted covariance between A and B given D
is

CovD [A,B] = Cov [A,B] − Cov [A,D] Var [D]−1Cov [D,B] .

These equations are used repeatedly in the current work to estimate the hindcast emulator, the discrepancy
model and the system model, as explained below. In Appendix A.1, we illustrate Bayes linear analysis
to estimate the hindcast emulator and the best input emulator. In Appendix A.2, we describe how
uncertainty about the best input setting is captured in the emulator. Finally, in Appendix A.3, we
illustrate joint adjustment of moments related to both emulator and discrepancy to obtain adjusted
system moments.

Appendix A.1. Estimating the hindcast emulator

The hindcast emulator is defined by Equation (4), and its characteristics quantified by moments {E [βip] },
{Cov [βip, βjq] }, {Cov [ri (x, ω) , rj (x′, ω′) ] } and Cov [ηi, ηj ] . We fit the emulator in two steps: first we
find prior estimates for these moments; then we adjust emulator moments using Bayes Linear analysis.
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Estimating prior moments

We estimate prior moments for regression coefficients and residual process using linear regression on a
set of hindcast simulator inputs {(x1, ω1), . . . , (xnF , ωnF )} and outputs {Fij}, where Fij = fi (xj , ωj) is
simulator output i at input setting {xj , ωj}.
First we estimate prior moments {E [βip] }, {Cov [βip, βjq] } for regression coefficients. For computational

convenience, we re-arrange the data, stacking simulator outputs so that F̃i+(j−1)ny = Fij and define

G̃ = GT ⊗ Iny . Then we make the standard linear regression assumption that F̃ = G̃b + e, and make
Gaussian assumptions for the prior distribution of b (∼ N(0, vr)) and error vector e (∼ N(0, ve)). Then
a-posteriori b ∼ N (µ,W) where

W =
[ 1

ve
G̃TG̃ +

1

vr
I
]−1

and µ = W
[ 1

ve
G̃TF̃

]
.

Prior moments for regression coefficients are thus set at E [βip] = µi+(p−1)ng and Cov [βip, βkq] =
W(i+(p−1)ng)(k+(q−1)ng).
Next we estimate prior marginal covariances {Cov [ri (x, ω) , rj (x, ω) ] } of the residual process at a

single input setting (x, ω) using residuals from the regression fit above. We compute residuals R as
Rij = Fij −

∑
p E [βip]Gpj , and set marginal residual covariances to

Cov [ri (x, ω) , rj (x, ω) ] =
1

nF

∑
p

(Rip − R̄i)(Rjp − R̄j) = Vij ,

where R̄i = 1
nF

∑
pRip.

To use Equation (4) for prediction (see e.g. Equation (A.2) below), we also need a prior specification
for the covariances {Cov [ri (x, ω) , rj (x′, ω′) ] } between the residual processes at different input settings
(x, ω) and (x′, ω′). We assume that these covariances have the form

Cov
[
ri (x, ω) , rj

(
x′, ω′

) ]
= Vij ρ(x, ω, x′, ω′|λ) ,

where, with v = {x, ω} and λ = {λ1, λ2, . . . , λnλ}, the kernel ρ takes the squared exponential form

ρ(v, v′|λ) =
∏
j

exp[−λj
2

(vj − v′j)2] .

Once the values of λ are fixed, the above equation can be used to estimate Cov [ri (x, ω) , rj (x′, ω′) ] at
any combination of input settings. We estimate λ using a Gaussian process regression model on residuals
R from the regression above (but see discussion of sample partitioning in Section 4.1.1, Section 4.1.2 and
Section 4.3), choosing λ to give good predictive performance assessed by leave-one-out cross-validation.
The fitting and cross-validation procedure to follow is outlined in Chapter 2 and Chapter 5 of Rasmussen
and Williams (2006). For the purposes of the cross-validation, we assume that Rij is an observation of
ri (xj , ωj) , and that ri is a zero-mean Gaussian process. Again, we stack the differences Rij between the
data and corresponding predictions under the regression model to obtain the vector R̃. We assess the
quality of a correlation parameter λ by leaving out each data point R̃i in turn and predicting its value
using a Gaussian process fit to the remainder of the data. The criterion used to compare different λ is
the sum of the predictive log likelihoods

L (λ) =

ny×n∑
i=1

li (λ) ,
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where

li (λ) = −1

2
log (vi)−

(R̃i −mi)
2

2vi

is the predictive Gaussian likelihood for the ith residual. The predictive mean and variance for the ith

residual are

mi = R̃i −
[
K̃−1R̃

]
i[

K̃−1
]
ii

and vi =
1[

K̃−1
]
ii

,

where K̃ = K ⊗ V, and Kij = ρ(xi, ωi, xj , ωj |λ). The availability of these expressions means that we
must only invert the matrix K̃ once for each setting of λ that we evaluate, making this cross-validation
procedure computationally efficient. We generate a space-filling collection of λ settings (according to a
Latin hypercube) and evaluate L (λ) for each setting; we then select the setting which maximises this
criterion. This setting is then used for the joint update of the regression and residual components of the
model.

Bayes Linear adjustment

Henceforth adopting the notation {(x1, ω1), . . . , (xnF , ωnF )} and {Fij} (where Fij = fi (xj , ωj) )) to refer
to a further set of simulator inputs and outputs, we now update prior emulator moments described above
using Bayes Linear adjustment. Referring again to Equation (4), the adjusted expectation for emulator
output at new (unobserved) input setting {x, ω} is

EF [fi (x, ω) ] = EF [βip] gp (x, ω) + EF [ri (x, ω) ] , (A.1)

and the adjusted covariance between two new inputs is

CovF
[
fi (x, ω) , fk

(
x′, ω′

) ]
= gp (x, ω) CovF [βip, βkq] gq

(
x′, ω′

)
+ gp (x, ω) CovF

[
βip, rk

(
x′, ω′

) ]
+ CovF [ri (x, ω) , βkq] gq

(
x′, ω′

)
+ CovF

[
ri (x, ω) , rk

(
x′, ω′

) ]
(A.2)

+ Cov [ηi, ηk] .

In these equations, and those following in this appendix, we assume the Einstein summation conven-
tion, such that repeated indices are understood to be summed over. We note from Equation A.1 and
Equation A.2 that adjusting the emulator is equivalent to adjusting the moments E [βip] , E [ri (x, ω) ] ,
Cov [βip, βkq] , Cov [βip, rk (x′, ω′) ] , Cov [ri (x, ω) , βkq] and Cov [ri (x, ω) , rk (x′, ω′) ] . Computation of
these moments is outlined below. First, note that prior moments of simulator outputs can be derived
from the prior specification using

E [Fij ] = E [βip]Gpj ,

Cov [Fij , Fkl] = GpjCov [βip, βkq]Gql + Cov [ri (xj , ωj) , rk (xl, ωl) ] + Cov [ηij , ηkl] ,

where G is a regression design matrix with elements Gpj = gp (xj , ωj) .
Regression coefficients have adjusted expectations

EF [βip] = E [βip] + Cov [βip, Frs] Var [F]−1rsvw
[
Fvw − E [Fvw]

]
and adjusted covariances

CovF [βip, βkq] = Cov [βip, βkq] − Cov [βip, Frs] Var [F]−1rsvwCov [Fvw, βkq] ,
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where prior covariances of regression weights with the data are

CovF [βip, Frs] = Cov [βip, βrt]Gts .

Residual process moments have adjusted expectations

EF [ri (x, ω) ] = Cov [ri (x, ω) , Frs] Var [F]−1rsvw
[
Fvw − E [Fvw]

]
and adjusted covariances

CovF
[
ri (x, ω) , rj

(
x′, ω′

) ]
= Cov

[
ri (x, ω) , rj

(
x′, ω′

) ]
−Cov [ri (x, ω) , Frs] Var [F]−1rsvwCov

[
Fvw, rj

(
x′, ω′

) ]
,

where prior covariances of residual components with data are

Cov [ri (x, ω) , Frs] = Cov [ri (x, ω) , rr (xs, ωs) ] .

Finally, cross-covariances between regression coefficients and residual process have adjusted covariances

CovF
[
βip, rk

(
x′, ω′

) ]
= −Cov [βip, Frs] Var [F]−1rstuCov

[
Ftu, rk

(
x′, ω′

) ]
.

Tuning the nugget covariance

Finally, we tune the nugget covariances {Cov [ηi, ηj ] } by assuming Cov [ηi, ηj ] = aVij , and adjusting a
manually so that marginally three standard deviation predictive intervals include 95% of predictions for
an independent test set.

Appendix A.2. Incorporating tuning input uncertainty in the emulator

Uncertainty about the setting ω∗ is represented through a probability distribution p (ω∗) . Our expecta-
tion for the simulator f∗ (x) evaluated at this best input is

E [f∗i (x) ] = E [EF [fi (x, ω∗) ] ] ,

where the outer expectation is taken with respect to p (ω∗) . Our specification for the covariance between
f∗i (x) and f∗j (x′) is

Cov
[
f∗i (x) , f∗j

(
x′
) ]

= E
[
CovF

[
fi (x, ω∗) , fj

(
x′, ω∗

) ] ]
+ Cov

[
EF [fi (x, ω∗) ] ,EF

[
fj
(
x′, ω∗

) ] ]
= E

[
CovF

[
fi (x, ω∗) , fj

(
x′, ω∗

) ] ]
+ E

[
EF [fi (x, ω∗) ] EF

[
fj
(
x′, ω∗

) ] ]
− E [f∗i (x) ] E

[
f∗j
(
x′
) ]

,

where, again, the outer expectations are take with respect to p (ω∗) . We use {E [f∗i (x) ] } and {Cov
[
f∗i (x) , f∗j (x′)

]
}

as moments of the best input emulator for subsequent inference.

Appendix A.3. Estimating the system model

Having observed data Z, referring to Equation (1) and Equation (2), the adjusted expectation for the
system value at a new (unobserved) input setting x is

Ez [yi (x) ] = Ez [f∗i (x) ] + Ez [αip]hp (x) + Ez [wi (x) ] , (A.3)

and the adjusted covariance between system values any pair {x, x′} of new input values is

Covz
[
yi (x) , yj

(
x′
) ]

= Covz
[
f∗i (x) , f∗j

(
x′
) ]

+ Covz
[
f∗i (x) , δj

(
x′
) ]

+ Covz
[
δi (x) , f∗j

(
x′
) ]

+ Covz
[
δi (x) , δj

(
x′
) ]

. (A.4)
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Individual adjusted moments appearing in these expressions are computed below. First we note that prior
beliefs about the data Z can be derived from the moments computed in Section Appendix A.1 and the
prior specification for the discrepancy and measurement error components using

E [zij ] = E [f∗i (xj) ] + E [αip]Hpj ,

Cov [zij , zkl] = Cov [f∗i (xj) , f
∗
k (xl) ] +HpjCov [αip, αkq]Hql

+ Cov [wi (ωj) , wk (ωl) ] + Cov [εij , εkl] ,

where Hpj = hp (xj) is the usual regression design matrix. Adjusted predictive moments of the simulator
are

Ez [f∗i (x) ] = E [f∗i (x) ] + Cov [f∗i (x) , zpq] Var [z]−1pqrs

[
zrs − E [zrs]

]
,

Covz
[
f∗i (x) , f∗j

(
x′
) ]

= Cov
[
f∗i (x) , f∗j

(
x′
) ]
− Cov [f∗i (x) , zpq] Var [z]−1pqrsCov

[
zrs, f

∗
j

(
x′
) ]

,

where the covariances between new simuator values and system data points are

Cov [f∗i (x) , zpq] = Cov
[
f∗i (x) , f∗p (xq)

]
and the moments of f∗ are computed as in Appendix A.2. Adjusted moments of the discrepancy regression
coefficients are computed using

Ez [αik] = E [αik] + Cov [αik, zpq] Var [z]−1pqrs

[
zrs − E [zrs]

]
,

Covz [αik, αjl] = Cov [αik, αjl] − Cov [αik, zpq] Var [z]−1pqrsCov [zrs, αjl] ,

where the covariances between the coefficients and the system data values are

Cov [αik, zpq] = Cov [αik, αpr]Hrq .

Adjusted moments of the discrepancy residual components are

Ez [wi (x) ] = E [wi (x) ] + Cov [wi (x) , zpq] Var [z]−1pqrs

[
zrs − E [zrs]

]
,

Covz
[
wi (x) , wj

(
x′
) ]

= Cov
[
wi (x) , wj

(
x′
) ]
− Cov [wi (x) , zpq] Var [z]−1pqrsCov

[
zrs, wj

(
x′
) ]

,

where covariances between residuals and system data values are

Cov [wi (x) , zpq] = Cov [wi (x) , wp (ωq) ] .

Adjusted covariances between the coefficients and the residual components are

Cov [αik, wj (x) ] = −Cov [αik, zpq] Var [z]−1pqrsCov
[
zrs, wj

(
x′
) ]

.

Adjusted covariances between the simulator components and the discrepancy are

Cov
[
f∗i (x) , δj

(
x′
) ]

= −Cov [f∗i (x) , zpq] Var [z]−1pqrsCov
[
zrs, δj

(
x′
) ]

= −Cov [f∗i (x) , zpq] Var [z]−1pqrs

[
Cov [zpq, αjl]hl

(
x′
)

+ Cov
[
z, wj

(
x′
) ] ]

.
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Appendix B. Probabilistic Bayesian uncertainty analysis

The procedure for a fully probabilistic Bayesian uncertainty analysis is similar to that for a Bayes Linear
analysis described in Section 3 and Appendix A. In both cases, the objective is to provide a statistical
description of the system y given knowledge of hindcast simulation evaluations (represented by F ) for
physical covariate inputs x and tuning inputs ω, and measurements z. Fully probabilistic inference,
described in detail in e.g. Kennedy and O’Hagan (2001), is more widespread in the literature, and
arguably easier to outline and understand concisely than Bayes Linear inference. But fully probabilistic
inference is also considerably more demanding to implement in terms of complexity of full model and
prior specification, and computational burden.
In outline for the probabilistic approach, referring to Section 3, a Gaussian prior specification is typically

made for hindcast emulator basis parameters β, and a Gaussian process prior specification is made for
hindcast emulator residual r (x, ω) . Similarly, Gaussian and Gaussian process prior specifications are
made for discrepancy coefficients α and discrepancy residual w (x) respectively. The joint distribution of
hindcast simulator outputs F and measurements z is computed, and beliefs about the tuning parameters
are obtained using Bayes theorem as

p (ω|z, F) ∝ p (z, F|ω) p (ω) ,

where

p (z, F|ω) =

∫
p (z, F|β, α, ω) p (β) p (α) dβdα

can be computed in closed-form. Predictions for the system at input settings are then obtained by
evaluating

p (y (x) |x, z, F) =

∫
p (y (x) |x, ω) p (ω|z, F)

using numerical approximation. The last expression is the full probabilistic Bayesian equivalent to the
system adjusted expectation and covariance for Bayes Linear inference given in Equation A.3 and Equa-
tion A.4.
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